Skip to main content

Metallomics in Fish

  • Chapter
  • First Online:
Metallomics

Abstract

Metallomics allows the integration of traditionally analytical studies with inorganic and biochemical studies. The study of metallomics in living organisms allows us to obtain information about how the metal ion is distributed and coordinated with proteins, the essentiality and/or toxicity, and the individual concentrations of metal species, thus contributing to elucidation of the physiological and functional aspects of these biomolecules. In this context, several lines of research have appeared in the literature with different terms and approaches. For example, metallomic, which deals with the characterization of the total metal/metalloid species present in an organism; metalloprotein, which deals with the characterization of the total elements present in a specific site of an organism (cellular behavior, protein, metalloprotein); and metallomic, which deals with a more in-depth study of metallome. In this area, information is sought on the interactions and functional connections of metal/metalloid species with genes, proteins, metabolites and other biomolecules of the organism and, therefore, the elucidation of the biological role exerted by the metal ions bound to the biomolecules. In this chapter, we will describe techniques used in animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D-PAGE:

Two-dimensional polyacrylamide gel electrophoresis

AAS:

Atomic absorption spectrometry

ESI:

Electrospray ionization

ESI-MS/MS:

Electrospray ionization tandem mass spectrometry

FAAS:

Flame atomic absorption spectrometry

GFAAS:

Graphite furnace atomic absorption spectrometry

ICP-MS:

Inductively coupled plasma source mass spectrometry

IEF:

Isoelectric focusing

LC:

Multidimensional liquid chromatography

MALDI:

Matrix assisted laser desorption ionization

MALDI-TOF /MS:

Time-of-flight mass spectrometry coupled to laser-assisted matrix

Mm:

Molecular mass

MS:

Mass spectrometry

PAGE:

One-dimensional polyacrylamide gel electrophoresis

pI:

Isoeletric point

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC:

size-exclusion chromatography

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Akagi H, Malm O, Kinjo Y et al (1995) Methylmercury pollution in the Amazon, Brazil. Sci Total Environ 175:85–95

    Article  CAS  Google Scholar 

  • Aula I, Braunschweiler H, Malin I (1995) The watershed flux of mercury examined with indicators in the Tucuruí reservoir in Pará, Brazil. Sci Total Environ 175:97–107

    Article  CAS  Google Scholar 

  • Baldassini WA, Braga CP, Chardulo LAL et al (2015) Bioanalytical methods for the metalloproteomics study of bovine longissimus thoracis muscle tissue with different grades of meat tenderness in the Nellore breed (Bos indicus). Food Chem 169:65–72

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Bush AI (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43:6727–6749

    Article  CAS  PubMed  Google Scholar 

  • Bastos WR, Gomes JPO, Oliveira RC et al (2006) Mercury in the environment and riverside population in the Madeira River basin, Amazon, Brazil. Sci Total Environ 368:344–351

    Article  CAS  PubMed  Google Scholar 

  • Beyer J, Sandvik M, Hylland K et al (1996) Contaminant accumulation and biomarker responses in flounder (Platichthys flesus L.) and Atlantic cod (Gadus morhua L.) exposed by caging to polluted sediments in Sorfjorden, Norway. Aquat Toxicol 36:75–98

    Article  CAS  Google Scholar 

  • Braga CP, Bittarello AC, Padilha CCF et al (2015) Mercury fractionation in dourada (Brachyplatystoma rousseauxii) of the Madeira River in Brazil using metalloproteomic strategies. Talanta 132:239–244

    Article  CAS  PubMed  Google Scholar 

  • Braga CP; Vieira JC; Leite AL et al (2017) Metalloproteomic and differential expression in plasma in a rat model of type 1 diabetes. Int J Biol Macromol 104:414–422.

    Google Scholar 

  • Braga CP, Vieira JCS, Grove RA et al (2017) A proteomic approach to identify metalloproteins and metal-binding proteins in liver from diabetic rats. Int J Biol Macromol 96:817–832

    Article  CAS  PubMed  Google Scholar 

  • Cavecci B, De Lima PM, De Queiroz JV et al (2015) Metalloproteomic profile determination of muscle samples from Nile tilapia (Oreochromis niloticus) using AAS and ESI-MS/MS after 2D-PAGE separation. J Braz Chem Soc 26:239–246

    CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  PubMed  Google Scholar 

  • da Silva MAO, Garcia JS, GHMF S et al (2010) Evaluation of sample preparation protocols for proteomic analysis of sunflower leaves. Talanta 80:1545–1551

    Article  CAS  PubMed  Google Scholar 

  • Dydio P, Key HM, Nazarenko A, et al (2016) An artificial metalloenzyme with the kinetics of native enzymes. Science (80-) 354:102–106

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Chen C, Zhang P et al (2003) Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis. Anal Chim Acta 485:131–137

    Article  CAS  Google Scholar 

  • Garcia R, Baez AP (2012) Atomic absorption spectrometry (AAS). In: At. Absorpt. Spectrosc, pp 1–12

    Google Scholar 

  • Gorg A, Obermaier C, Boguth G et al (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5

    Article  CAS  Google Scholar 

  • Hauser-Davis RA, De Campos RC, Ziolli RL (2012) Fish metalloproteins as biomarkers of environmental contamination. Rev Environ Contam Toxicol 218:101–123

    PubMed  CAS  Google Scholar 

  • Huang S, Liu X, Wang D et al (2016) Structural basis for the selective Pb(II) recognition of Metalloregulatory protein PbrR691. Inorg Chem 55:12516–12519

    Article  CAS  PubMed  Google Scholar 

  • Jenniss SW, Katz SA, Lynch RW (1999) Applications of atomic spectrometry to regulatory compliance monitoring. ACH-Models Chem 136:55–68

    CAS  Google Scholar 

  • Korbas M, Blechinger SR, Krone PH et al (2008) Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proc Natl Acad Sci U S A 105:12108–12112

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutscher DJ, Sanz-Medel A, Bettmer J (2012) Metallomics investigations on potential binding partners of methylmercury in tuna fish muscle tissue using complementary mass spectrometric techniques. Metallomics 4:807–813

    Article  CAS  PubMed  Google Scholar 

  • Lima PM, Neves RDCF, Dos Santos FA et al (2010) Analytical approach to the metallomic of Nile tilapia (Oreochromis niloticus) liver tissue by SRXRF and FAAS after 2D-PAGE separation: preliminary results. Talanta 82:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Lippard SJ (1994) Metals in medicine. In: Bioinorganic chemistry. University Science Books, Mill Valley, pp 505–584

    Google Scholar 

  • López-Barea J, Gómez-Ariza JL (2006) Environmental proteomics and metallomics. Proteomics 6(Suppl 1):S51–S62

    Article  PubMed  Google Scholar 

  • Moraes PM, Santos FA, Padilha CCF et al (2012) A preliminary and qualitative metallomics study of mercury in the muscle of fish from Amazonas, Brazil. Biol Trace Elem Res 150:195–199

    Article  CAS  PubMed  Google Scholar 

  • Moraes PM, Santos FA, Cavecci B et al (2013) GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil. Food Chem 141:2614–2617

    Article  CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  • Pfeiffer WC, Lacerda LD, Salomons W, Malm O (1993) Environmental fate of mercury from gold mining in the Brazilian Amazon. Environ Rev 1:26–37

    Article  CAS  Google Scholar 

  • Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22:359–370

    Article  CAS  PubMed  Google Scholar 

  • Santos FA, Lima PM, Neves RCF et al (2011) Metallomic study on plasma samples from Nile tilapia using SR-XRF and GFAAS after separation by 2D PAGE: initial results. Microchim Acta 173:43–49

    Article  CAS  Google Scholar 

  • Sun H, Chai Z-F (2010) Metallomics: an integrated science for metals in biology and medicine. Annu Reports Sect “A” Inorganic Chem 106:20–38

    Article  CAS  Google Scholar 

  • Szpunar J (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378:54–56

    Article  CAS  PubMed  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  PubMed  Google Scholar 

  • Vieira JCS, Cavecci B, Queiroz JV et al (2015) Determination of the mercury fraction linked to protein of muscle and liver tissue of Tucunaré (Cichla spp.) from the Amazon region of Brazil. Arch Environ Contam Toxicol 69:422–430

    Article  CAS  PubMed  Google Scholar 

  • Vieira JCS, Braga CP, de Oliveira G et al (2017) Identification of protein biomarkers of mercury toxicity in fish. Environ Chem Lett 15:717–724

    Article  CAS  Google Scholar 

  • Xiang F, Lu X, Strutt B et al (2010) NOX2 deficiency protects against streptozotocin-induced β-cell destruction and development of diabetes in mice. Diabetes 59:2603–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro de Magalhães Padilha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braga, C.P., Adamec, J., de Magalhães Padilha, P. (2018). Metallomics in Fish. In: Arruda, M. (eds) Metallomics. Advances in Experimental Medicine and Biology(), vol 1055. Springer, Cham. https://doi.org/10.1007/978-3-319-90143-5_5

Download citation

Publish with us

Policies and ethics