Skip to main content

Endophytic Bacteria in Tree Shoot Tissues and Their Effects on Host

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 86))

Abstract

Shoot endophytic bacteria have mainly been isolated during plant tissue culture started from shoot tips (buds) or embryos. With methods such as in situ hybridization and transmission electron microscopy, endophytic bacteria have been localized in buds, seeds, and flowers of forest trees. By GFP tagging of endophytic bacteria, colonization of tree seedlings has been observed. It is still unknown whether shoot-associated bacteria are transmitted to new trees via seeds, although many results point to this direction. Interactions between the plant and endophytic bacteria in the shoots likely differ to some extent from those in the roots. Shoot endophytic bacteria share some mechanisms of plant growth promotion with the root endophytes, such as the ability of producing plant growth hormones. In addition, some shoot endophytes may affect plant growth through production of adenine derivatives or bacterial photosynthesis. An interesting new mechanism of enhancing host growth is suggested for intracellular bacteria that can act directly through production of nucleomodulins, eukaryotic transcription factors, encoded in the bacterial genome. This mechanism was identified through genome sequencing of a shoot endosymbiont. Therefore, we can expect further interesting discoveries in the future on shoot endophytes of forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TEM:

Transmission electron microscopy

PHB:

Polyhydroxybutyrate

GFP:

Green fluorescent protein

IAA:

Indole-acetic acid

NGS:

Next-generation sequencing

DMHF:

2,5-dimethyl-4-hydroxy-2H-furan-3-one

BphP:

Bacteriophytochrome

ACC:

Aminocyclopropane-1-carboxylate

FISH:

Fluorescent in situ hybridization

References

  • Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144

    Article  CAS  PubMed  Google Scholar 

  • Alibrandi P, Cardinale M, Rahman MM et al (2017) The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacterium spp. and Staphylococcus spp. with potential plant-growth promoting activities. Plant Soil: 1–19

    Google Scholar 

  • Anand R, Grayston S, Chanway C (2013) N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microb Ecol 66:369–374

    Article  CAS  PubMed  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD et al (1997) Recent advances in BNF with non legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Bandara WMMS, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650

    Article  CAS  PubMed  Google Scholar 

  • Basile DV, Basile MR, Li QY et al (1985) Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum. (Hepaticae). Bryologist 88:77–81

    Article  CAS  Google Scholar 

  • Baumann TW, Schulthess BH, Linden A et al (1994) Structure and metabolism of t-β-D-glucopyranosyladenine. The product of a cytokinin-sparing reaction? Phytochemistry 36:537–542

    Article  CAS  Google Scholar 

  • Beckers B, De Beeck MO, Weyens N et al (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M et al (2005) Bacterial endophytes from seed of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345

    Article  CAS  PubMed  Google Scholar 

  • Carrell AA, Frank AC (2014) Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol 5:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E et al (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  CAS  PubMed  Google Scholar 

  • Dalla Santa OR, Hernández RF et al (2004) Azospirillum sp. inoculation in wheat, barley and oats seeds greenhouse experiments. Braz Arch Biol Technol 47:843–850

    Article  Google Scholar 

  • Doty SL, Oakley B, Xin G et al (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  CAS  Google Scholar 

  • Eichel J, González JC, Hotze M et al (2008) Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus): Molecular characterization, regulation, heterologous expression, and enzyme properties. Eur J Biochem 230:1053–1058

    Article  Google Scholar 

  • Fall R (1996) Cycling of methanol between plants, methylotrophs and the atmosphere. In: Lidstrom ME, Tabita FR (eds) Microbial Growth on C1 Compounds. Kluwer Academic Publishers, Dordrecht, pp 343–350

    Chapter  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1:296–301

    Article  Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT et al (2008) Diversity of endophytic bacteria from Eucalyptus species seed and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14

    Article  CAS  PubMed  Google Scholar 

  • Frank AC (2011) The Genomes of endophytic bacteria. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications, vol 80, 1st edn. Springer Forestry Sciences, pp. 107–136

    Chapter  Google Scholar 

  • Freyermuth SK, Long RLG, Mathur S et al (1996) Metabolic aspects of plant interaction with commensal methylotrophs. In: Lidstrom ME, Tabita RF (eds) Microbial growth on C1 compounds. Kluwer Academic Publishers, Dordrecht, pp 277–284

    Chapter  Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture methods. Handbook and directory of commercial laboratories. Eastern Press, Reading

    Google Scholar 

  • Giraud E, Hannibal L, Fardoux J et al (2000) Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proc Natl Acad Sci 97:14795–14800

    Article  CAS  PubMed  Google Scholar 

  • Giraud E, Fardoux J, Fourrier N et al (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417:202–205

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 25:1–7

    Article  CAS  Google Scholar 

  • Gout E, Aubert S, Bligny R et al (2000) Metabolism of methanol in plant cells. Carbon-13 nucleic magnetic resonance studies. Plant Physiol 123:287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland MA (1997) Occam’s razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol 115:865–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other covert contamination: is there more to plant physiology than just plant? Annu Rev Plant Phys Plant Mol Biol 45:197–209

    Article  CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Shepelyakovskaya AO et al (2000) Facultative and obligate aerobic methylobacteria synthesize cytokinins. Mikrobiologiya 69:764–769

    CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiologiya 70:452–458

    CAS  Google Scholar 

  • Ivanova EG, Fedorov DN, Doronina NV et al (2006) Production of vitamin B12 in aerobic methylotrophic bacteria. Microbiologiya 75:494–496

    CAS  Google Scholar 

  • Ivanova EG, Pirttilä AM, Fedorov DNF et al (2008) Association of methylotrophic bacteria with plants: metabolic aspects. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant associated microbes. A laboratory manual, Part A: bacteria. Biobien Innovations, Turku, Finland, pp. 225–231

    Google Scholar 

  • Kalyaeva MA, Zakharchenko NS, Doronina NV et al (2001) Plant growth and morphogenesis in vitro is promoted by associative methylotrophic bacteria. Russ J Plant Physiol 48:514–517

    Article  CAS  Google Scholar 

  • Kamoun R, Lepoivre P, Boxus P (1998) Evidence for the occurrence of endophytic prokaryotic contaminants in micropropagated plantlets of Prunus cerasus cv. ‘Montgomery’. Plant Cell Tissue Org Cult 52:57–59

    Article  CAS  Google Scholar 

  • Keppler F, Boros M, Frankenberg C et al (2009) Methane formation in aerobic environments. Env Chem 6:459–465

    Article  CAS  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koopman V, Kutschera U (2005) In vitro regeneration of sunflower plants: effects of a Methylobacterium strain on organ development. J Appl Bot Food Qual 79:59–62

    Google Scholar 

  • Koskimäki JJ, Nylund S, Suorsa M et al (2010) Mycobacterial endophytes are enriched during micropropagation of Pogonatherum paniceum. Env Microbiol Rep 2:619–624

    Article  CAS  Google Scholar 

  • Koskimäki JJ, Pirttilä AM, Ihantola, E-L et al (2015) The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins. mBio 6(2): e00039-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskimäki JJ, Kajula M, Hokkanen J et al (2016) Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals. Nat Chem Biol 12:332–338

    Article  CAS  PubMed  Google Scholar 

  • Koutsompogeras P, Kyriacou A, Zabetakis I (2007) The formation of 2,5-dimethyl-4-hydroxy-2H-furan-3-one by cell free extracts of Methylobacterium extorquens and strawberry (Fragaria × ananassa cv. Elsanta). Food Chem 104:1654–1661

    Article  CAS  Google Scholar 

  • Laukkanen H, Soini H, Kontunen-Soppela S et al (2000) A mycobacterium isolated from tissue cultures of mature Pinus sylvestris interferes with growth of Scots pine seedlings. Tree Physiol 20:915–920

    Article  PubMed  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone mnipulations do not result in common growth responses. PLoS ONE 3:e2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madmony A, Chernin L, Pleban S et al (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol 50:209–216

    Article  CAS  Google Scholar 

  • Miguel PS, de Oliveira MN, Delvaux JC et al (2016) Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth. Antonie van Leeuwenhoek 109: 755–771

    Article  CAS  PubMed  Google Scholar 

  • Moore FP, Barac T, Borremans B et al (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  PubMed  Google Scholar 

  • Moritz T, Sundberg B (1996) Endogenous cytokinins in the vascular cambial region of Pinus sylvestris during activity and dormancy. Physiol Plant 98:693–698

    Article  CAS  Google Scholar 

  • Moyes AB, Kueppers LM, Pett-Ridge J et al (2016) Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol 210:657–668

    Article  CAS  PubMed  Google Scholar 

  • Murthy BNS, Vettakkorumakankav NN, KrishnaRaj S et al (1999) Characterization of somatic embryogenesis in Pelargonium × hortorum mediated by a bacterium. Plant Cell Rep 18:607–613

    Article  CAS  Google Scholar 

  • Nasopoulou C, Pohjanen J, Koskimäki JJ et al (2014) Localization of strawberry (Fragaria x ananassa) and Methylobacterium extorquens genes of strawberry flavour biosynthesis in strawberry tissue by in situ hybridization. J Plant Physiol 171:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Nemecek-Marshall M, MacDonald RC, Franzen JJ et al (1995) Methanol emission from leaves (enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development). Plant Physiol 108:1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonomura AM, Benson AA (1991) The path of carbon in photosynthesis: improved crop yields with methanol. PNAS 89:9794–9798

    Article  Google Scholar 

  • Nishio N, Tanaka M, Matsuno R et al (1977) Production of vitamin B12 by methanol-utilizing bacteria, Pseudomonas AM-1 and Microcyclus eburneus. Ferment Technol 55:200–203

    CAS  Google Scholar 

  • Pham NT, Meier-Dinkel A, Höltken AM et al (2017) Endophytic bacterial communities in in vitro shoot cultures derived from embryonic tissue of hybrid walnut (Juglans × intermedia). Plant Cell Tiss Organ Cult 130:153–165

    Article  Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirttilä AM, Laukkanen H, Hohtola A (2002) Chitinase production in pine callus (Pinus sylvestris L.): a defense reaction against endophytes? Planta 214:848–852

    Article  CAS  PubMed  Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H et al (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microbial Ecol 45:53–62

    Article  CAS  Google Scholar 

  • Pirttilä AM, Joensuu P, Pospiech P et al (2004) Endophytic products affect morphology and mitigate browning of callus cultures of Scots pine (Pinus sylvestris L.). Physiol Plant 121:305–312

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H et al (2005) Seasonal variation in location and population structure of endophytes in buds of Scots pine. Tree Physiol 25:289–297

    Article  PubMed  Google Scholar 

  • Pirttilä AM, Hohtola A, Ivanova EG et al (2008) Identification and localization of methylotrophic plant-associated bacteria. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant associated microbes. A laboratory manual, Part A: bacteria. Biobien Innovations, Turku, Finland. pp. 218–224

    Google Scholar 

  • Pirttilä AM (2011) Colonization of Tree Shoots by Endophytic Fungi. In: Pirttilä AM, Sorvari S (eds) Prospects and applications for plant-associated microbes. A laboratory manual, Part B: fungi. BioBien Innovations, Turku, Finland, pp. 93–95

    Google Scholar 

  • Podolich O, Laschevskyy V, Ovcharenko L et al (2009) Methylobacterium sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction by Pseudomonas fluorescens IMGB163. J Appl Microbiol 106:728–737

    Article  CAS  PubMed  Google Scholar 

  • Pohjanen J, Koskimäki JJ, Sutela S et al (2014) The interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects the nutrient uptake and growth of pine seedlings in vitro. Tree Physiol 34:993–1005

    Article  PubMed  Google Scholar 

  • Quambusch M, Pirttilä AM, Tejesvi MV et al (2014) Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes. Tree Physiol 34:524–533

    Article  CAS  PubMed  Google Scholar 

  • Quambusch M, Brümmer J, Haller K et al (2016) Dynamics of endophytic bacteria in plant in vitro culture: quantification of three bacterial strains in Prunus avium in different plant organs and in vitro culture phases. Plant Cell Tiss Organ Cult 126:305–317

    Article  Google Scholar 

  • Ramírez I, Dorta F, Espinoza V et al (2006) Effects of foliar and root applications of methanol on the growth of arabidopsis, tobacco, and tomato plants. J Plant Growth Regul 25:30–44

    Article  CAS  Google Scholar 

  • Reed BM, Mentzer J, Tanprasert P et al (1998) Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Plant Cell Tiss Org Cult 52:67–70

    Article  CAS  Google Scholar 

  • Río-Álvarez I, Rodríguez-Herva JJ, Martínez PM et al (2014) Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000. Environ Microbiol 16:2072–2085

    Article  CAS  PubMed  Google Scholar 

  • Scherling C, Ulrich K, Ewald D et al (2009) Metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro–grown poplar plants revealed by metabolomics. Mol Plant Microbe Interact 22:1032–1037

    Article  CAS  PubMed  Google Scholar 

  • Skoog F, Armstrong DJ (1970) Cytokinins. Annu Rev Plant Physiol 21:359–384

    Article  CAS  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    Article  CAS  PubMed  Google Scholar 

  • Taghavi A, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  CAS  PubMed  Google Scholar 

  • Toraya T, Yongsmith B, Tanaka A, Fukui S (1975) Vitamin B12 production by a methanol-utilizing bacterium. Appl Microbiol 30:477–479

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008) Paenibacillus- a predominant endophytic bacterium colonizing tissue cultures of woody plants. Plant Cell Tiss Organ Cult 93:347–351

    Article  Google Scholar 

  • Van Aken B, Peres CM, Doty SL et al (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Int J Syst Evol Microbiol 54:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Visser C, Murthy BNS, Odumeru J et al (1994) Modulation of somatic embryogenesis in hypocotyl cultures of geranium (Pelargonium × hortorum Bailey) cv. Ringo Rose by a bacterium. In Vitro Cell Dev Biol 30P:140–143

    Article  Google Scholar 

  • Wu L, McGrane RS, Beattie GA (2013) Light regulation of swarming motility in Pseudomonas syringae integrates signaling pathways mediated by a bacteriophytochrome and a LOV protein. mBio 4: e00334–00313

    Article  CAS  Google Scholar 

  • Xing K, Bian GK, Qin S et al (2012) Kibdelosporangium phytohabitans sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. containing 1-aminocyclopropane-1-carboxylic acid deaminase. Antonie Van Leeuwenhoek 101:433–441

    Article  CAS  PubMed  Google Scholar 

  • Yrjälä K, Mancano G, Fortelius C et al (2010) The incidence of Burkholderia in epiphytic and endophytic bacterial cenoses in hybrid aspen grown on sandy peat. Boreal Environ Res 15:81–96

    Google Scholar 

  • Zabetakis I (1997) Enhancement of flavour biosynthesis from strawberry (Fragaria × ananassa) callus cultures by Methylobacterium species. Plant Cell Tiss Org Cult 50:179–183

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Pirttilä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pirttilä, A.M. (2018). Endophytic Bacteria in Tree Shoot Tissues and Their Effects on Host. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-89833-9_8

Download citation

Publish with us

Policies and ethics