Skip to main content

Preparation of the Wound Bed of the Diabetic Foot Ulcer

  • Chapter
  • First Online:
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Diabetic ulcers are chronic wounds which, despite recent advanced therapies, still fail to heal; they result in infection and high amputation rates. Hyperglycemia induces the majority of micro- and macrovascular complications associated with impaired wound healing. Wound bed preparation (WBP) is an essential step of diabetic wound management in order to accelerate endogenous healing and/or facilitate the effectiveness of other therapies. The aim of WBP is to remove the barriers that impair wound healing, including the presence of necrotic tissue, senescent cells, altered extracellular matrix, hypoxia, high bacterial burden, and inflammatory enzymes within the wound bed. There are several steps for achieving WBP, including debridement, reduction of the bacterial burden, management of edema and exudate, and correction of resident cell abnormalities. Here we provide an overview of the current status, role, and key elements of WBP in the context of diabetic ulcers. We will also introduce a reappraisal of WBP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bFGF:

Basic fibroblast growth factor

DNA:

Deoxyribonucleic acid

ECM:

Extracellular matrix

EGF:

Epithelial growth factor

EPCs:

Bone marrow-derived endothelial progenitor cells

FDA:

Food and Drug Administration

HBOT:

Hyperbaric oxygen therapy

iPSCs:

Human induced pluripotent stem cells

M1:

Macrophages proinflammatory phenotype

M2:

Macrophages anti-inflammatory and prohealing phenotype

MMP-9:

Metalloproteinase-9

MSC:

Mesenchymal stem cells

PDGF-BB:

Platelet-derived growth factor BB

PRP:

Plasma rich in platelets

rhEGF:

Human recombinant epidermal growth factor

TGF-β:

Transforming growth factor beta

TIME:

Necrotic Tissue, Infection/Inflammation, Moisture balance, healing of Edge of wound

VEGF:

Vascular endothelium growth factor

WBP:

Wound bed preparation

References

  1. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46.

    Article  CAS  PubMed  Google Scholar 

  2. Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, et al. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen. 2003;11(Suppl. 1):S1–28.

    Article  PubMed  Google Scholar 

  3. Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014;31:817–36.

    Article  CAS  PubMed  Google Scholar 

  4. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117(5):1219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Falanga V. The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol Dis. 2004;32(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  6. Thushara RM, Hemshekhar M, Basappa KK, Rangappa KS, Girish KS. Biologicals, platelet apoptosis and human diseases: an outlook. Crit Rev Oncol Hematol. 2015;93(3):149–58.

    Article  CAS  PubMed  Google Scholar 

  7. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736–43.

    Article  PubMed  Google Scholar 

  8. Nassiri S, Zakeri I, Weingarten MS, Spiller KL. Relative expression of proinflammatory and antiinflammatory genes reveals differences between healing and nonhealing human chronic diabetic foot ulcers. J Invest Dermatol. 2015;135(6):1700–3.

    Article  CAS  PubMed  Google Scholar 

  9. Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61(11):2937–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24:215–22.

    Article  PubMed  Google Scholar 

  11. Peplow PV, Baxter GD. Gene expression and release of growth factors during delayed wound healing: a review of studies in diabetic animals and possible combined laser phototherapy and growth factor treatment to enhance healing. Photomed Laser Surg. 2012;30(11):617–36.

    Article  CAS  PubMed  Google Scholar 

  12. Holmes CJ, Plichta JK, Gamelli RL, Radek KA. Dynamic role of host stress responses in modulating the cutaneous microbiome: implications for wound healing and infection. Adv Wound Care. 2015;4(1):24–37.

    Article  Google Scholar 

  13. Leung KP, D’Arpa P, Seth AK, Geringer MR, Jett M, Xu W, et al. Dermal wound transcriptomic responses to infection with Pseudomonas aeruginosa versus Klebsiella pneumoniae in a rabbit ear wound model. BMC Clin Pathol. 2014;14(1):20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Percival SL, Finnegan S, Donelli G, Vuotto C, Rimmer SLB. Antiseptics for treating infected wounds: efficacy on biofilms and effect of pH. Crit Rev Microbiol. 2014 271–17;27:1–17.

    Article  CAS  Google Scholar 

  15. Davis SC, Martinez L, Kirsner R. The diabetic foot: the importance of biofilms and wound bed preparation. Curr Diab Rep. 2006;6(6):439–45.

    Article  CAS  PubMed  Google Scholar 

  16. Shahi SK, Kumar A. Isolation and genetic analysis of multidrug resistant Bacteria from diabetic foot ulcers. Front Microbiol. 2015;6(January):1464.

    PubMed  Google Scholar 

  17. Mah TFC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  18. Percival SL, McCarty SM, Lipsky B. Biofilms and wounds: an overview of the evidence. Adv Wound Care. 2014;4(7):373–81.

    Article  Google Scholar 

  19. Smith K, Collier A, Townsend EM, O’Donnell LE, Bal AM, Butcher J, et al. One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers. BMC Microbiol. 2016;16(1):54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Naghibi M, Smith RP, Baltch AL, Gates SA, Wu DH, Hammer MC, et al. The effect of diabetes mellitus on chemotactic and bactericidal activity of human polymorphonuclear leukocytes. Diabetes Res Clin Pract. 1987;4(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  21. Zykova SN, Jenssen TG, Berdal M, Olsen R, Myklebust R, Seljelid R. Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice. Diabetes. 2000;49(9):1451–8.

    Article  CAS  PubMed  Google Scholar 

  22. Patel V, Chivukula IV, Roy S, Khanna S, He GL, Ojha N, et al. Oxygen: from the benefits of inducing VEGF expression to managing the risk of hyperbaric stress. Antioxid Redox Signal. 2005;7(9–10):1377–87.

    Article  CAS  PubMed  Google Scholar 

  23. Li M, Zhao Y, Hao H, Dai H, Han Q, Tong C, et al. Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment. Int J Low Extrem Wounds. 2015;14(1):73–86.

    Article  CAS  PubMed  Google Scholar 

  24. Bodnar RJ. Chemokine regulation of angiogenesis during wound healing. Adv Wound Care. 2014;4(11):641–50.

    Article  Google Scholar 

  25. Flegg JA, Menon SN, Maini PK, McElwain DLS. On the mathematical modeling of wound healing angiogenesis in skin as a reaction-transport process. Front Physiol. 2015;6(Sep):1–17.

    Google Scholar 

  26. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873–87.

    Article  CAS  PubMed  Google Scholar 

  27. Matabi Ayuk S, Abrahamse HNHN. The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation sandra. J Diabetes Res. 2016;2016:2897656.

    Google Scholar 

  28. Lazaro JL, Izzo V, Meaume S, Davies AH, Lobmann R, Uccioli L. Elevated levels of matrix metalloproteinases and chronic wound healing: an updated review of clinical evidence. J Wound Care. 2016;25(5):277–87.

    Article  CAS  PubMed  Google Scholar 

  29. Signorelli SS, Malaponte G, Libra M, Di Pino L, Celotta G, Bevelacqua V, et al. Plasma levels and zymographic activities of matrix metalloproteinases 2 and 9 in type II diabetics with peripheral arterial disease. Vasc Med. 2005;10(1):1–6.

    Article  PubMed  Google Scholar 

  30. Loot MA, Kenter SB, Au FL, van Galen WJ, Middelkoop E, Bos JD, Mekkes JR. Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur J Cell Biol. 2002;8(3):153–60.

    Article  Google Scholar 

  31. Otero-Viñas M, Lin X, Yufit T, Carson P, Falanga V. Dermal fibroblasts derived from human venous ulcers show high migratory and proliferative activity in vitro. J Invest Dermatol. 2015;135:126.

    Google Scholar 

  32. Panuncialman J, Falanga V. The science of wound bed preparation. Surg Clin North Am. 2009;89(3):611–26.

    Article  PubMed  Google Scholar 

  33. Falabella AF. Debridement and wound bed preparation. Dermatol Ther. 2006;19:317–25.

    Article  PubMed  Google Scholar 

  34. Falanga V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen. 2000;8:347–52.

    Article  CAS  PubMed  Google Scholar 

  35. Ayello EA, Dowsett C, Schultz GS, Sibbald RG, Falanga V, Harding K, Romanelli M, Stacey M, Teot L, Vanscheidt W. TIME heals all wounds. Nursing (Lond). 2004;34(4):36–41.

    Article  Google Scholar 

  36. Smith F, Dryburgh N, Donaldson J, Mitchell M. Debridement for surgical wounds (Review). Cochrane Database Syst Rev. 2013;9:CD006214.

    Google Scholar 

  37. Lebrun E, Tomic-Canic M, Kirsner RS. The role of surgical debridement in healing of diabetic foot ulcers. Wound Repair Regen. 2010;18(5):433–8.

    Article  PubMed  Google Scholar 

  38. Steed DL, Donohoe D, Webster MW, Lindsley L. Effect of extensive debridement and treatment on the healing of diabetic foot ulcers. Diabetic Ulcer Study Group. J Am Coll Surg. 1996;183(1):61–4.

    CAS  PubMed  Google Scholar 

  39. Brem H, Stojadinovic O, Diegelmann RF, Entero H, Lee B, Pastar I, et al. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med. 2007;13(9):30–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Falanga V, Brem H, Ennis WJ, Wolcott R, Gould LJ, Ayello EA. Maintenance debridement in the treatment of difficult-to-heal chronic wounds. Recommendations of an expert panel. Ostomy Wound Manag. 2008;(Suppl. 2–13):14–5.

    Google Scholar 

  41. Hsu C, Chang C, Chen Y, Lin W, Chen MY. Organization of wound healing services: the impact on lowering the diabetes foot amputation rate in a ten-year review and the importance of early debridement. Diabetes Res Clin Pract. 2015;109:77–84.

    Article  PubMed  Google Scholar 

  42. Elraiyah T, Domecq JP, Prutsky G, Tsapas A, Nabhan M, Frykberg RG, et al. A systematic review and meta-analysis of débridement methods for chronic diabetic foot ulcers. J Vasc Surg Elsevier. 2016;63(2):29S–36S.

    Article  Google Scholar 

  43. Otero-Viñas M, Ferrer Solà M, Clapera Cros J, González Martinez V, Sureda Vidal H, Espaulella-Panicot J. Hydrosurgery as an efficient debridement method in a clinical wound unit. Wound Repair Regen. 2015;23(2):A34–5.

    Google Scholar 

  44. Dabiri G, Damstetter E, Phillips T. Choosing a wound dressing based on common wound characteristics. Adv Wound Care. 2016;5(1):32–41.

    Article  Google Scholar 

  45. Sun X, Jiang K, Chen J, et al. A systematic review of maggot debridement therapy for chronically infected wounds and ulcers. Int J Infect Dis. 2014;25:32–7.

    Article  PubMed  Google Scholar 

  46. Smith F, Dryburgh N, Donaldson J, Mitchell M. Debridement for surgical wounds. Cochrane Database Syst Rev. 2013;9:CD006214.

    Google Scholar 

  47. Gethin G, Cowman S, Kolbach DN. Debridement for venous leg ulcers. Cochrane Database Syst Rev. 2015;9:CD008599.

    Google Scholar 

  48. Sun X, Chen J, Zhang J, Wang W, Sun J, Wang A. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity. J Diabetes Complicat. 2015;30:318–22.

    Article  Google Scholar 

  49. Horobin AJ, Shakesheff KM, Woodrow S, Robinson C, Pritchard DI. Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon interactions between human dermal fibroblasts and extracellular matrix components. Br J Dermatol. 2003;148(5):923–33.

    Article  CAS  PubMed  Google Scholar 

  50. Demidova-rice TN, Geevarghese A, Herman IM. Bioactive peptides derived from vascular endothelial cell extracellular matrices promote microvascular morphogenesis and wound healing in vitro. Wound Repair Regen. 2011;19(1):59–70.

    Article  PubMed  Google Scholar 

  51. Falanga V, Saap LJ, Ozonoff A. Wound bed score and its correlation with healing of chronic wounds. Dermatol Ther. 2006;19(6):383–90.

    Article  PubMed  Google Scholar 

  52. Nicolau DP, Stein GE. Therapeutic options for diabetic foot infections: a review with an emphasis on tissue penetration characteristics. J Am Pod Med Assoc. 2010;100(1):52–63.

    Article  Google Scholar 

  53. Amin N, Doupis J. Diabetic foot disease: from the evaluation of the “foot at risk” to the novel diabetic ulcer treatment modalities. World J Diabetes. 2016;7(7):153–64.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: clinical review. J Tissue Viability. 2016;25(4):229.

    Article  PubMed  Google Scholar 

  55. Hilton JR, Williams DT, Beuker B, Miller DR, Harding KG. Wound dressings in diabetic foot disease. Clin Infect Dis. 2004;39(Suppl 2):S100–3.

    Article  PubMed  Google Scholar 

  56. Wu L, Norman G, Jc D, Meara OS, Sem B, Wu L, et al. Dressings for treating foot ulcers in people with diabetes: an overview of systematic reviews (review) dressings for treating foot ulcers in people with diabetes: an overview of systematic reviews. Cochrane Database Syst Rev. 2015;7:CD010471.

    Google Scholar 

  57. Boulton AJM. Pressure and the diabetic foot: Clinical science and offloading techniques. Am J Surg. 2004;187(5 Suppl. 1):17–24.

    Article  Google Scholar 

  58. Game FL, Apelqvist J, Attinger C, Hartemann A, Hinchliffe RJ, Löndahl M, Price PE, Jeffcoate WJ. Effectiveness of interventions to enhance healing of chronic ulcers of the foot in diabetes: a systematic review. Diabetes Metab Res Rev. 2016;32(Suppl 1):154–68.

    Article  PubMed  Google Scholar 

  59. Eskes AM, Ubbink DT, Lubbers MJ, Lucas C, Vermeulen H. Hyperbaric oxygen therapy: solution for difficult to heal acute wounds? Systematic review. World J Surg. 2011;35(3):535–42.

    Article  PubMed  Google Scholar 

  60. Falanga V, Eaglstein WH, Bucalo B, Katz MH, Harris B, Carson P. Topical use of human recombinant epidermal growth factor (h-EGF) in venous ulcers. J Dermatol Surg Oncol. 1992;18(7):604–6.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Wang T, He J, Dong J. Growth factor therapy in patients with partial-thickness burns: a systematic review and meta-analysis. Int Wound J. 2014;8:1–13.

    Google Scholar 

  62. Gomez-Villa R, Aguilar-Rebolledo F, Lozano-Platonoff A, Teran-Soto JM, Fabian-Victoriano MR, Kresch-Tronik NS, et al. Efficacy of intralesional recombinant human epidermal growth factor in diabetic foot ulcers in Mexican patients: a randomized double-blinded controlled trial. Wound Repair Regen. 2014;22(4):497–503.

    Article  PubMed  Google Scholar 

  63. Singla S, Garg R, Kumar A, Gill C. Efficacy of topical application of beta urogastrone (recombinant human epidermal growth factor) in Wagner’s grade 1 and 2 diabetic foot ulcers: comparative analysis of 50 patients. J Nat Sci Biol Med. 2014;5(2):273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang S, Geng Z, Ma K, Sun X, Fu X. Efficacy of topical recombinant human epidermal growth factor for treatment of diabetic foot ulcer: a systematic review and meta-analysis. Int J Low Extrem Wounds. 2016;15(2):120–5.

    Article  PubMed  Google Scholar 

  65. Fang RC, Galiano RD. A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics. 2008;2(1):1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Buchberger B, Follmann M, Freyer D, Huppertz H, Ehm A, Wasem J. The importance of growth factors for the treatment of chronic wounds in the case of diabetic foot ulcers. GMS Heal Technol Assess. 2010;1:6.

    Google Scholar 

  67. Martinez-Zapata MJ, Martí-Carvajal AJ, Solà I, et al. Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst Rev. 2012;17:10.

    Google Scholar 

  68. Perez-zabala E, Basterretxea A, Larrazabal A, Perez-del-Pecho K, Rubio-Azpeitia E, Andia I. Biological approach for the management of non-healing diabetic foot ulcers. J Tissue Viability. 2016;25:157–63.

    Article  PubMed  Google Scholar 

  69. Martinez-Zapata MJ, Marti-Carvajal AJ, Sola I, Exposito JA, Bolibar I, Rodriguez L, et al. Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst Rev. 2016;5:CD006899.

    Google Scholar 

  70. Lazic T, Falanga V. Bioengineered skin constructs and their use in wound healing. Plast Reconstr Surg. 2011;127(Suppl):75S–90S.

    Article  CAS  PubMed  Google Scholar 

  71. Santema TKB, Poyck PPC, Ubbink DT. Systematic review and meta-analysis of skin substitutes in the treatment of diabetic foot ulcers: highlights of a Cochrane systematic review. Wound Repair Regen. 2016;24:737.

    Article  PubMed  Google Scholar 

  72. Otero-Viñas M, Falanga V. Mesenchymal stem cells in chronic wounds: the Spectrum from basic to advanced therapy. Adv Wound Care. 2016;5(4):149–63.

    Article  Google Scholar 

  73. Şener LT, Albeniz I. Challenge of mesenchymal stem cells against diabetic foot ulcer. Curr Stem Cell Res Ther. 2015;10(6):530–4.

    Article  PubMed  Google Scholar 

  74. Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α. J Clin Invest. 2007;117(5):1249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerami-Naini B, Smith A, Maione AG, Kashpur O, Carpinito G, Veves A, et al. Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative Sendai virus. Cell Reprogram. 2016;18(4):214. https://doi.org/10.1089/cell.2015.0087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maione AG, Brudno Y, Stojadinovic O, Park LK, Smith A, Tellechea A, et al. Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Eng Part C Methods. 2015;21(5):499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Falanga MD, FACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otero-Viñas, M., Falanga, V. (2018). Preparation of the Wound Bed of the Diabetic Foot Ulcer. In: Veves, A., Giurini, J., Guzman, R. (eds) The Diabetic Foot. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-319-89869-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89869-8_16

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-89868-1

  • Online ISBN: 978-3-319-89869-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics