Skip to main content

Double Face of eHsp70 in Front of Different Situations

Multiple Role of eHsp70

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

  • 635 Accesses

Abstract

The Hsp70 family is one of the best conserved and abundant member of the heat shock proteins (HSP). This family includes several members and in particular one constitutively expressed member (Hsc70) and another one inducibly expressed under several stress conditions (Hsp70). To date, the intracellular functions of Hsp70 are well defined, and increasing evidences establish its roles in the extracellular environment, such as cytoprotection and immunomodulation. Increasing evidences suggest that several cell types are able to release Hsp70 in the extracellular environment, both under physiological and stress conditions. At the same time many release mechanisms have been identified. This chapter briefly reviews recent advances in our understanding on extracellular Hsp70 role in both physiological and pathological conditions. A better comprehension will be useful to take advantage of its potential as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

antigen presenting cell

CNS:

central nervous system

CSF:

cerebrospinal fluid

CTL:

cytotoxic T lymphocyte

DC:

dendritic cells

EAE:

experimental autoimmune encephalomyelitis

ECM:

extracellular matrix

ER:

endoplasmic reticulum

EV:

extracellular vesicle

HSP:

heat shock protein

HUVEC:

human umbilical vein endothelial cell

LPS:

lipopolysaccharide

MBP:

myelin basic protein

MHC:

major histocompatibility complex;

MS:

multiple sclerosis

NF-kB:

nuclear factor kB

NK:

natural killer

PBL:

peripheral blood lymphocyte

ROS:

radical oxygen species

TLR:

toll like receptor

References

  • Abkin, S. V., Pankratova, K. M., Komarova, E. Y., Guzhova, I. V., & Margulis, B. A. (2013). Hsp70 chaperone-based gel composition as a novel immunotherapeutic anti-tumor tool. Cell Stress & Chaperones, 18, 391–396.

    Article  CAS  Google Scholar 

  • Adachi, H., Katsuno, M., Waza, M., Minamiyama, M., Tanaka, F., & Sobue, G. (2009). Heat shock proteins in neurodegenerative diseases: Pathogenic roles and therapeutic implications. International Journal of Hyperthermia, 25, 647–654.

    Article  PubMed  CAS  Google Scholar 

  • Aneja, R., Odoms, K., Dunsmore, K., Shanley, T. P., & Wong, H. R. (2006). Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. Journal of Immunology, 177, 7184–7192.

    Article  CAS  Google Scholar 

  • Aquino, D. A., Klipfel, A. A., Brosnan, C. F., & Norton, W. T. (1993). The 70-kDa heat shock cognate protein (HSC70) is a major constituent of the central nervous system and is up-regulated only at the mRNA level in acute experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 61, 1340–1348.

    Article  PubMed  CAS  Google Scholar 

  • Aquino, D. A., Capello, E., Weisstein, J., Sanders, V., Lopez, C., Tourtellotte, W. W., Brosnan, C. F., Raine, C. S., & Norton, W. T. (1997). Multiple sclerosis: Altered expression of 70- and 27-kDa heat shock proteins in lesions and myelin. Journal of Neuropathology and Experimental Neurology, 56, 664–672.

    Article  PubMed  CAS  Google Scholar 

  • Arispe, N., Doh, M., & De Maio, A. (2002). Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress & Chaperones, 7, 330–338.

    Article  CAS  Google Scholar 

  • Arispe, N., Doh, M., Simakova, O., Kurganov, B., & De Maio, A. (2004). Hsc70 and Hsp70 interact with phosphatideylserine on the surface of PC12 cells resulting in a decrease of viability. The FASEB Journal, 18, 1636–1645.

    Article  PubMed  CAS  Google Scholar 

  • Arnold-Schild, D., Hanau, D., Spehner, D., Schmid, C., Rammensee, H. G., de la Salle, H., & Schild, H. (1999). Cutting edge: Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. Journal of Immunology, 162, 3757–3760.

    CAS  Google Scholar 

  • Asea, A. (2003). Chaperokine-induced signal transduction pathways. Exercise Immunology, 9, 25–33.

    Google Scholar 

  • Asea, A. (2005). Stress proteins and initiation of immune response: Chaperokine activity of hsp72. Exercise Immunology Review, 11, 34–45.

    PubMed  PubMed Central  Google Scholar 

  • Asea, A. (2006). Initiation of the immune response by extracellular Hsp72: Chaperokine activity of Hsp72. Current Immunology Reviews, 2, 209–215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asea, A. (2007). Hsp72 release: Mechanisms and methodologies. Methods, 43, 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Asea, A. (2008). Hsp70: A chaperokine. Novartis Foundation Symposium, 291, 173–179. discussion 179-183:221-224.

    Article  PubMed  CAS  Google Scholar 

  • Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C., & Calderwood, S. K. (2000). HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine, 6, 435–442.

    Article  CAS  PubMed  Google Scholar 

  • Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A., & Calderwood, S. K. (2002). Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. The Journal of Biological Chemistry, 277, 15028–15034.

    Article  CAS  PubMed  Google Scholar 

  • Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Barreca, M. M., Spinello, W., Cavalieri, V., Turturici, G., Sconzo, G., Kaur, P., Tinnirello, R., Asea, A. A., & Geraci, F. (2017). Extracellular Hsp70 enhances mesoangioblast migration via an autocrine signaling pathway. Journal of Cellular Physiology, 232, 1845–1861.

    Article  PubMed  CAS  Google Scholar 

  • Basu, S., Binder, R. J., Suto, R., Anderson, K. M., & Srivastava, P. K. (2000). Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. International Immunology, 12, 1539–1546.

    Article  PubMed  CAS  Google Scholar 

  • Basu, S., Binder, R. J., Ramalingam, T., & Srivastava, P. K. (2001). CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity, 14, 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Bausero, M. A., Gastpar, R., Multhoff, G., & Asea, A. (2005). Alternative mechanism by which IFN-gamma enhances tumor recognition: Active release of heat shock protein 72. Journal of Immunology, 175, 2900–2912.

    Article  CAS  Google Scholar 

  • Becker, T., Hartl, F. U., & Wieland, F. (2002). CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. The Journal of Cell Biology, 158, 1277–1285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beere, H. M. (2004). “The stress of dying”: The role of heat shock proteins in the regulation of apoptosis. Journal of Cell Science, 117, 2641–2651.

    Article  PubMed  CAS  Google Scholar 

  • Bendz, H., Ruhland, S. C., Pandya, M. J., Hainzl, O., Riegelsberger, S., Braüchle, C., Mayer, M. P., Buchner, J., Issels, R. D., & Noessner, E. (2007). Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. The Journal of Biological Chemistry, 282, 31688–31702.

    Article  PubMed  CAS  Google Scholar 

  • Beuret, N., Stettler, H., Renold, A., Rutishauser, J., & Spiess, M. (2004). Expression of regulated secretory proteins is sufficient to generate granule-like structures in constitutively secreting cells. The Journal of Biological Chemistry, 279, 20242–20249.

    Article  PubMed  CAS  Google Scholar 

  • Blander, J. M., & Medzhitov, R. (2004). Regulation of phagosome maturation by signals from toll-like receptors. Science, 304, 1014–1018.

    Article  PubMed  CAS  Google Scholar 

  • Bluestone, J. A. (2005). Regulatory T-cell therapy: Is it ready for the clinic? Nature Reviews. Immunology, 5, 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Borges, T. J., Wieten, L., van Herwijnen, M. J., Broere, F., van der Zee, R., Bonorino, C., & van Eden, W. (2012). The anti-inflammatory mechanisms of Hsp70. Frontiers in Immunology, 3, 1–12.

    Article  Google Scholar 

  • Broquet, A. H., Thomas, G., Masliah, J., Trugnan, G., & Bachelet, M. (2003). Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. The Journal of Biological Chemistry, 278, 21601–21606.

    Article  PubMed  CAS  Google Scholar 

  • Brown, I. R. (1991). Expression of heat shock genes (hsp70) in the mammalian nervous system. Results and Problems in Cell Differentiation, 17, 217–229.

    Article  PubMed  CAS  Google Scholar 

  • Bukau, B., Weissman, J., & Horwich, A. (2006). Molecular chaperones and protein quality control. Cell, 125, 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood, S. K., Mambula, S. S., Gray, P. J., Jr., & Theriault, J. R. (2007). Extracellular heat shock proteins in cell signalling. FEBS Letters, 581, 3689–3694.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood, S. K., Murshid, A., & Gong, J. (2012). Heat shock proteins: Conditional mediators of inflammation in tumor immunity. Frontiers in Immunology, 3, 1–10.

    Article  Google Scholar 

  • Castelli, C., Ciupitu, A. M., Rini, F., Rivoltini, L., Mazzocchi, A., Kiessling, R., & Parmiani, G. (2001). Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Research, 61, 222–227.

    PubMed  CAS  Google Scholar 

  • Chabas, D., Baranzini, S. E., Mitchell, D., Bernard, C. C., Rittling, S. R., Denhardt, D. T., Sobel, R. A., Lock, C., Karpuj, M., Pedotti, R., Heller, R., Oksenberg, J. R., & Steinman, L. (2001). The influence of the pro-inflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science, 294, 1731–1735.

    Article  PubMed  CAS  Google Scholar 

  • Chase, M. A., Wheeler, D. S., Lierl, K. M., Hughes, V. S., Wong, H. R., & Page, K. (2007). Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism. Journal of Immunology, 179, 6318–6324.

    Article  CAS  Google Scholar 

  • Chen, X., Tao, Q., Yu, H., Zhang, L., & Cao, X. (2002). Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunology Letters, 84, 81–87.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Bawa, D., Besshoh, S., Gurd, J. W., & Brown, I. R. (2005). Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. Journal of Neuroscience Research, 81(4), 522–529.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T., Guo, J., Han, C., Yang, M., & Cao, X. (2009). Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. Journal of Immunology, 182, 1449–1459.

    Article  CAS  Google Scholar 

  • Chen, E., Xue, D., Zhang, W., Lin, F., & Pan, Z. (2015). Extracellular heat shock protein 70 promotes osteogenesis of human mesenchymal stem cells through activation of the ERK signaling pathway. FEBS Letters, 589, 4088–4096.

    Article  PubMed  CAS  Google Scholar 

  • Chiba, S., Yokota, S., Yonekura, K., Tanaka, S., Furuyama, H., Kubota, H., Fujii, N., & Matsumoto, H. (2006). Autoantibodies against HSP70 family proteins were detected in the cerebrospinal fluid from patients with multiple sclerosis. Journal of the Neurological Sciences, 241, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10, 86–103.

    Article  CAS  Google Scholar 

  • Clark, P. R., & Ménoret, A. (2001). The inducible Hsp70 as a marker of tumor immunogenicity. Cell Stress & Chaperones, 6, 121–125.

    Article  CAS  Google Scholar 

  • Clayton, A., Turkes, A., Navabi, H., Mason, M. D., & Tabi, Z. (2005). Induction of heat shock proteins in B-cell exosomes. Journal of Cell Science, 118, 3631–3638.

    Article  PubMed  CAS  Google Scholar 

  • Collins, P. L., & Hightower, L. E. (1982). Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. Journal of Virology, 44, 703–707.

    Google Scholar 

  • Dello Russo, C., Polak, P. E., Mercado, P. R., Spagnolo, A., Sharp, A., Murphy, P., Kamal, A., Burrows, F. J., Fritz, L. C., & Feinstein, D. L. (2006). The heat-shock protein 90 inhibitor17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 99, 1351–1362.

    Article  CAS  Google Scholar 

  • Delneste, Y., Magistrelli, G., Gauchat, J., Haeuw, J., Aubry, J., Nakamura, K., Kawakami-Honda, N., Goetsch, L., Sawamura, T., Bonnefoy, J., & Jeannin, P. (2002). Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity, 17, 353–362.

    Article  PubMed  CAS  Google Scholar 

  • Dressel, R., Elsner, L., Quentin, T., Walter, L., & Günther, E. (2000). Heat shock protein 70 is able to prevent heat shock-induced resistance of target cells to CTL. Journal of Immunology, 164, 2362–2371.

    Article  CAS  Google Scholar 

  • Dutta, S. K., Girotra, M., Singla, M., Dutta, A., Otis Stephen, F., Nair, P. P., & Merchant, N. B. (2012). Serum HSP70: A novel biomarker for early detection of pancreatic cancer. Pancreas, 41, 530–534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edbladh, M., Ekstrom, P. A., & Edstrom, A. (1994). Retrograde axonal transport of locally synthesized proteins, e.g., actin and heat shock protein 70, in regenerating adult frog sciatic sensory axons. Journal of Neuroscience Research, 38, 424–432.

    Article  PubMed  CAS  Google Scholar 

  • Eder, K., Guan, H., Sung, H. Y., Ward, J., Angyal, A., Janas, M., Sarmay, G., Duda, E., Turner, M., Dower, S. K., Francis, S. E., Crossman, D. C., & Kiss-Toth, E. (2008). Tribbles-2 is a novel regulator of inflammatory activation of monocytes. International Immunology, 20, 1543–1550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elstner, A., Stockhammer, F., Nguyen-Dobinsky, T. N., Nguyen, Q. L., Pilgermann, I., Gill, A., Guhr, A., Zhang, T., von Eckardstein, K., Picht, T., Veelken, J., Martuza, R. L., von Deimling, A., & Kurtz, A. (2011). Identification of diagnostic serum protein profiles of glioblastoma patients. Journal of Neuro-Oncology, 102, 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Enomoto, Y., Bharti, A., Khaleque, A. A., Song, B., Liu, C., Apostolopoulos, V., Xing, P. X., Calderwood, S. K., & Gong, J. (2006). Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. Journal of Immunology, 177, 5946–5955.

    Article  CAS  Google Scholar 

  • Evdokimovskaya, Y., Skarga, Y., Vrublevskaya, V., & Morenkov, O. (2010). Secretion of the heat shock proteins HSP70 and HSC70 by baby hamster kidney (BHK-21) cells. Cell Biology International, 34, 985–990.

    Article  PubMed  CAS  Google Scholar 

  • Evdonin, A. L., Martynova, M. G., Bystrova, O. A., Guzhova, I. V., Margulis, B. A., & Medvedeva, N. D. (2006). The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules. European Journal of Cell Biology, 85, 443–455.

    Article  PubMed  CAS  Google Scholar 

  • Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annual Review of Physiology, 61, 243–282.

    Article  PubMed  CAS  Google Scholar 

  • Fevrier, B., & Raposo, G. (2004). Exosomes: Endosomal-derived vesicles shipping extra- cellular messages. Current Opinion in Cell Biology, 16, 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, N., Haug, M., Kwok, W. W., Kalbacher, H., Wernet, D., Dannecker, G. E., & Holzer, U. (2010). Involvement of CD91 and scavenger receptors in Hsp70-facilitated activation of human antigen-specific CD4+ memory T cells. European Journal of Immunology, 40, 986–997.

    Article  CAS  PubMed  Google Scholar 

  • Fiskum, G. (2004). Mechanisms of neuronal death and neuroprotection. Journal of Neurosurgical Anesthesiology, 16, 108–110.

    Article  PubMed  Google Scholar 

  • Franco, L., Terrinca, J., Rodríguez, A. B., Espino, J., & Pariente, J. A. (2016). Extracellular heat shock proteins protect U937 cells from H2O2-induced apoptotic cell death. Molecular and Cellular Biochemistry, 412, 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Futagami, S., Hiratsuka, T., Shindo, T., Hamamoto, T., Horie, A., Ueki, N., Kusunoki, M., Gudis, K., Miyake, K., Tsukui, T., & Sakamoto, C. (2008). Extracellular HSP70 blocks CD40L-induced apoptosis and tubular formation in endothelial cells. Journal of Gastroenterology and Hepatology, 23, S222–S228.

    Article  PubMed  Google Scholar 

  • Galazka, G., Stasiolek, M., Walczak, A., Jurewicz, A., Zylicz, A., Brosnan, C. F., Raine, C. S., & Selmaj, K. W. (2006). Brain-derived heat shock protein 70-peptide complexes induce NK cell-dependent tolerance to experimental autoimmune encephalomyelitis. Journal of Immunology, 176, 1588–1599.

    Article  CAS  Google Scholar 

  • Gallucci, S., Lolkema, M., & Matzinger, P. (1999). Natural adjuvants: Endogenous activators of dendritic cells. Nature Medicine, 5, 1249–1255.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y. L., Brosnan, C. F., & Raine, C. S. (1995). Experimental autoimmune encephalomyelitis. Qualitative and semiquantitative differences in heat shock protein 60 expression in the central nervous system. Journal of Immunology, 154, 3548–3556.

    CAS  Google Scholar 

  • Garrido, C., Gurbuxani, S., Ravagnan, L., & Kroemer, G. (2001). Heat shock proteins: Endogenous modulators of apoptotic cell death. Biochemical and Biophysical Research Communications, 286, 433–442.

    Article  PubMed  CAS  Google Scholar 

  • Gastpar, R., Gross, C., Rossbacher, L., Ellwart, J., Riegger, J., & Multhoff, G. (2004). The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. Journal of Immunology, 172, 972–980.

    Article  CAS  Google Scholar 

  • Gastpar, R., Gehrmann, M., Bausero, M. A., Asea, A., Gross, C., Schroeder, J. A., & Multhoff, G. (2005). Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Research, 65, 5238–5247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gehrmann, M., Schmetzer, H., Eissner, G., Haferlach, T., Hiddemann, W., & Multhoff, G. (2003). Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: A tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica, 88, 474–476.

    PubMed  Google Scholar 

  • Gehrmann, M., Cervello, M., Montalto, G., Cappello, F., Gulino, A., Knape, C., Specht, H. M., & Multhoff, G. (2014). Heat shock protein 70 serum levels differ significantly in patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Frontiers in Immunology, 5, 1–7.

    Article  CAS  Google Scholar 

  • Geng, H., Zhang, G. M., Xiao, H., Yuan, Y., Li, D., Zhang, H., Qiu, H., He, Y. F., & Feng, Z. H. (2006). HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. International Journal of Cancer, 118, 2657–2664.

    Article  PubMed  CAS  Google Scholar 

  • Giffard, R. G., Xu, L., Zhao, H., Carrico, W., Ouyang, Y., Qiao, Y., Sapolsky, R., Steinberg, G., Hu, B., & Yenari, M. A. (2004). Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. The Journal of Experimental Biology, 207, 3213–3220.

    Article  PubMed  CAS  Google Scholar 

  • Giraldo, E., Hinchado, M. D., Garcia, J. J., & Ortega, E. (2008). Influence of gender and oral contraceptives intake on innate and inflammatory response. Role of neuroendocrine factors. Molecular and Cellular Biochemistry, 313, 147–153.

    Article  PubMed  CAS  Google Scholar 

  • González-Ramos, M., Calleros, L., López-Ongil, S., Raoch, V., Griera, M., Rodríguez-Puyol, M., de Frutos, S., & Rodríguez-Puyol, D. (2013). HSP70 increases extracellular matrix production by human vascular smooth muscle through TGF-β1 upregulation. The International Journal of Biochemistry & Cell Biology, 45, 232–242.

    Article  CAS  Google Scholar 

  • Greene, C. M., Carroll, T. P., Smith, S. G., Taggart, C. C., Devaney, J., Griffin, S., O’neill, S. J., & McElvaney, N. G. (2005). TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells. Journal of Immunology, 174, 1638–1646.

    Article  CAS  Google Scholar 

  • Gross, C., Schmidt-Wolf, I. G., Nagaraj, S., Gastpar, R., Ellwart, J., Kunz-Schughart, L. A., & Multhoff, G. (2003a). Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress & Chaperones, 8, 348–360.

    Article  CAS  Google Scholar 

  • Gross, C., Hansch, D., Gastpar, R., & Multhoff, G. (2003b). Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biological Chemistry, 384, 267–279.

    Article  PubMed  CAS  Google Scholar 

  • Guzhova, I., Kislyakova, K., Moskaliova, O., Fridlanskaya, I., Tytell, M., Cheetham, M., & Margulis, B. (2001). In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Research, 914, 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, F. U., & Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nature Structural & Molecular Biology, 16, 574–581.

    Article  CAS  Google Scholar 

  • Heath, W. R., & Carbone, F. R. (2001). Cross-presentation, dendritic cells, tolerance and immunity. Annual Review of Immunology, 19, 47–64.

    Article  PubMed  CAS  Google Scholar 

  • Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J., & Sixma, J. J. (1999). Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood, 94, 3791–3799.

    PubMed  CAS  Google Scholar 

  • Hightower, L. E., & Guidon, P. T., Jr. (1989). Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. Journal of Cellular Physiology, 138, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Hilf, N., Singh-Jasuja, H., Schwarzmaier, P., Gouttefangeas, C., Rammensee, H. G., & Schild, H. (2002). Human platelets express heat shock protein receptors and regulate dendritic cell maturation. Blood, 99, 3676–3682.

    Article  PubMed  CAS  Google Scholar 

  • Horváth, I., Multhoff, G., Sonnleitner, A., & Vígh, L. (2008). Membrane-associated stress proteins: More than simply chaperones. Biochimica et Biophysica Acta, 1778, 1653–1664.

    Article  PubMed  CAS  Google Scholar 

  • Hunter-Lavin, C., Davies, E. L., Bacelar, M. M., Marshall, M. J., Andrew, S. M., & Williams, J. H. (2004). Hsp70 release from peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications, 324, 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Ito, A., Matsuoka, F., Honda, H., & Kobayashi, T. (2004). Atitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunology, Immunotherapy, 53, 26–32.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J. D., & Fleshner, M. (2006). Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. Journal of Leukocyte Biology, 79, 425–434.

    Article  PubMed  CAS  Google Scholar 

  • Jones, Q., Voegeli, T. S., Li, G., Chen, Y., & Currie, R. W. (2011). Heat shock proteins protect against ischemia and inflammation through multiple mechanisms. Inflammation Allergy Drug Targets, 10, 247–259.

    Article  PubMed  CAS  Google Scholar 

  • Kampinga, H. H., Henning, R. H., van Gelder, I. C., & Brundel, B. J. (2007). Beat shock proteins and atrial fibrillation. Cell Stress & Chaperones, 12, 97–100.

    Article  CAS  Google Scholar 

  • Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., Cheetham, M. E., Chen, B., & Hightower, L. E. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.

    Article  CAS  Google Scholar 

  • Kaur, J., Kaur, J., & Ralhan, R. (2000). Induction of apoptosis by abrogation of HSP70 expression in human oral cancer cells. International Journal of Cancer, 85, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T. K., Na, H. J., Lee, W. R., Jeoung, M. H., & Lee, S. (2016). Heat shock protein 70-1A is a novel angiogenic regulator. Biochemical and Biophysical Research Communications, 469, 222–228.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis, J., Madaras, B., Tóth, E. K., Füst, G., & Prohászka, Z. (2010). Serum level of soluble 70-kD heat shock protein is associated with high mortality in patients with colorectal cancer without distant metastasis. Cell Stress & Chaperones, 15, 143–151.

    Article  CAS  Google Scholar 

  • Kovalchin, J. T., Wang, R., Wagh, M. S., Azoulay, J., Sanders, M., & Chandawarkar, R. Y. (2006). In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair and Regeneration, 14, 129–137.

    Article  PubMed  Google Scholar 

  • Krause, M., & Rodrigues-Krause, J. C. (2011). Extracellular heat shock proteins (eHSP70) in exercise: Possible targets outside the immune system and their role for neurodegenerative disorders treatment. Medical Hypotheses, 76, 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Krause, S. W., Gastpar, R., Andreesen, R., Gross, C., Ullrich, H., Thonigs, G., Pfister, K., & Multhoff, G. (2004). Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: A clinical phase I trial. Clinical Cancer Research, 10, 3699–36707.

    Article  PubMed  CAS  Google Scholar 

  • Kregel, K. C. (2002). Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physics, 92, 2177–2186.

    Article  CAS  Google Scholar 

  • Kumar, S., Deepak, P., & Acharya, A. (2009). Autologous Hsp70 immunization induces anti-tumor immunity and increases longevity and survival of tumor-bearing mice. Neoplasma, 56, 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Kuppner, M. C., Gastpar, R., Gelwer, S., Nössner, E., Ochmann, O., Scharner, A., & Issels, R. D. (2001). The role of heat shock protein (hsp70) in dendritic cell maturation: Hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. European Journal of Immunology, 31, 1602–1609.

    Article  CAS  PubMed  Google Scholar 

  • Lancaster, G. I., & Febbraio, M. A. (2005). Exosome-dependent trafficking of HSP70: A novel secretory pathway for cellular stress proteins. The Journal of Biological Chemistry, 280, 23349–23355.

    Article  CAS  PubMed  Google Scholar 

  • Lehner, T., Wang, Y., & Kelly, C. (2003). Heat shock protein receptors, functions and their effect on monocytes and dendritic cells. In W. van Eden & D. B. Young (Eds.), Heat shock proteins and inflammation (pp. 193–198). Basel: Dekker.

    Chapter  Google Scholar 

  • Li, Z., Menoret, A., & Srivastava, P. (2002). Roles of heat-shock proteins in antigen presentation and cross-presentation. Current Opinion in Immunology, 14, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Li, D., Romain, G., Flamar, A. L., Duluc, D., Dullaers, M., Li, X. H., Zurawski, S., Bosquet, N., Palucka, A. K., Le Grand, R., O’Garra, A., Zurawski, G., Banchereau, J., & Oh, S. (2012). Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. The Journal of Experimental Medicine, 209, 109–121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liberek, K., Lewandowska, A., & Zietkiewicz, S. (2008). Chaperones in control of protein disaggregation. The EMBO Journal, 23, 27328–27335.

    Google Scholar 

  • Lindquist, S. (1986). The heat-shock response. Annual Review of Biochemistry, 55, 1151–1191.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677.

    Article  PubMed  CAS  Google Scholar 

  • Luft, J. C., & Dix, D. J. (1999). Hsp70 expression and function during embryogenesis. Cell Stress & Chaperones, 4, 162–170.

    Article  CAS  Google Scholar 

  • Lui, J. C., & Kong, S. K. (2007). Heat shock protein 70 inhibits the nuclear import of apoptosis-inducing factor to avoid DNA fragmentation in TF-1 cells during erythropoiesis. FEBS Letters, 581, 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Lund, B. T., Chakryan, Y., Ashikian, N., Mnatsakanyan, L., Bevan, C. J., Aguilera, R., Gallaher, T., & Jakowec, M. W. (2006). Association of MBP peptides with Hsp70 in normal appearing human white matter. Journal Neurology Science Novel, 249, 122–134.

    Article  CAS  Google Scholar 

  • Luo, X., Zuo, X., Zhou, Y., Zhang, B., Shi, Y., Liu, M., Wang, K., McMillian, D. R., & Xiao, X. (2008). Extracellular heat shock protein 70 inhibits tumour necrosis factor-alpha induced proinflammatory mediator production in fibroblast-like synoviocytes. Arthritis Research & Therapy, 10, R41.

    Article  CAS  Google Scholar 

  • Luo, X., Tao, L., Lin, P., Mo, X., & Chen, H. (2012). Extracellular heat shock protein 72 protects schwann cells from hydrogen peroxide-induced apoptosis. Journal of Neuroscience Research, 90, 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  • MacAry, P. A., Javid, B., Floto, R. A., Smith, K. G., Oehlmann, W., Singh, M., & Lehner, P. J. (2004). HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity, 20, 95–106.

    Article  CAS  PubMed  Google Scholar 

  • Madden, L. A., Sandström, M. E., Lovell, R. J., & McNaughton, L. (2008). Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids, 34, 511–516.

    Article  PubMed  CAS  Google Scholar 

  • Mambula, S. S., & Calderwood, S. K. (2006). Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. Journal of Immunology, 177, 7849–7857.

    Article  CAS  Google Scholar 

  • Martin, R., McFarland, H. F., & McFarlin, D. E. (1992). Immunological aspects of demyelinating diseases. Annual Review of Immunology, 10, 153–187.

    Article  PubMed  CAS  Google Scholar 

  • Martin, C. A., Carsons, S. E., Kowalewski, R., Bernstein, D., Valentino, M., & Santiago-Schwarz, F. (2003). Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: Possible mechanisms of hsp/DC-mediated cross-priming. Journal of Immunology, 171, 5736–5742.

    Article  CAS  Google Scholar 

  • Mathew, A., Bell, A., & Johnstone, R. M. (1995). Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. The Biochemical Journal, 308, 823–830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathivanan, S., & Simpson, R. J. (2009). ExoCarta: A compendium of exosomal proteins and RNA. Proteomics, 9, 4997–5000.

    Article  PubMed  CAS  Google Scholar 

  • Mathur, S., Walley, K. R., Wang, Y., Indrambarya, T., & Boyd, J. H. (2011). Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circulation Journal, 75, 2445–2452.

    Article  PubMed  CAS  Google Scholar 

  • Milani, V., Noessner, E., Ghose, S., Kuppner, M., Ahrens, B., Scharner, A., Gastpar, R., & Issels, R. D. (2002). Heat shock protein 70: Role in antigen presentation and immune stimulation. International Journal of Hyperthermia, 18, 563–575.

    Article  CAS  PubMed  Google Scholar 

  • Milarski, K. L., & Morimoto, R. I. (1989). Mutational analysis of the human HSP70 protein: Distinct domains for nucleolar localization and adenosine triphosphate binding. The Journal of Cell Biology, 109, 1947–1962.

    Article  PubMed  CAS  Google Scholar 

  • Moore, K. W., de Waal Malefyt, R., Coffman, R. L., & O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology, 19, 683–765.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, R. I. (1991). Heat shock: The role of transient inducible responses in cell damage, transformation, and differentiation. Cancer Cells, 3, 295–301.

    PubMed  CAS  Google Scholar 

  • Morimoto, R. I., Kline, M. P., Bimston, D. N., & Cotto, J. J. (1997). The heat-shock response: Regulation and function of heat-shock proteins and molecular chaperones. Essays in Biochemistry, 32, 17–29.

    PubMed  CAS  Google Scholar 

  • Moser, C., Schmidbauer, C., Gürtler, U., Gross, C., Gehrmann, M., Thonigs, G., Pfister, K., & Multhoff, G. (2002). Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells. Cell Stress & Chaperones, 7, 365–373.

    Article  CAS  Google Scholar 

  • Muchowski, P. J., & Wacker, J. L. (2005). Modulation of neurodegeneration by molecular chaperones. Nature Reviews. Neuroscience, 6, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Multhoff, G., Botzler, C., Jennen, L., Schmidt, J., Ellwart, J., & Issels, R. (1997). Heat shock protein 72 on tumor cells: A recognition structure for natural killer cells. Journal of Immunology, 158, 4341–4350.

    CAS  Google Scholar 

  • Multhoff, G., Botzler, C., & Issels, R. (1998). The role of heat shock proteins in the stimulation of an immune response. Biological Chemistry, 379, 295–300.

    PubMed  CAS  Google Scholar 

  • Multhoff, G., Mizzen, L., Winchester, C. C., Milner, C. M., Wenk, S., Eissner, G., Kampinga, H. H., Laumbacher, B., & Johnson, J. (1999). Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Experimental Hematology, 27, 1627–1636.

    Article  PubMed  CAS  Google Scholar 

  • Multhoff, G., Pfister, K., Gehrmann, M., Hantschel, M., Gross, C., Hafner, M., & Hiddemann, W. (2001). A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress & Chaperones, 6, 337–344.

    Article  CAS  Google Scholar 

  • Nickel, W., & Seedorf, M. (2008). Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annual Review of Cell and Developmental Biology, 24, 287–308.

    Article  PubMed  CAS  Google Scholar 

  • Nieland, T. J., Tan, M. C., Monne-van Muijen, M., Koning, F., Kruisbeek, A. M., & van Bleek, G. M. (1996). Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proceedings of the National Academy of Sciences of the United States of America, 93, 6135–6139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noble, E. G., Milne, K. J., & Melling, C. W. (2008). Heat shock proteins and exercise: A primer. Applied Physiology, Nutrition, and Metabolism, 33, 1050–1065.

    Article  PubMed  CAS  Google Scholar 

  • Noessner, E., Gastpar, R., Milani, V., Brandl, A., Hutzler, P. J., Kuppner, M. C., Roos, M., Kremmer, E., Asea, A., Calderwood, S. K., & Issels, R. D. (2002). Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. Journal of Immunology, 169, 5424–5432.

    Article  CAS  Google Scholar 

  • Novoselova, T. V., Margulis, B. A., Novoselov, S. S., Sapozhnikov, A. M., van der Spuy, J., Cheetham, M. E., & Guzhova, I. V. (2005). Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. Journal of Neurochemistry, 94, 597–606.

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted, J., Rohde, M., Brand, K., Bastholm, L., Elling, F., & Jäättelä, M. (2000). Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proceedings of the National Academy of Sciences of the United States of America, 97, 7871–7876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortega, E., Giraldo, E., Hinchado, M. D., Martinez, M., Ibanez, S., Cidoncha, A., Collazos, M. E., & Garcia, J. J. (2006). Role of Hsp72 and norepinephrine in the moderate exercise-induced stimulation of neutrophils’ microbicide capacity. European Journal of Applied Physiology, 98, 250–255.

    Article  PubMed  CAS  Google Scholar 

  • Ortega, E., Hinchado, M. D., Martin-Cordero, L., & Asea, A. (2009). The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: A role during acute intense exercise. Stress, 12, 240–249.

    Article  PubMed  CAS  Google Scholar 

  • Panjwani, N. N., Popova, L., & Srivastava, P. K. (2002). Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. Journal of Immunology, 168, 2997–3003.

    Article  CAS  Google Scholar 

  • Park, C. J., Park, S. A., Yoon, T. G., Lee, S. J., Yum, K. W., & Kim, H. J. (2005). Bupivacaine induces apoptosis via ROS in the Schwann cell line. Journal of Dental Research, 84, 852–857.

    Article  PubMed  CAS  Google Scholar 

  • Patel, B., Khaliq, A., Jarvis-Evans, J., Boulton, M., Arrol, S., Mackness, M., & McLeod, D. (1995). Hypoxia induces HSP 70 gene expression in human hepatoma (HEP G2) cells. Biochemistry and Molecular Biology International, 36, 907–912.

    PubMed  CAS  Google Scholar 

  • Pawaria, S., & Binder, R. J. (2011). CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nature Communications, 2, 1–11.

    Article  CAS  Google Scholar 

  • Pierzchalski, P., Jastrzebska, M., Link-Lenczowski, P., Leja-Szpak, A., Bonior, J., Jaworek, J., Okon, K., & Wojcik, P. (2014). The dynamics of heat shock system activation in Monomac-6 cells upon Helicobacter pylori infection. Journal of Physiology and Pharmacology, 65, 791–800.

    PubMed  CAS  Google Scholar 

  • Planas, A. M., Soriano, M. A., Estrada, A., Sanz, O., Martin, F., & Ferrer, I. (1997). The heat shock stress response after brain lesions: Induction of 72 kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition. Progress in Neurobiology, 51, 607–636.

    Article  PubMed  CAS  Google Scholar 

  • Pockley, A. G., Shepherd, J., & Corton, J. M. (1998). Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunological Investigations, 27, 367–377.

    Article  PubMed  CAS  Google Scholar 

  • Pockley, A. G., De Faire, U., Kiessling, R., Lemne, C., Thulin, T., & Frostegård, J. (2002). Circulating heat shock protein and heat shock antibody levels in established hypertension. Journal of Hypertension, 20, 1815–1820.

    Article  PubMed  CAS  Google Scholar 

  • Pockley, A. G., Georgiades, A., Thulin, T., de Faire, U., & Frostegård, J. (2003). Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension, 42, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Prakken, B. J., Wendling, U., van der Zee, R., Rutten, V. P., Kuis, W., & van Eden, W. (2001). Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins. Journal of Immunology, 167, 4147–4153.

    Article  CAS  Google Scholar 

  • Qiao, Y., Liu, B., & Li, Z. (2008). Activation of NK cells by extracellular heat shock protein 70 through induction of NKG2D ligands on dendritic cells. Cancer Immunity, 10(8), 12.

    Google Scholar 

  • Radsak, M. P., Hilf, N., Singh-Jasuja, H., Braedel, S., Brossart, P., Rammensee, H. G., & Schild, H. (2003). The heat shock protein gp96 binds to human neutrophils and monocytes and stimulates effector functions. Blood, 101, 2810–2281.

    Article  PubMed  CAS  Google Scholar 

  • Richard, V., Kaeffer, N., & Thuillez, C. (1996). Delayed protection of the ischemic heart from pathophysiology to therapeutic applications. Fundamental & Clinical Pharmacology, 10, 409–415.

    Article  CAS  Google Scholar 

  • Ries, C., Egea, V., Karow, M., Kolb, H., Jochum, M., & Neth, P. (2007). MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: Differential regulation by inflammatory cytokines. Blood, 109, 4055–4063.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, M. B., Tidwell, J. L., Gould, T., Taylor, A. R., Newbern, J. M., Graves, J., Tytell, M., & Milligan, C. E. (2005). Extracellular heat shock protein 70: A critical component for motoneuron survival. The Journal of Neuroscience, 25, 9735–9745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson, M. B., Taylor, A. R., Gifondorwa, D. J., Tytell, M., & Milligan, C. E. (2008). Exogenous Hsc70, but not thermal preconditioning, confers protection to motoneurons subjected to oxidative stress. Developmental Neurobiology, 68, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues-Krause, J., Krause, M., O’Hagan, C., De Vito, G., Boreham, C., Murphy, C., Newsholme, P., & Colleran, G. (2012). Divergence of intracellular and extracellular HSP72 in type 2 diabetes: Does fat matter? Cell Stress & Chaperones, 17, 293–302.

    Article  Google Scholar 

  • Said Ali, K., Ferencz, A., Nemcsok, J., & Hermesz, E. (2010). Expressions of heat shock and metallothionein genes in the heart of common carp (Cyprinus carpio): Effects of temperature shock and heavy metal exposure. Acta Biologica Hungarica, 61, 10–23.

    Article  PubMed  CAS  Google Scholar 

  • Saito, K., Dai, Y., & Ohtsuka, K. (2005). Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Experimental Cell Research, 310, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Schild, H., Arnold-Schild, D., Lammert, E., & Rammensee, H. G. (1999). Stress proteins and immunity mediated by cytotoxic T lymphocytes. Current Opinion in Immunology, 11, 109–113.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, F. R., Massa, S. M., & Swanson, R. A. (1999). Heat-shock protein protection. Trends in Neurosciences, 22, 97–99.

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko, M. A., Troyanova, N. I., Servuli, E. A., Bolkhovitina, E. L., Fedorina, A. S., & Sapozhnikov, A. M. (2016). Study of immunomodulatory effects of extracellular HSP70 in a mouse model of allergic airway inflammation. Biochemistry (Mosc), 81, 1384–1395.

    Article  CAS  Google Scholar 

  • Somensi, N., Brum, P. O., de Miranda Ramos, V., Gasparotto, J., Zanotto-Filho, A., Rostirolla, D. C., da Silva Morrone, M., Moreira, J. C. F., & Pens Gelain, D. (2017). Extracellular HSP70 activates ERK1/2, NF-kB and pro-inflammatory gene transcription through binding with RAGE in A549 human lung cancer cells. Cellular Physiology and Biochemistry, 42, 2507–2522.

    Article  PubMed  CAS  Google Scholar 

  • Specht, H. M., Ahrens, N., Blankenstein, C., Duell, T., Fietkau, R., Gaipl, U. S., Günther, C., Gunther, S., Habl, G., Hautmann, H., Hautmann, M., Huber, R. M., Molls, M., Offner, R., Rödel, C., Rödel, F., Schütz, M., Combs, S. E., & Multhoff, G. (2015). Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCTx) – from preclinical studies to a clinical phase II trial. Frontiers in Immunology, 6, 1–9.

    Article  CAS  Google Scholar 

  • Sprang, G. K., & Brown, I. R. (1987). Selective induction of a heat shock gene in fibre tracts and cerebellar neurons of the rabbit brain detected by in situ hybridization. Brain Research, 427, 89–93.

    PubMed  CAS  Google Scholar 

  • Srivastava, P. (2002). Roles of heat-shock proteins in innate and adaptive immunity. Nature Reviews. Immunology, 2, 185–194.

    Article  PubMed  CAS  Google Scholar 

  • Stadelmann, C., Ludwin, S., Tabira, T., Guseo, A., Lucchinetti, C. F., Leel-Ossy, L., Ordinario, A. T., Brück, W., & Lassmann, H. (2005). Tissue preconditioning may explain concentric lesions in Balo’s type of multiple sclerosis. Brain, 128, 979–987.

    Article  PubMed  Google Scholar 

  • Stangl, S., Wortmann, A., Guertler, U., & Multhoff, G. (2006). Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells. Journal of Immunology, 176, 6270–6276.

    Article  CAS  Google Scholar 

  • Stangl, S., Themelis, G., Friedrich, L., Ntziachristos, V., Sarantopoulos, A., Molls, M., Skerra, A., & Multhoff, G. (2011). Detection of irradiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors using Hsp70 Fab fragment. Radiotherapy and Oncology, 99, 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Stocki, P., & Dickinson, A. M. (2012). The immunosuppressive activity of heat shock protein70. Autoimmune Disease, 2012, 1–6.

    Article  CAS  Google Scholar 

  • Suto, R., & Srivastava, P. K. (1995). A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science, 269, 1585–1588.

    Article  CAS  PubMed  Google Scholar 

  • Svensson, P. A., Asea, A., Englund, M. C., Bausero, M. A., Jernås, M., Wiklund, O., Ohlsson, B. G., Carlsson, L. M., & Carlsson, B. (2006). Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages. Atherosclerosis, 185, 32–38.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., & Akira, S. (2004). TLR signaling pathways. Seminars in Immunology, 16, 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, Y., Peng, P., Liu, K., Daou, M., & Srivastava, P. K. (1997). Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science, 278, 117–120.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, S., Kimura, Y., Mitani, A., Yamamoto, G., Nishimura, H., Spallek, R., Singh, M., Noguchi, T., & Yoshikai, Y. (1999). Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. Journal of Immunology, 163, 5560–55605.

    CAS  Google Scholar 

  • Taylor, A. R., Robinson, M. B., Gifondorwa, D. J., Tytell, M., & Milligan, C. E. (2007). Regulation of heat shock protein 70 release in astrocytes: Role of signaling kinases. Developmental Neurobiology, 67, 1815–1829.

    Article  PubMed  CAS  Google Scholar 

  • Thériault, J. R., Adachi, H., & Calderwood, S. K. (2006). Role of scavenger receptors in the binding and internalization of heat shock protein 70. Journal of Immunology, 177, 8604–8611.

    Article  Google Scholar 

  • Théry, C. (2011). Exosomes: Secreted vesicles and intercellular communications. F1000 Biology Reports, 3, 1–8.

    Article  Google Scholar 

  • Théry, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G., & Amigorena, S. (1999). Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. The Journal of Cell Biology, 147, 599–610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tidwell, J. L., Houenou, L. J., & Tytell, M. (2004). Administration of Hsp70 in vivo inhibits motor and sensory neuron de generation. Cell Stress and Chaperones, 9, 88–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tobian, A. A., Canaday, D. H., Boom, W. H., & Harding, C. V. (2004). Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. Journal of Immunology, 172, 5277–5286.

    Article  CAS  Google Scholar 

  • Triantafilou, M., Miyake, K., Golenbock, D. T., & Triantafilou, K. (2002). Mediators of innate immune recognition of bacteria concentrate in lipids rafts and facilitate lipopolysaccharide-induced cell activation. Journal of Cell Science, 115, 2603–2611.

    PubMed  CAS  Google Scholar 

  • Tsan, M. F., & Gao, B. (2009). Heat shock proteins and immune system. Journal of Leukocyte Biology, 85, 905–910.

    Article  PubMed  CAS  Google Scholar 

  • Turturici, G., Sconzo, G., & Geraci, F. (2011). Hsp70 and its molecular role in nervous system diseases. Biochemistry Research International, 2011, 1–18.

    Article  CAS  Google Scholar 

  • Turturici, G., Tinnirello, R., Sconzo, G., Asea, A., Savettieri, G., Ragonese, P., & Geraci, F. (2014). Positive or negative involvement of heat shock proteins in multiple sclerosis pathogenesis: An overview. Journal of Neuropathology and Experimental Neurology, 73, 1092–1106.

    Article  PubMed  CAS  Google Scholar 

  • Tytell, M. (2005). Release of heat shock proteins (HSP) and the effects of extracellular HSP on neural cells and tissues. International Journal of Hyperthermia, 21, 445–455.

    Article  PubMed  CAS  Google Scholar 

  • Tytell, M., Greenberg, S. G., & Lasek, R. J. (1986). Heat shock-like protein is transferred from glia to axon. Brain Research, 363, 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C., Issels, R., & Wagner, H. (2002a). HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. The Journal of Biological Chemistry, 277, 15107–15112.

    Article  CAS  PubMed  Google Scholar 

  • Vabulas, R. M., Wagner, H., & Schild, H. (2002b). Heat shock proteins as ligands of toll-like receptors. Current Topics in Microbiology and Immunology, 270, 169–184.

    PubMed  CAS  Google Scholar 

  • Vega, V. L., Rodriguez-Silva, M., Frey, T., Gehrmann, M., Diaz, J. C., Steinem, C., Multhoff, G., Arispe, N., & De Maio, A. (2008). Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. Journal of Immunology, 180, 4299–4307.

    Article  CAS  Google Scholar 

  • Voellmy, R. (2004). On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress & Chaperones, 9, 122–133.

    Article  CAS  Google Scholar 

  • Voos, W. (2013). Chaperone-protease networks in mitochondrial protein homeostasis. Biochimica et Biophysica Acta, 1833, 388–399.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Kelly, C. G., Karttunen, J. T., Whittall, T., Lehner, P. J., Duncan, L., MacAry, P., Younson, J. S., Singh, M., Oehlmann, W., Cheng, G., Bergmeier, L., & Lehner, T. (2001). CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity, 15, 971–983.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Whittall, T., McGowan, E., Younson, J., Kelly, C., Bergmeier, L. A., Singh, M., & Lehner, T. (2005). Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. Journal of Immunology, 174, 3306–3316.

    Article  CAS  Google Scholar 

  • Wang, R., Kovalchin, J. T., Muhlenkamp, P., & Chandawarkar, R. Y. (2006a). Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood, 107, 1636–1642.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Town, T., Gokarn, V., Flavell, R. A., & Chandawarkar, R. Y. (2006b). HSP70 enhances macrophage phagocytosis by interaction with lipid raft-associated TLR-7 and upregulating p38 MAPK and PI3K pathways. The Journal of Surgical Research, 136, 58–69.

    Article  PubMed  CAS  Google Scholar 

  • Wei, Y. Q., Zhao, X., Kariya, Y., Teshigawara, K., & Uchida, A. (1995). Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells. Cancer Immunology, Immunotherapy, 40, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Wendling, U., Paul, L., van der Zee, R., Prakken, B., Singh, M., & van Eden, W. (2000). A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. Journal of Immunology, 164, 2711–2717.

    Article  CAS  Google Scholar 

  • Wieten, L., Broere, F., van der Zee, R., Koerkamp, E. K., Wagenaar, J., & van Eden, W. (2007). Cell stress induced HSP are targets of regulatory T cells: A role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Letters, 581, 3716–3722.

    Article  PubMed  CAS  Google Scholar 

  • Wu, B., Hunt, C., & Morimoto, R. (1985). Structure and expression of the human gene encoding major heat shock protein HSP70. Molecular and Cell Biology, 5, 330–341.

    Article  CAS  Google Scholar 

  • Wu, F. H., Yuan, Y., Li, D., Liao, S. J., Yan, B., Wei, J. J., Zhou, Y. H., Zhu, J. H., Zhang, G. M., & Feng, Z. H. (2012). Extracellular HSPA1A promotes the growth of hepatocarcinoma by augmenting tumor cell proliferation and apoptosis-resistance. Cancer Letters, 317, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Xie, J., Méndez, J. D., Méndez-Valenzuela, V., & Aguilar-Hernández, M. M. (2013). Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling, 25, 2185–2197.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. M., Baxter, G. F., Heads, R. J., Yellon, D. M., Downey, J. M., & Cohen, M. V. (1996). Infarct limitation of the second window of protection in a conscious rabbit model. Cardiovascular Research, 31, 777–783.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Coriolan, D., Murthy, V., Schultz, K., Golenbock, D. T., & Beasley, D. (2005). Proinflammatory phenotype of vascular smooth muscle cells: Role of efficient Toll-like receptor 4 signaling. American Journal of Physiology. Heart and Circulatory Physiology, 289, H1069–H1076.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, C. H., Tseng, R., Zhang, Z., Cortes, J., O’Brien, S., Giles, F., Hannah, A., Estrov, Z., Keating, M., Kantarjian, H., & Albitar, M. (2009). Circulating heat shock protein 70 and progression in patients with chronic myeloid leukemia. Leukemia Research, 33, 212–217.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, C. H., Tseng, R., Hannah, A., Estrov, Z., Estey, E., Kantarjian, H., & Albitar, M. (2010). Clinical correlation of circulating heat shock protein 70 in acute leukemia. Leukemia Research, 34, 605–609.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, S., Chiba, S., Furuyama, H., & Fujii, N. (2010). Cerebrospinal fluids containing anti-HSP70 autoantibodies from multiple sclerosis patients augment HSP70-induced proinflammatory cytokine production in monocytic cells. Journal of Neuroimmunology, 218, 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Zhan, R., Leng, X., Liu, X., Wang, X., Gong, J., Yan, L., Wang, L., Wang, Y., Wang, X., & Qian, L. J. (2009). Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochemical and Biophysical Research Communications, 387, 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Zhe, Y., Li, Y., Liu, D., Su, D. M., Liu, J. G., & Li, H. Y. (2016). Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway. Tumour Biology, 37, 13951–13959.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., & Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272, 1606–1614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zügel, U., Sponaas, A. M., Neckermann, J., Schoel, B., & Kaufmann, S. H. (2001). Gp96-peptide vaccination of mice against intracellular bacteria. Infection and Immunity, 69, 4164–4167.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the University of Palermo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Geraci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barreca, M.M., Geraci, F. (2018). Double Face of eHsp70 in Front of Different Situations. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_7

Download citation

Publish with us

Policies and ethics