Skip to main content

Evidence of Clay Illuviation in Soils of the Indo-Gangetic Alluvial Plains (IGP) and Red Ferruginous (RF) Soils

  • Chapter
  • First Online:
Book cover Simple Methods to Study Pedology and Edaphology of Indian Tropical Soils

Abstract

In the US system of soil classification, specific criteria are detailed out to define objectively the minimum evidence of clay illuviation required for an argillic horizon, which are particle size distribution relative to an overlying horizon and either clay skins on ped surfaces or oriented clay occupying 1% or more of the cross section. These criteria are not infallible when applied in many soil types occurring in semi-arid (SAT) and humid (HT) tropical climates of India. Pedologists while working in the micaceous Indo-Gangetic Alluvial (IGP) soils of the north-western India have often experienced clay-enriched textural B-horizons however without the identifiable clay skins by a 10 x hand lens. On the other hand, some pedologists considered the textural B-horizons as argillic on the basis of increased clay and the presence of field-identifiable clay skins or void argillans (impure type) and some of them considered the clay enrichment due to the sedimentation processes, geogenic origins and in situ weathering of biotite particles.

Loamy to clayey Mollisols, Alfisols and Ultisols of HT climate, which are in general mild to strongly acidic, have clay enriched B horizons and maintain the required base saturation but the identification of the argillic horizons in Ultisols is still not a straight forward criterion. The introduction of ‘Kandic’ concept in the US Soil Taxonomy ignores the requirement for argillic horizons in Ultisols. Although many Ultisols of the HT parts of southern peninsular area and north-east hill (NEH) regions qualify for Kandic horizon, scientific explanation is still awaited to address the pedogenic processes that are responsible for the clay enriched B-horizons but without the field identifiable clay skins. Identification of clay skins in the field is a tricky issue and soil micro-micromorphological thin section studies indicate the presence of either impure clay pedofeatures or less strongly oriented void argillans with low birefringence, which do not satisfy the basic requirement of pure void argillans as stipulated by the US Taxonomy. Therefore to circumvent this predicament demonstration of simple but scientifically sound analytical methods to ensure the formation of the argillic horizon through clay illuviation process are described in this chapter as a step towards precise and unambiguous definitions of soil taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhargava GP, Pal DK, Kapoor BS, Goswami SC (1981) Characteristics and genesis of some sodic soils in the indo-Gangetic alluvial plain of Haryana and Uttar Pradesh. J. Indian Soc Soil Sci 29:61–70

    CAS  Google Scholar 

  • Bhattacharyya T, Pal DK, Deshpande SB (1993) Genesis and transformation of minerals in the formation of red (Alfisols) and black (Inceptisols and Vertisols) soils on Deccan basalt in the western Ghats, India. J Soil Sci 44:159–171

    Article  CAS  Google Scholar 

  • Bhattacharyya T, Pal DK, Srivastava P (1999) Role of zeolites in persistence of high altitude ferruginous Alfisols of the humid tropical western Ghats, India. Geoderma 90:263–276

    Article  CAS  Google Scholar 

  • Bhattacharyya T, Pal DK, Srivastava P (2000) Formation of gibbsite in presence of 2:1 minerals: an example from Ultisols of Northeast India. Clay Miner 35:827–840

    Article  CAS  Google Scholar 

  • Bhattacharyya T, Pal DK, Lal S, Chandran P, Ray SK (2006) Formation and persistence of Mollisols on Zeolitic Deccan basalt of humid tropical India. Geoderma 136:609–620

    Article  CAS  Google Scholar 

  • Bhattacharyya T, Sarkar D, Sehgal JL, Velayutham M, Gajbhiye KS, Nagar AP, Nimkhedkar SS (2009) Soil taxonomic database of India and the states (1:250,000 scale), vol 143. NBSSLUP, Publication, p 266

    Google Scholar 

  • Brewer R (1972) The basis of interpretation of soil micromorphological data. Geoderma 8:81–94

    Article  Google Scholar 

  • Bullock P, Thompson ML (1985) Micromorphology of Alfisols. In: Douglas LA, Thompson ML (eds) Soil micromorphology and soil classification. Soil Science Society of America, Madison, pp 17–47

    Google Scholar 

  • Bullock P, Fedoroff N, Jongerious A, Stoops G, Tursina T (1985) Handbook of soil thin section description. Waine Research Publication, p 152

    Google Scholar 

  • Chandran P, Ray SK, Bhattacharyya T, Srivastava P, Krishnan P, Pal DK (2005) Lateritic soils of Kerala, India: their mineralogy, genesis and taxonomy. Aust J Soil Res 43:839–852

    Article  CAS  Google Scholar 

  • Eswaran H (1972) Micromorphological indicators of pedogenesis in some tropical soils derived from basalts from Nicaragua. Geoderma 7:15–31

    Article  Google Scholar 

  • Eswaran H, Sys C (1979) Argillic horizon in LAC soils formation and significance to classification. Pédologie 29:175–190

    Google Scholar 

  • FAO/UNESCO (1974) Soil map of the world, vol 1. Legend Published by FAO, Rome

    Google Scholar 

  • Hurelbrink RL, Fehrenbacher JB (1970) Soils and stratigraphy of a portion of the Gola River fan of Uttar Pradesh. Soil Sci Soc Am Proc 37:911–916

    Article  Google Scholar 

  • Glenn RC, Jackson ML, Hole FD, Lee GB (1960) Chemical weathering of layer silicate clays in loess-derived Tama silt loam of South-Western Wisconsin. Clay Clay Miner 8:63–83

    Article  CAS  Google Scholar 

  • Kapoor BS, Singh HB, Goswami SC (1981) Distribution of illite in some alluvial soils of the indo-Gangetic plain. J Indian Soc Soil Sci 29:572–574

    Google Scholar 

  • Karale RL, Bisdom EBA, Jongerious J (1974) Micromorphological studies on diagnostic subsurface horizons of some alluvial soils in the Meerut district of Uttar Pradesh. J Indian Soc Soil Sci 22:70–76

    Google Scholar 

  • Kiely PV, Jackson ML (1965) Quartz, feldspar, and mica determination for soils by sodium pyrosulphate fusion. Soil Sci Soc Am Proc 29:159–163

    Article  CAS  Google Scholar 

  • Kooistra MJ (1982) Micromorphological analysis and characterization of 70 benchmark soils of India. Soil survey institute, Wageningen

    Google Scholar 

  • Lal S (2000) Characteristics, genesis and use potential of soils of the Western Ghats, Maharashtra. Ph. D Thesis, Dr. P.D.V.K., Akola, Maharashtra, India

    Google Scholar 

  • Manchanda ML, Khanna SS (1981) Soil salinity and landscape relationships in part of Haryana state. J Indian Soc Soil Sci 29:493–503

    Google Scholar 

  • Manchanda ML, Khanna SS, Garalapuri VN (1983) Weathering dispersibility and clay skins in subsurface diagnostic horizons of soils in parts of Haryana. J Indian Soc Soil Sci 31:565–571

    Google Scholar 

  • Pal DK (1997) An improvised method to identify clay illuviation in soils of indo-Gangetic plains. Clay Res 16:46–50

    Google Scholar 

  • Pal DK, Bhargava GP (1985) Clay illuviation in a sodic soil of the northwestern part of the indo-Gangetic alluvial plain. Clay Res 4:7–13

    CAS  Google Scholar 

  • Pal DK, Deshpande SB (1987) Parent material, mineralogy and genesis of two benchmark soils of Kashmir valley. J Indian Soil Sci 35:690–698

    CAS  Google Scholar 

  • Pal DK, Deshpande SB, Venugopal KR, Kalbande AR (1989) Formation of di- and trioctahedral smectite as an evidence for paleoclimatic changes in southern and central peninsular India. Geoderma 45:175–184

    Article  Google Scholar 

  • Pal DK, Kalbande AR, Deshpande SB, Sehgal JL (1994) Evidence of clay illuviation in sodic soils of north-western part of the indo-Gangetic Plains since the Holocene. Soil Sci 158:465–473

    Google Scholar 

  • Pal DK, Sarma VAK (2002) Chemical composition of soils. In: Fundamentals of soil science. Indian Society of Soil Science, New Delhi, pp 209–227

    Google Scholar 

  • Pal DK, Srivastava P, Bhattacharyya T (2003) Clay illuviation in calcareous soils of the semi-arid part of the indo-Gangetic Plains, India. Geoderma 115:177–192

    Article  CAS  Google Scholar 

  • Pal DK, Wani SP, Sahrawat KL, Srivastava P (2014) Red ferruginous soils of tropical Indian environments: a review of the pedogenic processes and its implications for edaphology. Catena 121:260–278. https://doi.org/10.1016/j.catena2014.05.023

    Article  CAS  Google Scholar 

  • Sehgal JL, Hall GF, Bhargava GP (1975) An appraisal of the problems in classifying saline-sodic soils of the indo-Gangetic plain in NW India. Geoderma 14:75–91

    Article  CAS  Google Scholar 

  • Sen TK, Nayak DC, Singh RS, Dubey PN, Maji AK, Chamuah GS, Sehgal JL (1997) Pedology and edaphology of benchmark acid soils of North-Eastern India. J Indian Soc Soil Sci 45:782–790

    Google Scholar 

  • Soil Survey Staff (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Agriculture handbook. Soil Conservation Service, US Dept. of Agriculture, Washington, DC, p 436

    Google Scholar 

  • Soil Survey Staff (1990) Keys to soil taxonomy, 4th edn, 19. SMSS Technical Monograph, Blacksburg

    Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, USDA-SCS agricultural handbook no 436, 2nd edn. U.S. Govt Printing Office, Washington, DC

    Google Scholar 

  • Srivastava P, Pal DK, Aruche KM, Wani SP, Sahrawat KL (2015) Soils of the indo-Gangetic Plains: a pedogenic response to landscape stability, climatic variability and anthropogenic activity during the Holocene. Earth-Sci Rev 140:54–71. https://doi.org/10.1016/j.earscirev.2014.10.010

    Article  Google Scholar 

  • Srivastava P, Aruche M, Arya A, Pal DK, Singh LP (2016) A micromorphological record of contemporary and relict pedogenic processes in soils of the indo-Gangetic Plains: implications for mineral weathering, provenance and climatic changes. Earth Surf Process Landf 41:771–790. https://doi.org/10.1002/esp.3862

    Article  CAS  Google Scholar 

  • Tomar KP (1987) Chemistry of pedogenesis in indo-Gangetic alluvial plains. J Indian Soc Soil Sci 38:405–414

    Article  CAS  Google Scholar 

  • Van Olphen H (1966) An introduction of clay colloid chemistry. Interscience, New York

    Google Scholar 

  • Venugopal KR, Deshpande SB, Kalbande AR, Sehgal JL (1991) Textural pedofeatures (clay coatings) in a ferruginous soil from Bangalore plateau. Clay Res 10:30–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, D.K. (2019). Evidence of Clay Illuviation in Soils of the Indo-Gangetic Alluvial Plains (IGP) and Red Ferruginous (RF) Soils. In: Simple Methods to Study Pedology and Edaphology of Indian Tropical Soils. Springer, Cham. https://doi.org/10.1007/978-3-319-89599-4_2

Download citation

Publish with us

Policies and ethics