Skip to main content

Current Understanding of Pathology and Therapeutic Status for CADASIL

  • Chapter
  • First Online:
Cerebral Ischemic Reperfusion Injuries (CIRI)

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 492 Accesses

Abstract

Recently, it has been drawn an increased attention on a hereditary form of stroke and vascular dementia named cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Because of poor understanding of the pathogenesis of this disease, the treatment that specifically delay or stop the pathological progression of CADASIL has not yet been developed. This chapter provides an update on CADASIL research. The pathological features and possible molecular mechanisms of CADASIL are outlined, the involvement of vascular endothelial cells in pathological progression of CADASIL is introduced, and emerging studies in treatment research for CADASIL is reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CADASIL:

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

EGFrs:

Epidermal growth factor-like repeats

G-CSF:

Granulocyte colony stimulating factor

GOM:

Granular osmiophilic materials

MA:

Migraine with aura

N3ECD:

NOTCH3 N-terminal extracellular domain

N3TMIC:

NOTCH3 transmembrane intracellular domain

SCF:

Stem cell factor

VSMCs:

Vascular smooth muscle cells

References

  1. Joutel A. Pathogenesis of CADASIL. Bioessays. 2011;33(1):73–80.

    Article  PubMed  CAS  Google Scholar 

  2. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701.

    Article  PubMed  Google Scholar 

  3. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383(6602):707–10. https://doi.org/10.1038/383707a0.

    Article  PubMed  CAS  Google Scholar 

  4. Joutel A, Dodick DD, Parisi JE, Cecillon M, Tournier-Lasserve E, Bousser MG. De novo mutation in the Notch3 gene causing CADASIL. Ann Neurol. 2000b;47(3):388–91.

    Article  PubMed  CAS  Google Scholar 

  5. Tikka S, Baumann M, Siitonen M, Pasanen P, Poyhonen M, Myllykangas L, Viitanen M, Fukutake T, Cognat E, Joutel A, Kalimo H. CADASIL and CARASIL. Brain Pathol. 2014;24(5):525–44. https://doi.org/10.1111/bpa.12181.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Tournier-Lasserve E, Joutel A, Melki J, Weissenbach J, Lathrop GM, Chabriat H, Mas JL, Cabanis EA, Baudrimont M, Maciazek J, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet. 1993;3(3):256–9. https://doi.org/10.1038/ng0393-256.

    Article  PubMed  CAS  Google Scholar 

  7. Coto E, Menendez M, Navarro R, Garcia-Castro M, Alvarez V. A new de novo Notch3 mutation causing CADASIL. Eur J Neurol. 2006;13(6):628–31. https://doi.org/10.1111/j.1468-1331.2006.01337.x.

    Article  PubMed  CAS  Google Scholar 

  8. Stojanov D, Grozdanovic D, Petrovic S, Benedeto-Stojanov D, Stefanovic I, Stojanovic N, Ilic DN. De novo mutation in the NOTCH3 gene causing CADASIL. Bosn J Basic Med Sci. 2014;14(1):48–50.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, Piga N, Chapon F, Godfrain C, Tournier-Lasserve E. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest. 2000a;105(5):597–605. https://doi.org/10.1172/jci8047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rutten JW, Haan J, Terwindt GM, van Duinen SG, Boon EM, Lesnik Oberstein SA. Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert Rev Mol Diagn. 2014;14(5):593–603. https://doi.org/10.1586/14737159.2014.922880.

    Article  PubMed  CAS  Google Scholar 

  11. Brass SD, Smith EE, Arboleda-Velasquez JF, Copen WA, Frosch MP. Case records of the Massachusetts General Hospital. Case 12-2009. A 46-year-old man with migraine, aphasia, and hemiparesis and similarly affected family members. N Engl J Med. 2009;360(16):1656–65. https://doi.org/10.1056/NEJMcpc0810839.

    Article  PubMed  CAS  Google Scholar 

  12. Cognat E, Baron-Menguy C, Domenga-Denier V, Cleophax S, Fouillade C, Monet-Lepretre M, Dewerchin M, Joutel A. Archetypal Arg169Cys mutation in NOTCH3 does not drive the pathogenesis in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy via a loss-of-function mechanism. Stroke. 2014a;45(3):842–9. https://doi.org/10.1161/strokeaha.113.003339.

    Article  PubMed  CAS  Google Scholar 

  13. Cognat E, Herve D, Joutel A. Response to letter regarding article, “Archetypal Arg169Cys mutation in NOTCH3 does not drive the pathogenesis in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy via a loss-of-function mechanism”. Stroke. 2014b;45(7):e129. https://doi.org/10.1161/strokeaha.114.005616.

    Article  PubMed  Google Scholar 

  14. Peters N, Opherk C, Bergmann T, Castro M, Herzog J, Dichgans M. Spectrum of mutations in biopsy-proven CADASIL: implications for diagnostic strategies. Arch Neurol. 2005;62(7):1091–4. https://doi.org/10.1001/archneur.62.7.1091.

    Article  PubMed  Google Scholar 

  15. Guey S, Mawet J, Herve D, Duering M, Godin O, Jouvent E, Opherk C, Alili N, Dichgans M, Chabriat H. Prevalence and characteristics of migraine in CADASIL. Cephalalgia. 2016;36:1038. https://doi.org/10.1177/0333102415620909.

    Article  PubMed  Google Scholar 

  16. Granild-Jensen J, Jensen UB, Schwartz M, Hansen US. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy resulting in stroke in an 11-year-old male. Dev Med Child Neurol. 2009;51(9):754–7. https://doi.org/10.1111/j.1469-8749.2008.03241.x.

    Article  PubMed  Google Scholar 

  17. Watanabe M, Adachi Y, Jackson M, Yamamoto-Watanabe Y, Wakasaya Y, Shirahama I, Takamura A, Matsubara E, Kawarabayashi T, Shoji M. An unusual case of elderly-onset cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) with multiple cerebrovascular risk factors. J Stroke Cerebrovasc Dis. 2012;21(2):143–5. https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.05.008.

    Article  PubMed  Google Scholar 

  18. Reyes S, Viswanathan A, Godin O, Dufouil C, Benisty S, Hernandez K, Kurtz A, Jouvent E, O’Sullivan M, Czernecki V, Bousser MG, Dichgans M, Chabriat H. Apathy: a major symptom in CADASIL. Neurology. 2009;72(10):905–10. https://doi.org/10.1212/01.wnl.0000344166.03470.f8.

    Article  PubMed  CAS  Google Scholar 

  19. Jouvent E, Reyes S, Mangin JF, Roca P, Perrot M, Thyreau B, Herve D, Dichgans M, Chabriat H. Apathy is related to cortex morphology in CADASIL. A sulcal-based morphometry study. Neurology. 2011;76(17):1472–7. https://doi.org/10.1212/WNL.0b013e31821810a4.

    Article  PubMed  CAS  Google Scholar 

  20. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol. 2009;8(7):643–53. https://doi.org/10.1016/s1474-4422(09)70127-9.

    Article  PubMed  Google Scholar 

  21. Herve D, Chabriat H. CADASIL. J Geriatr Psychiatry Neurol. 2010;23(4):269–76. https://doi.org/10.1177/0891988710383570.

    Article  PubMed  CAS  Google Scholar 

  22. Herve D, Godin O, Dufouil C, Viswanathan A, Jouvent E, Pachai C, Guichard JP, Bousser MG, Dichgans M, Chabriat H. Three-dimensional MRI analysis of individual volume of Lacunes in CADASIL. Stroke. 2009;40(1):124–8. https://doi.org/10.1161/strokeaha.108.520825.

    Article  PubMed  Google Scholar 

  23. Trikamji B, Thomas M, Hathout G, Mishra S. An unusual case of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy with occipital lobe involvement. Annals Indian Acad Neurol. 2016;19(2):272–4. https://doi.org/10.4103/0972-2327.173403.

    Article  Google Scholar 

  24. Viswanathan A, Gray F, Bousser MG, Baudrimont M, Chabriat H. Cortical neuronal apoptosis in CADASIL. Stroke. 2006;37(11):2690–5. https://doi.org/10.1161/01.STR.0000245091.28429.6a.

    Article  PubMed  Google Scholar 

  25. Kalimo H, Ruchoux MM, Viitanen M, Kalaria RN. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 2002;12(3):371–84.

    Article  PubMed  CAS  Google Scholar 

  26. Lewandowska E, Dziewulska D, Parys M, Pasennik E. Ultrastructure of granular osmiophilic material deposits (GOM) in arterioles of CADASIL patients. Folia Neuropathol. 2011;49(3):174–80.

    PubMed  Google Scholar 

  27. Cotrutz CE, Indrei A, Badescu L, Dacalu C, Neamtu M, Dumitrescu GF, Stefanache F, Petreus T. Electron microscopy analysis of skin biopsies in CADASIL disease. Rom J Morphol Embryol. 2010;51(3):455–7.

    PubMed  Google Scholar 

  28. Joutel A, Favrole P, Labauge P, Chabriat H, Lescoat C, Andreux F, Domenga V, Cecillon M, Vahedi K, Ducros A, Cave-Riant F, Bousser MG, Tournier-Lasserve E. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet. 2001;358(9298):2049–51. https://doi.org/10.1016/s0140-6736(01)07142-2.

    Article  PubMed  CAS  Google Scholar 

  29. Joutel A, Monet-Lepretre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, Lemaire-Carrette B, Domenga V, Schedl A, Lacombe P, Hubner N. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest. 2010;120(2):433–45. https://doi.org/10.1172/jci39733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Tuominen S, Miao Q, Kurki T, Tuisku S, Pöyhönen M, Kalimo H, Viitanen M, Sipilä HT, Bergman J, Rinne JO. Positron emission tomography examination of cerebral blood flow and glucose metabolism in young CADASIL patients. Stroke. 2004;35(5):1063–7.

    Article  PubMed  Google Scholar 

  31. Campolo J, De Maria R, Frontali M, Taroni F, Inzitari D, Federico A, Romano S, Puca E, Mariotti C, Tomasello C, Pantoni L, Pescini F, Dotti MT, Stromillo ML, De Stefano N, Tavani A, Parodi O. Impaired vasoreactivity in mildly disabled CADASIL patients. J Neurol Neurosurg Psychiatry. 2012;83(3):268–74. https://doi.org/10.1136/jnnp-2011-300080.

    Article  PubMed  Google Scholar 

  32. De Maria R, Campolo J, Frontali M, Taroni F, Federico A, Inzitari D, Tavani A, Romano S, Puca E, Orzi F, Francia A, Mariotti C, Tomasello C, Dotti MT, Stromillo ML, Pantoni L, Pescini F, Valenti R, Pelucchi C, Parolini M, Parodi O. Effects of sapropterin on endothelium-dependent vasodilation in patients with CADASIL: a randomized controlled trial. Stroke. 2014;45(10):2959–66. https://doi.org/10.1161/strokeaha.114.005937.

    Article  PubMed  Google Scholar 

  33. Peters N, Freilinger T, Opherk C, Pfefferkorn T, Dichgans M. Enhanced L-arginine-induced vasoreactivity suggests endothelial dysfunction in CADASIL. J Neurol. 2008;255(8):1203–8. https://doi.org/10.1007/s00415-008-0876-9.

    Article  PubMed  Google Scholar 

  34. Pfefferkorn T, von Stuckrad-Barre S, Herzog J, Gasser T, Hamann GF, Dichgans M. Reduced cerebrovascular CO(2) reactivity in CADASIL: a transcranial Doppler sonography study. Stroke. 2001;32(1):17–21.

    Article  PubMed  CAS  Google Scholar 

  35. Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol. 2015;78(6):887–900. https://doi.org/10.1002/ana.24512.

    Article  PubMed  CAS  Google Scholar 

  36. Kofler NM, Cuervo H, Uh MK, Murtomaki A, Kitajewski J. Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations. Sci Rep. 2015;5:16449. https://doi.org/10.1038/srep16449.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang T, Baron M, Trump D. An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol. 2008;96(1-3):499–509. https://doi.org/10.1016/j.pbiomolbio.2007.07.006.

    Article  PubMed  CAS  Google Scholar 

  38. Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C, Gridley T, Tournier-Lasserve E, Cohen-Tannoudji M, Joutel A. The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet. 2007;16(8):982–92. https://doi.org/10.1093/hmg/ddm042.

    Article  PubMed  CAS  Google Scholar 

  39. Low WC, Santa Y, Takahashi K, Tabira T, Kalaria RN. CADASIL-causing mutations do not alter Notch3 receptor processing and activation. Neuroreport. 2006;17(10):945–9. https://doi.org/10.1097/01.wnr.0000223394.66951.48.

    Article  PubMed  CAS  Google Scholar 

  40. Chabriat H, Bousser MG. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Handb Clin Neurol. 2008;89:671–86. https://doi.org/10.1016/s0072-9752(07)01261-4.

    Article  PubMed  Google Scholar 

  41. Choi JC, Kang SY, Kang JH, Park JK. Intracerebral hemorrhages in CADASIL. Neurology. 2006;67(11):2042–4. https://doi.org/10.1212/01.wnl.0000246601.70918.06.

    Article  PubMed  Google Scholar 

  42. Liu XY, Gonzalez-Toledo ME, Fagan A, Duan WM, Liu Y, Zhang S, Li B, Piao CS, Nelson L, Zhao LR. Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL. Neurobiol Dis. 2015;73:189–203. https://doi.org/10.1016/j.nbd.2014.09.006.

    Article  PubMed  CAS  Google Scholar 

  43. Rutten JW, Dauwerse HG, Peters DJ, Goldfarb A, Venselaar H, Haffner C, van Ommen GJ, Aartsma-Rus AM, Lesnik Oberstein SA. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept. Brain. 2016;139(Pt 4):1123–35. https://doi.org/10.1093/brain/aww011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by American Heart Association (15GRNT25700284).

Funding information This work was supported by American Heart Association (15GRNT25700284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ru Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ping, S., Zhao, LR. (2018). Current Understanding of Pathology and Therapeutic Status for CADASIL. In: Jiang, W., Yu, W., Qu, Y., Shi, Z., Luo, B., Zhang, J. (eds) Cerebral Ischemic Reperfusion Injuries (CIRI). Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-90194-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90194-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90193-0

  • Online ISBN: 978-3-319-90194-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics