Skip to main content

Sustained Low-Efficiency Dialysis (SLED) and Hybrid Therapies in Children

  • Chapter
  • First Online:
Critical Care Nephrology and Renal Replacement Therapy in Children

Abstract

A wide variation in renal replacement therapy practices for critically ill patients with acute kidney injury exists across the world, with continuous renal replacement therapy (CRRT) predominating in developed countries and peritoneal dialysis in developing countries. Sustained low efficiency dialysis is a technical hybrid, combining the ease of use and low costs of intermittent hemodialysis with the hemodynamic stability of CRRT. It is performed using conventional hemodialysis machines and dialyzers, without anticoagulation where necessary. Current studies have shown similar efficacy results with SLED and CRRT. The use of ultrapure water and sterile dialysate produced by cold sterilization have enabled the addition of a convective clearance to diffusion with improved survival in small studies. As a hybrid therapy, great flexibility has been shown in coupling SLED with other extracorporeal treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fliser D, Kielstein JT. Technology insight: treatment of renal failure in the intensive care unit with extended dialysis. Nat Clin Pract Nephrol. 2006;2:32–9.

    Article  PubMed  Google Scholar 

  2. Bellomo R, Baldwin I, Fealy N. Prolonged intermittent renal replacement therapy in the intensive care unit. Crit Care Resusc. 2002;4:281–90.

    PubMed  CAS  Google Scholar 

  3. Salahudeen AK, Kumar V, Madan N, Xiao L, Lahoti A, Samuels J, et al. Sustained low efficiency dialysis in the continuous mode (C-SLED): dialysis efficacy, clinical outcomes, and survival predictors in critically ill cancer patients. Clin J Am Soc Nephrol. 2009;4:1338–46.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Raina R, Chauvin A, Bunchman T, Askenazi D, Deep A, Ensley M, Krishnappa V, Sethi S. Treatment of AKI in developing and developed countries: an international survey of pediatric dialysis modalities. Plos One. 2017:1–9.

    Google Scholar 

  5. Marshall M, Ma T, Galler D, Patrick A, Rankin N, Williams A. Sustained low-efficiency daily diafiltration (SLEDD-f) for critically ill patients requiring renal replacement therapy: towards an adequate therapy. Nephrol Dial Transplant. 2004;19:877–84.

    Article  PubMed  Google Scholar 

  6. Vinsonneau C, Allain-Launay E, Blayau C, et al. Renal replacement therapy in adult and pediatric intensive care - recommendations by an expert panel from the French Intensive Care Society (SRLF) with the French Society of Anesthesia Intensive Care (SFAR) French Group for Pediatric Intensive Care Emergencies (GFRUP) the French dialysis society (SFD). Ann Intensive Care. 2015;5:58–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ostermann M, Oudemans-van Straaten HM, Forni L. Fluid overload and acute kidney injury cause or consequence? Crit Care. 2015;19:443–5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schrier R. AKI: fluid overload and mortality. Nat Rev Nephrol. 2009;5:485.

    Article  PubMed  Google Scholar 

  9. Sethi S, Sinha R, Jha P, Wadhwani N, Ragunathan V, Dhaliwal M, Shyam B, Bansal S, Kher V, Lobo V, Sharma J, Raina R. Feasibility of sustained low efficiency dialysis in critically sick pediatric patients: A multicentric retrospective study. Hemodial Int. 2017;22:228–34.

    Article  PubMed  Google Scholar 

  10. Augustine JJ, Sandy D, Seifert TH, Paganini EP. A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis. 2004;44(6):1000–7.

    Article  PubMed  Google Scholar 

  11. Kumar VA, Craig M, Depner T, Jane Y, Yeun J. Extended daily dialysis: a new approach to renal replacement for acute renal failure in the intensive care unit. Am J Kidney Dis. 2000;36(2):294–300.

    Article  CAS  PubMed  Google Scholar 

  12. Eknoyan G, Beck G, Cheung A, et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002;347:2010–9.

    Article  PubMed  Google Scholar 

  13. Lonnemann G, Jurgen Floege J, Kliem V, Brunkhorst R, Koch K. Extended daily veno-venous high-flux hemodialysis in patients with acute renal failure and multiple organ dysfunction syndrome using a single batch dialysis system. Nephrol Dial Transplant. 2000;15:1189–93.

    Article  CAS  PubMed  Google Scholar 

  14. Schwenger V, Weigand M, Hoffmann O, et al. Sustained low efficiency dialysis using a single-pass batch system in acute kidney injury – a randomized interventional trial: the Renal Replacement Therapy Study in Intensive Care Unit PatiEnts. Crit Care. 2012;1:R14.

    Google Scholar 

  15. Tu & Ahmad, Dialysis & Transplantation. Citrate dialysate in advanced liver failure (Abstr); 2000.

    Google Scholar 

  16. Sinha R, Sethi S, Bunchman T, Lobo V & Raina R. Prolonged intermittent renal replacement therapy in children. Pediatr Nephrol. 2017.

    Google Scholar 

  17. Wu V, Huang T, Shiao C, NSARF Group. The hemodynamic effects during sustained low-efficiency dialysis versus continuous veno-venous hemofiltration for uremic patients with brain hemorrhage: a crossover study. J Neurosurg. 2013;119:1288–95.

    Article  PubMed  Google Scholar 

  18. Fieghen H, Friedrich J, Burns K, et al. The hemodynamic tolerability and feasibility of sustained low efficiencydialysis in the management of critically ill patients with acute kidney injury. BMC Nephrol. 2010;11(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Albino B, Balbi A, Ponce D. Dialysis complications in AKI patients treated with extended daily dialysis: is the duration of therapy important? Biomed Res Int. 2014;2014:9. Article ID 153626

    Google Scholar 

  20. Dhondt A, Vanholder R, De Smet R, et al. Studies on dialysate mixing in the Genius_ single-pass batch system for hemodialysis therapy. Kidney Int. 2003;63:1540–7.

    Article  PubMed  Google Scholar 

  21. Chia-Ying L, Yeh H, Lin C-Y. Treatment of critically ill children with kidney injury by sustained low-efficiency daily diafiltration. Pediatr Nephrol. 2012;27:2301–9.

    Article  Google Scholar 

  22. Kitchlu A, Adhikari N, , Burns K et al. Outcomes of sustained low efficiency dialysis versus continuous renal replacement therapy in critically ill adults with acute kidney injury: a cohort study; BMC Nephrol (2015) 16:127 – 134.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marshall M, Creamer J, Foster M, et al. Mortality rate comparison after switching from continuous to prolonged intermittent renal replacement for acute kidney injury in three intensive care units from different countries. Nephrol Dial Transplant. 2011;26:2169–75.

    Article  PubMed  Google Scholar 

  24. Kovacs B, Sullivan K, Hiremath S, Patel R. Effect of sustained low efficient dialysis versus continuous renal replacement therapy on renal recovery after acute kidney injury in the intensive care unit: a systematic review and meta-analysis. Nephrology. 2017;22:343–53.

    Article  PubMed  Google Scholar 

  25. Zhang L, Yang J, Eastwood G, et al. Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a meta-analysis. Am J Kidney Dis. 2015;66(2):322–30.

    Article  PubMed  Google Scholar 

  26. Deshpande P, Chen J, Gofran A, Murea M, Golestaneh L. Meropenem removal in critically ill patients undergoing sustained low-efficiency dialysis (SLED). Nephrol Dial Transplant. 2010;25(8):2632–6.

    Article  CAS  PubMed  Google Scholar 

  27. Ledebo I. On-line preparation of solutions for dialysis: practicalaspects versus safety and regulations. J Am Soc Nephrol. 2002;13(Suppl 1):S78–83.

    PubMed  CAS  Google Scholar 

  28. Vaslaki L, Karátson A, Vörös P, Major L, Pethö F, Ladányi E, Weber C, Mitteregger R, Falkenhagen D. Can sterile and pyrogen-free on-line substitution fluid be routinely delivered? A multicentric study on the microbiological safety of on-line haemodiafiltration. Nephrol Dial Transplant. 2000;15(Suppl 1):74–8.

    Article  PubMed  Google Scholar 

  29. Holt BG, White JJ, Kuthiala A, Fall P, Szerlip HM. Sustained low-efficiency daily dialysis with hemofiltration for acute kidney injury in the presence of sepsis. Clin Nephrol. 2008;69(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  30. Darío J, Manuel G, Ana A, et al. Intermittent hemodialysis low intensity vs. on line Hemodiafiltration in critically ill patients with sepsis and acute kidney injury. Choosing the best treatment in a developing country. J Nephrol Ther. 2017;7:4–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lobo, V. (2018). Sustained Low-Efficiency Dialysis (SLED) and Hybrid Therapies in Children. In: Deep, A., Goldstein, S. (eds) Critical Care Nephrology and Renal Replacement Therapy in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-90281-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90281-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90280-7

  • Online ISBN: 978-3-319-90281-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics