Skip to main content

Suppression of HSP70 Expression by Quercetin and Its Therapeutic Potential Against Cancer

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

Abstract

Heat shock response is one of several survival pathways that protects cells against harsh conditions. This response mechanism, which is evolutionarily protected in all organisms, enhances the expression of heat shock proteins (HSP) that show protective properties for cells under stress conditions. High expression of many HSP is observed in cancer, and their functions aides the advancement of disease. It is known that overexpression of HSP70, a member of HSP family, in cancerous cells has been closely associated with tumor cell proliferation, apoptosis inhibition, enhanced migration and metastasis and drug resistance promotion. Therefore, targeting HSP70 in cancer treatment is very important. One of the best-studied inhibitors known for HSP70 is quercetin that is widely distributed flavonoid in the plant kingdom. Several in vivo and in vitro studies have reported the efficacy of quercetin in reducing elevated HSP70 levels in cancer therapy. It has become a focal point as an anticancer agent because of the induction of apoptosis in many different cancer cells. In this chapter, we reviewed the role of HSP70 in different cancer types and the suppressive effect of quercetin on expression of HSP70 family members. Moreover, we emphasized molecular mechanisms targeted by quercetin in cancer and its relationship to Hsp70.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Akts (or PKB):

protein kinase B

AMPK:

AMP activated protein kinase

CaMKII:

calcium/calmodulin-dependent protein kinase II

Cdk:

cyclin-dependent kinases

Chk2:

checkpoint kinase 2

CK2:

casein kinase 2

ER:

endoplasmic reticulum

ERK:

extracellular signal-regulated kinase

Hsc:

heat shock cognate

HSE:

heat shock element

HSF:

heat shock factor

HSP:

heat shock protein

IL-6:

interleukin-6

JAK:

Janus kinase

JNK:

C-Jun N-terminal kinase

MAPK:

mitogen-activated protein kinase

MMP:

matrix metalloproteinase

PI3K:

phosphatidylinositol 3-kinase

pRb:

retinoblastoma protein

ROS:

reactive oxygen species

RSK2:

ribosomal protein S6 kinase 2

S6K1:

ribosomal protein S6 kinase beta-1

shRNA:

short hairpin RNA

siRNA:

small interfering RNA

STAT3:

signal transducer and activator of transcription 3

VEGF:

vascular endothelial growth factor

References

  • Aalinkeel, R., Bindukumar, B., Reynolds, J. L., et al. (2008). The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. The Prostate, 68, 1773–1789.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Abe, M., Manola, J. B., Oh, W. K., et al. (2004). Plasma levels of heat shock protein 70 in patients with prostate cancer: A potential biomarker for prostate cancer. Clinical Prostate Cancer, 3, 49–53.

    Article  CAS  PubMed  Google Scholar 

  • Aghdassi, A., Phillips, P., & Dudeja, V. (2007). Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Research, 67, 616–625.

    Article  CAS  PubMed  Google Scholar 

  • Alexiou, G. A., Vartholomatos, G., Stefanaki, K., et al. (2013). Expression of heat shock proteins in medulloblastoma. Journal of Neurosurgery. Pediatrics, 12, 452–457.

    Article  PubMed  Google Scholar 

  • Alexiou, G. A., Karamoutsios, A., Lallas, G., et al. (2014). Expression of heat shock proteins in brain tumors. Turkish Neurosurgery, 24, 745–749.

    PubMed  Google Scholar 

  • Arap, M. A., Lahdenranta, J., Mintz, P. J., et al. (2004). Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell, 6, 275–284.

    Article  CAS  PubMed  Google Scholar 

  • Atashpour, S., Fouladdel, S., Movahhed, T. K., et al. (2015). Quercetin induces cell cycle arrest and apoptosis in CD133(+) cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin. Iranian Journal of Basic Medical Sciences, 18, 635–643.

    PubMed Central  PubMed  Google Scholar 

  • Awad, H. M., Boersma, M. G., Vervoort, J., & Rietjens, I. M. (2000). Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. Archives of Biochemistry and Biophysics, 378, 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Bądziul, D., Jakubowicz-Gil, J., Langner, E., Rzeski, W., Głowniak, K., & Gawron, A. (2014a). The effect of quercetin and imperatorin on programmed cell death induction in T98G cells in vitro. Pharmacological Reports, 66, 292–300.

    Article  CAS  PubMed  Google Scholar 

  • Bądziul, D., Jakubowicz-Gil, J., Paduch, R., Głowniak, K., & Gawron, A. (2014b). Combined treatment with quercetin and imperatorin as a potent strategy for killing HeLa and Hep-2 cells. Molecular and Cellular Biochemistry, 392, 213–227.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balázs, M., Zsolt, H., László, G., et al. (2017). Serum heat shock protein 70, as a potential biomarker for small cell lung cancer. Pathology Oncology Research, 23, 377–383.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, T., Van der Vliet, A., & Ziboh, V. A. (2002). Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 66, 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Beere, H. M., Wolf, B. B., Cain, K., et al. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2, 469–475.

    Article  CAS  PubMed  Google Scholar 

  • Benjamin, I. J., & McMillan, D. R. (1998). Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circulation Research, 83, 117–132.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, F. A., Sharmila, G., Balakrishnan, S., et al. (2014). Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway. The Journal of Nutritional Biochemistry, 25, 1132–1139.

    Article  CAS  PubMed  Google Scholar 

  • Bors, W., Heller, W., Michel, C., & Saran, M. (1990). Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods in Enzymology, 186, 343–355.

    Article  CAS  PubMed  Google Scholar 

  • Braganhol, E., Zamin, L. L., Canedo, A. D., et al. (2006). Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anti-Cancer Drugs, 17, 663–671.

    Article  CAS  PubMed  Google Scholar 

  • Canöz, O., Belenli, O., & Patiroglu, T. E. (2002). General features of gastric carcinomas and comparison of HSP70 and NK cell immunoreactivity with prognostic factors. Pathology Oncology Research, 8, 262–269.

    Article  PubMed  Google Scholar 

  • Cao, H. H., Tse, A. K., Kwan, H. Y., et al. (2014). Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochemical Pharmacology, 87, 424–434.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, M., Andrulis, M., Stühmer, T., et al. (2013). The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica, 98, 1132–1141.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen, W. T., Zhu, G., Pfaffenbach, K., Kanel, G., Stiles, B., & Lee, A. S. (2014). GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN. Oncogene, 33, 4997–5005.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Dong, X. S., Gao, H. Y., et al. (2016). Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells. Molecular Medicine Reports, 13, 689–696.

    Article  CAS  PubMed  Google Scholar 

  • Cheong, E., Ivory, K., Doleman, J., Parker, M. L., Rhodes, M., & Johnson, I. T. (2004). Synthetic and naturally occurring COX-2 inhibitors suppress proliferation in a human oesophageal adenocarcinoma cell line (OE33) by inducing apoptosis and cell cycle arrest. Carcinogenesis, 25, 1945–1952.

    Article  CAS  PubMed  Google Scholar 

  • Chien, S. Y., Wu, Y. C., Chung, J. G., et al. (2009). Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Human & Experimental Toxicology, 28, 493–503.

    Article  CAS  Google Scholar 

  • Choi, J. A., Kim, J. Y., Lee, J. Y., et al. (2001). Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. International Journal of Oncology, 19, 837–844.

    CAS  PubMed  Google Scholar 

  • Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10, 86–103.

    Article  CAS  Google Scholar 

  • Conklin, C. M., Bechberger, J. F., MacFabe, D., Guthrie, N., Kurowska, E. M., & Naus, C. C. (2007). Genistein and quercetin increase connexin43 and suppress growth of breast cancer cells. Carcinogenesis, 28, 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Csokay, B., Prajda, N., Weber, G., & Olah, E. (1997). Molecular mechanisms in the antiproliferative action of quercetin. Life Sciences, 60, 2157–2163.

    Article  CAS  PubMed  Google Scholar 

  • Daugaard, M., Rohde, M., & Jäättelä, M. (2007a). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 581, 3702–3710.

    Article  CAS  PubMed  Google Scholar 

  • Daugaard, M., Kirkegaard-Sørensen, T., Ostenfeld, M. S., et al. (2007b). Lens epithelium-derived growth factor is an Hsp70-2 regulated guardian of lysosomal stability in human cancer. Cancer Research, 67, 2559–2567.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S. P., Reddy, H., Caivano, M., & Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. The Biochemical Journal, 351, 95–105.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deocaris, C. C., Lu, W. J., Kaul, S. C., & Wadhwa, R. (2013). Druggability of mortalin for cancer and neuro-degenerative disorders. Current Pharmaceutical Design, 19, 418–429.

    Article  PubMed  CAS  Google Scholar 

  • Dihal, A. A., van der Woude, H., Hendriksen, P. J., et al. (2008). Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis. Proteomics, 8, 45–61.

    Article  PubMed  CAS  Google Scholar 

  • Dudeja, V., Mujumdar, N., Phillips, P., et al. (2009). Heat shock protein 70 inhibits apoptosis in cancer cells through simultaneous and independent mechanisms. Gastroenterology, 136, 1772–1782.

    Article  PubMed  CAS  Google Scholar 

  • Dundas, S. R., Lawrie, L. C., Rooney, P. H., & Murray, G. I. (2005). Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. The Journal of Pathology, 205, 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Duo, J., Ying, G. G., Wang, G. W., & Zhang, L. (2012). Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Molecular Medicine Reports, 5, 1453–1456.

    PubMed  CAS  Google Scholar 

  • Duthie, G. G., Duthie, S. J., & Kyle, J. A. (2000). Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutrition Research Reviews, 13, 79–106.

    Article  PubMed  CAS  Google Scholar 

  • Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Evans, C. G., Chang, L., & Gestwicki, J. E. (2010). Heat shock protein 70 (hsp70) as an emerging drug target. Journal of Medicinal Chemistry, 53, 4585–4602.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fernandez, P. M., Tabbara, S. O., Jacobs, L. K., et al. (2000). Overexpression of the glucose-regulated stress gene GRP78 in malignantbut not benign human breast lesions. Breast Cancer Research and Treatment, 59, 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Gabai, V. L., Meriin, A. B., & Mosser, D. D. (1997). Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. Journal of Biological Chemistry, 272, 18033–18037.

    Article  CAS  PubMed  Google Scholar 

  • Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E., & Kroemer, G. (2006). Heat shock proteins 27 and 70: Anti-apoptotic proteins with tumourigenic properties. Cell Cycle, 5, 2592–2601.

    Article  CAS  PubMed  Google Scholar 

  • Gazit, G., Lu, J., & Lee, A. S. (1999). De-regulation of GRP stress protein expression in human breast cancer cell lines. Breast Cancer Research and Treatment, 54, 135–146.

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann, M., Specht, H. M., Bayer, C., et al. (2014). Hsp70-a biomarker for tumor detection and monitoring of outcome of radiation therapy in patients with squamous cell carcinoma of the head and neck. Radiation Oncology, 9, 131.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gibellini, L., Pinti, M., Nasi, M., et al. (2011). Quercetin and cancer chemoprevention. Evidence-based Complementary and Alternative Medicine, 2011, 1–15.

    Article  Google Scholar 

  • Giri, B., Sethi, V., Modi, S., et al. (2017). Heat shock protein 70 in pancreatic diseases: Friend or foe. Journal of Surgical Oncology, 116, 114–122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Granado-Serrano, A. B., Martín, M. A., Bravo, L., Goya, L., & Ramos, S. (2006). Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). The Journal of Nutrition, 136, 2715–2721.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, C., Vikram, A., Tripathi, D. N., Ramarao, P., & Jena, G. B. (2010). Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phytotherapy Research, 24, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Han, Y., Yu, H., Wang, J., Ren, Y., Su, X., & Shi, Y. (2015). Quercetin alleviates myocyte toxic and sensitizes anti-leukemic effect of adriamycin. Hematology, 20, 276–283.

    Article  PubMed  CAS  Google Scholar 

  • Harwood, M., Danielewska-Nikiel, B., Borzelleca, J. F., Flamm, G. W., Williams, G. M., & Lines, T. C. (2007). A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food and Chemical Toxicology, 4, 2179–2205.

    Article  CAS  Google Scholar 

  • Hu, Y., Yang, L., Yang, Y., et al. (2016). Oncogenic role of mortalin contributes to ovarian tumorigenesis by activating the MAPK-ERK pathway. Journal of Cellular and Molecular Medicine, 20, 2111–2121.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hunt, C. R., Dix, D. J., Sharma, G. G., et al. (2004). Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Molecular and Cellular Biology, 2, 899–911.

    Article  CAS  Google Scholar 

  • Jäättelä, M., & Wissing, D. (1993). Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. The Journal of Experimental Medicine, 177, 231–216.

    Article  PubMed  Google Scholar 

  • Jakubowicz-Gil, J., Rzymowska, J., & Gawron, A. (2002). Quercetin, apoptosis, heat shock. Biochemical Pharmacology, 64, 1591–1595.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowicz-Gil, J., Paduch, R., Piersiak, T., Głowniak, K., Gawron, A., & Kandefer-Szerszeń, M. (2005). The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells. Biochemical Pharmacology, 69, 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowicz-Gil, J., Langner, E., Wertel, I., Piersiak, T., & Rzeski, W. (2010). Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line. Chemico-Biological Interactions, 188, 190–203.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowicz-Gil, J., Langner, E., Bądziul, D., Wertel, I., & Rzeski, W. (2013a). Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biology, 34, 2367–2378.

    Article  PubMed  CAS  Google Scholar 

  • Jakubowicz-Gil, J., Langner, E., Bądziul, D., Wertel, I., & Rzeski, W. (2013b). Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment. Toxicology and Applied Pharmacology, 273, 580–589.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, J. H., An, J. Y., Kwon, Y. T., Rhee, J. G., & Lee, Y. J. (2009). Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. Journal of Cellular Biochemistry, 106, 73–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jin, H., Xie, Q., Guo, X., et al. (2017). p63α protein upregulates heat shock protein 70 expression via E2F1 transcription factor 1, promoting Wasf3/Wave3/MMP9 signaling and bladder cancer invasion. Journal of Biological Chemistry, 292(38), 15952–15963. https://doi.org/10.1074/jbc.M117.792010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, E. L., Zhau, M. J., Stevenson, M. A., & Calderwood, S. K. (2004). The 70 kilodalton heat shock protein is an inhibitor of apoptosis in prostate cancer. International Journal of Hyperthermia, 20, 835–849.

    Article  CAS  PubMed  Google Scholar 

  • Jung, J. H., Lee, J. O., Kim, J. H., et al. (2010). Quercetin suppresses HeLa cell viability via AMPK-induced HSP70 and EGFR down-regulation. Journal of Cellular Physiology, 223, 408–414.

    CAS  PubMed  Google Scholar 

  • Kampinga, H. H., Hageman, J., Vos, M. J., et al. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.

    Article  CAS  Google Scholar 

  • Kashyap, D., Mittal, S., Sak, K., Singhal, P., & Tuli, H. S. (2016). Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumour Biology, 37, 12927–12939.

    Article  CAS  PubMed  Google Scholar 

  • Khan, F., Niaz, K., Maqbool, F., et al. (2016). Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients, 8, 1–19.

    Article  CAS  Google Scholar 

  • Kim, E. J., Choi, C. H., Park, J. Y., Kang, S. K., & Kim, Y. K. (2008). Underlying mechanism of quercetin-induced cell death in human glioma cells. Neurochemical Research, 33, 971–979.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Seo, E. M., Sharma, A. R., et al. (2013a). Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. International Journal of Oncology, 43, 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H., Moon, J. Y., Ahn, K. S., & Cho, S. K. (2013b). Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxidative Medicine and Cellular Longevity, 2013, 596496.

    PubMed Central  PubMed  Google Scholar 

  • Kluger, H. M., Chelouche Lev, D., & Kluger, Y. (2005). Using a xenograft model of human breast cancer metastasis to find genes associated with clinically aggressive disease. Cancer Research, 65, 5578–5587.

    Article  CAS  PubMed  Google Scholar 

  • Kocsis, J., Madaras, B., Toth, E. K., Fust, G., & Prohaszka, Z. (2010). Serum level of soluble 70-kD heat shock protein is associated with high mortality in patients with colorectal cancer without distant metastasis. Cell Stress & Chaperones, 15, 143–151.

    Article  CAS  Google Scholar 

  • Koomägi, R., Mattern, J., & Volm, M. (1999). Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Research, 19, 4333–4336.

    PubMed  Google Scholar 

  • Kubota, H., Yamamoto, S., Itoh, E., et al. (2010). Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma. Cell Stress & Chaperones, 15, 1003–1011.

    Article  CAS  Google Scholar 

  • Kumar, S., Stokes, J., 3rd., Singh, U. P., et al. (2016). Targeting Hsp70: A possible therapy for cancer. Cancer Letters, 374, 156–166.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee, A. S. (2007). GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Research, 67, 3496–3499.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. H., & Yoo, C. G. (2013). Simultaneous inactivation of GSK-3β suppresses quercetin-induced apoptosis by inhibiting the JNK pathway. American Journal of Physiology. Lung Cellular and Molecular Physiology, 304, 782–789.

    Article  CAS  Google Scholar 

  • Lee, S. J., Choi, S. A., Lee, K. H., et al. (2001). Role of inducible heat shock protein in radiation- induced cell death. Cell Stress & Chaperones, 6, 273–281.

    Article  CAS  Google Scholar 

  • Lee, J. S., Lee, J. J., & Seo, J. S. (2005). HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. The Journal of Biological Chemistry, 280, 6634–6641.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. H., Lee, E. J., & Min, K. H. (2015). Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression. Clinical Lung Cancer, 16, e235–e243.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Sui, C., Kong, F., Zhang, H., Liu, J., & Dong, M. (2007). Expression of HSP70 and JNK-related proteins in human liver cancer: Potential effects on clinical outcome. Digestive and Liver Disease, 39, 663–670.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Bai, Y., Zhao, M., et al. (2015). Quercetin inhibits vascular endothelial growth factor-induced choroidal and retinal angiogenesis in vitro. Ophthalmic Research, 53, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Tang, C., Li, L., Li, R., & Fan, Y. (2016). Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro. Journal of Neuro-Oncology, 129, 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Lianos, G. D., Alexiou, G. A., Mangano, A., et al. (2015). The role of heat shock proteins in cancer. Cancer Letters, 360, 114–118.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Daniels, C. K., & Cao, S. (2012). Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacology & Therapeutics, 136, 354–374.

    Article  CAS  Google Scholar 

  • McConnell, J. R., & McAlpine, S. R. (2013). Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorganic & Medicinal Chemistry Letters, 23, 1923–1928.

    Article  CAS  Google Scholar 

  • Meng, L., Gabai, V. L., & Sherman, M. Y. (2010). Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene, 29, 5204–5213.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E., & Segura-Aguilar, J. (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Biology & Medicine, 26, 107–116.

    Article  CAS  Google Scholar 

  • Misra, U. K., Deedwania, R., & Pizzo, S. V. (2005). Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. The Journal of Biological Chemistry, 280, 26278–26286.

    Article  PubMed  CAS  Google Scholar 

  • Moghanibashi, M., Rastgar-Jazii, F., Soheili, Z. S., et al. (2013). Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1. Functional & Integrative Genomics, 13, 253–260.

    Article  CAS  Google Scholar 

  • Mosser, D. D., & Morimoto, R. I. (2004). Molecular chaperones and the stress of oncogenesis. Oncogene, 23, 2907–2918.

    Article  CAS  PubMed  Google Scholar 

  • Mu, C., Jia, P., Yan, Z., Liu, X., Li, X., & Liu, H. (2007). Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods and Findings in Experimental and Clinical Pharmacology, 29, 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A., & Khuda-Bukhsh, A. R. (2015). Quercetin down-regulates IL-6/STAT-3 signals to induce mitochondrial-mediated apoptosis in a nonsmall- cell lung-cancer cell line, A549. Journal of Pharmacopuncture, 18, 19–26.

    Article  PubMed Central  PubMed  Google Scholar 

  • Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269, 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34, 1181–1188.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nguyen, L. T., Lee, Y. H., Sharma, A. R., et al. (2017). Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. The Korean Journal of Physiology & Pharmacology, 21, 205–213.

    Article  Google Scholar 

  • Niu, P., Liu, L., Gong, Z., et al. (2006). Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress & Chaperones, 11, 162–169.

    Article  CAS  Google Scholar 

  • Nylandsted, J., Rohde, M., Brand, K., Bastholm, L., Elling, F., & Jäättelä, M. (2000). Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proceedings of the National Academy of Sciences of the United States of America, 97, 7871–7876.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Önay-Uçar, E. (2015). Heat shock proteins and cancer: Plant based therapy. In A. A. A. Asea, N. N. Almasoud, S. Krishnan, & P. Kaur (Eds.), Heat shock protein-based therapies (pp. 27–48). Cham: Springer.

    Chapter  Google Scholar 

  • Ong, C. S., Tran, E., Nguyen, T. T., et al. (2004). Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions. Oncology Reports, 11, 727–733.

    CAS  PubMed  Google Scholar 

  • Powers, M. V., Clarke, P. A., & Workman, P. (2008). Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell, 14, 250–262.

    Article  CAS  PubMed  Google Scholar 

  • Regeling, A., Imhann, F., Volders, H. H., et al. (2016). HSPA6 is an ulcerative colitis susceptibility factor that is induced by cigarette smoke and protects intestinal epithelial cells by stabilizing anti-apoptotic Bcl-XL. Biochimica et Biophysica Acta, 1862, 788–796.

    Article  CAS  PubMed  Google Scholar 

  • Rodina, A., Taldone, T., Kang, Y., et al. (2014). Affinity purification probes of potential use to investigate the endogenous Hsp70 interactome in cancer. ACS Chemical Biology, 9, 1698–1705.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rohde, M., Daugaard, M., Jensen, M. H., Helin, K., Nylandsted, J., & Jäättelä, M. (2005). Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes & Development, 19, 570–582.

    Article  CAS  Google Scholar 

  • Saleh, A., Srinivasula, S. M., Balkir, L., Robbins, P. D., & Alnemri, E. S. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp70. Nature Cell Biology, 2, 476–483.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, E., Maingret, L., Puig, P. E., et al. (2006). Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Research, 15, 4191–4197.

    Article  Google Scholar 

  • Shan, B. E., Wang, M. X., & Li, R. Q. (2009). Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/beta-catenin signaling pathway. Cancer Investigation, 27, 604–612.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, M. Y., & Gabai, V. L. (2015). Hsp70 in cancer: Back to the future. Oncogene, 34, 4153–4161.

    Article  CAS  PubMed  Google Scholar 

  • Shuda, M., Kondoh, N., Imazeki, N., et al. (2003). Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: A possible involvement of the ER stress pathway in hepatocarcinogenesis. Journal of Hepatology, 38, 605–614.

    Article  CAS  PubMed  Google Scholar 

  • Siegelin, M. D., Reuss, D. E., Habel, A., Rami, A., & von Deimling, A. (2009). Quercetin promotes degradation of survivin and thereby enhances death-receptor-mediated apoptosis in glioma cells. Neuro-Oncology, 11, 122–131.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Silva, M. M., Santos, M. R., Caroço, G., Rocha, R., Justino, G., & Mira, L. (2002). Structure-antioxidant activity relationships of flavonoids: A re-examination. Free Radical Research, 36, 1219–1227.

    Article  CAS  PubMed  Google Scholar 

  • Snoeckx, L. H., Cornelussen, R. N., Van Nieuwenhoven, F. A., Reneman, R. S., & Van Der Vusse, G. J. (2001). Heat shock proteins and cardiovascular pathophysiology. Physiological Reviews, 81, 1461–1497.

    Article  CAS  PubMed  Google Scholar 

  • Song, M. S., Park, Y. K., Lee, J. H., & Park, K. (2001). Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-ε/ERK/AP-1 signaling cascade. Cancer Research, 61, 8322–8330.

    CAS  PubMed  Google Scholar 

  • Srivastava, S., Somasagara, R. R., Hegde, M., et al. (2016). Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Scientific Reports, 6, 24049.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Starenki, D., Hong, S. K., Lloyd, R. V., & Park, J. I. (2015). Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene, 34, 4624–4634.

    Article  CAS  PubMed  Google Scholar 

  • Storniolo, A., Raciti, M., Cucina, A., Bizzarri, M., & Renzo, L. D. (2015). Quercetin affects Hsp70/IRE1α mediated protection from death Induced by endoplasmic reticulum stress. Oxidative Medicine and Cellular Longevity, 2015, 1–11.

    Article  CAS  Google Scholar 

  • Takano, S., Wadhwa, R., Yoshii, Y., Nose, T., Kaul, S. C., & Mitsui, Y. (1997). Elevated levels of mortalin expression in human brain tumors. Experimental Cell Research, 237, 38–45.

    Article  CAS  PubMed  Google Scholar 

  • Tao, Y., Messer, J. S., Goss, K. H., Hart, J., Bissonnette, M., & Chang, E. B. (2016). Hsp70 exerts oncogenic activity in the Apc mutant Min mouse model. Carcinogenesis, 37, 731–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng, Y., Ngoka, L., Mei, Y., Lesoon, L., & Cowell, J. K. (2012). HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. The Journal of Biological Chemistry, 287, 10051–10059.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vargas, A., & Burd, R. (2010). Hormesis and synergy: pathways and mechanisms of quercetin in cancer prevention and management. Nutrition Reviews, 68, 418–428.

    Article  PubMed  Google Scholar 

  • Vidya-Priyadarsini, R., Senthil-Murugan, R., Maitreyi, S., Ramalingam, K., Karunagaran, D., & Nagini, S. (2010). The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. European Journal of Pharmacology, 649, 84–91.

    Article  CAS  PubMed  Google Scholar 

  • Vijayababu, M. R., Kanagaraj, P., Arunkumar, A., Ilangovan, R., Aruldhas, M. M., & Arunakaran, J. (2005). Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. Journal of Cancer Research and Clinical Oncology, 131, 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Vijayababu, M. R., Arunkumar, A., Kanagaraj, P., Venkataraman, P., Krishnamoorthy, G., & Arunakaran, J. (2006). Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Molecular and Cellular Biochemistry, 287, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Tu, Y. C., Lian, T. W., Hung, J. T., Yen, J. H., & Wu, M. J. (2006). Distinctive antioxidant and antiinflammatory effects of flavonols. Journal of Agricultural and Food Chemistry, 54, 9798–9804.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R. E., Kao, J. L., Hilliard, C. A., et al. (2009). Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. Journal of Medicinal Chemistry, 52, 1912–1921.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., & Cao, S. (2017). Heat shock proteins and cancer. Trends in Pharmacological Sciences, 38, 226–256.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, C. H., Tseng, R., Zhang, Z., et al. (2009). Circulating heat shock protein 70 and progression in patients with chronic myeloid leukemia. Leukemia Research, 33, 212–217.

    Article  CAS  PubMed  Google Scholar 

  • Yeh, S. L., Yeh, C. L., Chan, S. T., & Chuang, C. H. (2011). Plasma rich in quercetin metabolites induces G2/M arrest by upregulating PPAR-γ expression in human A549 lung cancer cells. Planta Medica, 77, 992–998.

    Article  CAS  PubMed  Google Scholar 

  • Yi, X., Luk, J. M., Lee, N. P., et al. (2008). Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Molecular & Cellular Proteomics, 7, 315–325.

    Article  CAS  Google Scholar 

  • Yoshida, M., Sakai, T., Hosokawa, N., et al. (1990). The effect of quercetin on cell cycle progression and growth of human gastric cancer cells. FEBS Letters, 260, 10–13.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. Y., Yi, T., Liu, J., Zhao, Z. Z., & Chen, H. B. (2013). Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. Journal of Agricultural and Food Chemistry, 61, 2188–2195.

    Article  CAS  PubMed  Google Scholar 

  • Zorzi, E., & Bonvini, P. (2011). Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel), 3, 3921–3956.

    Article  CAS  Google Scholar 

  • Zuiderweg, E. R., Bertelsen, E. B., Rousaki, A., Mayer, M. P., Gestwicki, J. E., & Ahmad, A. (2013). Allostery in the HSP70 chaperone proteins. Topics in Current Chemistry, 328, 99–153.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Fund of Istanbul University (Project no. 57959 and 24987).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Önay Uçar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Önay Uçar, E., Şengelen, A., Mertoğlu, E., Pekmez, M., Arda, N. (2018). Suppression of HSP70 Expression by Quercetin and Its Therapeutic Potential Against Cancer. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_19

Download citation

Publish with us

Policies and ethics