Skip to main content

Mammalian Heat Shock Protein Hsp105: The Hsp70 Inducer and a Potent Target for Cancer Therapy

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

  • 620 Accesses

Abstract

Major heat shock protein Hsp70 prevents protein aggregation and assists protein folding as molecular chaperone. Hsp70 also regulates apoptosis, senescence, and autophagy. Increased expression of Hsp70 causes the drug resistance of cancer cells. Hsp105, a mammalian heat shock protein, consists of Hsp105α and its splicing isoform Hsp105β. Hsp105α constitutively expresses in cytoplasm and functions as molecular chaperone and apoptotic regulator. Hsp105β is specifically expressed in nucleus under stressed condition and induces Hsp70 expression through the activation of Stat3. Recently, we identified that the novel regulators of Hsp105β-mediated Hsp70 induction including the transcriptional co-activator of Stat3. Additionally, we reveled that Hsp105α but not Hsp105β interacts with HIF-1α in nucleus and affects to the transcriptional activation of HIF-1. Since Hsp105 is overexpressed in several tumors including solid tumor, these evidences indicate that the nuclear expression of Hsp105α seems to function as a malignant factor of cancer through the induction of Hsp70 and the activation of the tumorigenic Stat3 and HIF-1 signaling pathways. In this chapter, we will introduce the recent our observations and discuss the possibility that the nuclear overexpression of Hsp105 is a useful marker for cancer prognosis and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FU:

5-fluorouracil

ER:

Endoplasmic reticulum

ESCC:

Esophageal squamous cell carcinoma

JAK:

Janus kinase

HIF:

Hypoxia-inducible factor

Hsc:

Heat shock cognate

HSF:

Heat shock factor

Hsp:

Heat shock protein

NES:

Nuclear export signal

NLS:

Nuclear localization signal

Nmi:

N-myc interactor

PHD:

Prolyl hydroxylase

snRNP:

Small nuclear ribonucleoprotein

Stat:

Signal transducer and activator of transcription

VHL:

Von Hippel-Lindau

References

  • Balchin, D., Hayer-Hartl, M., & Hartl, F. U. (2016). In vivo aspects of protein folding and quality control. Science, 353, aac4354.

    Article  CAS  PubMed  Google Scholar 

  • Berthenet, K., Bokhari, A., Lagrange, A., Marcion, G., Boudesco, C., Causse, S., De Thonel, A., Svrcek, M., & Goloudina. A. R. (2016). HSP110 promotes colorectal cancer growth through STAT3 activation. Oncogene, 36, 2328–2336.

    Article  CAS  PubMed  Google Scholar 

  • Bracher, A., & Verghese, J. (2015). The nucleotide exchange factors of Hsp70 molecular chaperones. Frontiers in Molecular Biosciences, 78, 1–33.

    CAS  Google Scholar 

  • Darnell, J. E. (1997). STATs and gene regulation. Science, 277, 1630–1635.

    Article  CAS  PubMed  Google Scholar 

  • Gao, H., Zhaoxu, Z., Yousheng, M., Wei, W., Yuanyuan, Q., Lanping, Z., Fang, L., Hongzhi, H., & Xiaohang, Z. (2014). Identification of tumor antigens that elicit a humoral immune response in the sera of Chinese esophageal squamous cell carcinoma patients by modified serological proteome analysis. Cancer Letters, 344, 54–61.

    Article  CAS  PubMed  Google Scholar 

  • Hatayama, T., Nishiyama, E., & Yasuda, K. (1994a). Cellular localization of high-molecular-mass heat shock proteins in murine cells. Biochemical and Biophysical Research Communications, 200, 1367–1373.

    Article  CAS  PubMed  Google Scholar 

  • Hatayama, T., Yasuda, K., & Nishiyama, E. (1994b). Characterization of high-molecular-mass heat shock proteins and 42 degrees C-specific heat shock proteins of murine cells. Biochemical and Biophysical Research Communications, 204, 357–365.

    Article  CAS  PubMed  Google Scholar 

  • He, N., Liu, M., Hsu, J., Xue, Y., Chou, S., Burlingame, A., Krogan, N. J., Alber, T., & Zhou, Q. (2010). HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Molecular Cell, 38, 428–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, T. S., Han, H. S., Choi, H. K., Lee, Y. J., Kim, Y. J., Han, M. Y., & Park, Y. M. (2003). Differential, stage-dependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. Journal of Gastroenterology and Hepatology, 18, 690–700.

    Article  PubMed  Google Scholar 

  • Ishihara, K., Yasuda, K., & Hatayama, T. (1999). Molecular cloning, expression and localization of human 105 kDa heat shock protein, hsp105. Biochimica et Biophysica Acta, 1444, 138–142.

    Article  CAS  PubMed  Google Scholar 

  • Jurica, M. S., & Moore, M. J. (2003). Pre-mRNA splicing: Awash in a sea of proteins. Molecular Cell, 12, 5–14.

    Article  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk, R., Greene, J. M., Baldwin, A. S., Jr., & Kingston, R. E. (1987). Activation and repression of mammalian gene expression by the c-myc protein. Genes & Development, 1, 347–357.

    Article  CAS  Google Scholar 

  • Kai, M., Nakatsura, T., Egami, H., Senju, S., Nishimura, Y., & Ogawa, M. (2003). Heat shock protein 105 is overexpressed in a variety of human tumors. Oncology Reports, 10, 1777–1782.

    PubMed  CAS  Google Scholar 

  • Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., Cheethama, M. E., Chen, B., & Hightower, L. E. (2009). Guidelines for the nomenclature of the human heat shock proteins. Cell Stress & Chaperones, 14, 105–111.

    Article  CAS  Google Scholar 

  • Kawai, T., Enomoto, Y., Morikawa, T., Matsushita, H., Kume, H., Fukayama, M., Yamaguchi, H., Kakimi, K., & Homma, Y. (2014). High expression of heat shock protein 105 predicts a favorable prognosis for patients with urinary bladder cancer treated with radical cystectomy. Molecular and Clinical Oncology, 2, 38–42.

    Article  PubMed  Google Scholar 

  • Kimura, A., Ogata, K., Altan, B., Yokobori, T., & Ide, M. (2016). Nuclear heat shock protein 110 expression is associated with poor prognosis and chemotherapy resistance in gastric cancer. Oncotarget, 7, 18415–18423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingston, R. E., Baldwin, A. S., Jr., & Sharp, P. A. (1984). Regulation of heat shock protein 70 gene expression by c-myc. Nature, 312, 280–282.

    Article  CAS  PubMed  Google Scholar 

  • Lando, D., Peet, D. J., Gorman, J. J., Whelan, D. A., Whitelaw, M. L., & Bruick, R. K. (2002). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor service FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes & Development, 214, 1466–1471.

    Article  CAS  Google Scholar 

  • Leung, A. K. W., Nagai, K., & Li, J. (2011). Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature, 473, 536–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Wen, H., Xi, Y., Tanaka, K., Wang, H., Peng, D., Ren, Y., Jin, Q., Dent, S. Y. R., Li, W., Li, H., & Shi, X. (2014). AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell, 159, 558–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C., Smith, E. R., Takahashi, H., Lai, K. C., Martin-Brown, S., Florens, L., Washburn, M. P., Conaway, J. W., Conaway, R. C., & Shilatifard, A. (2010). AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Molecular Cell, 37, 429–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami, H., Saito, Y., Okamoto, N., Kakihana, A., Kuga, T., & Nakayama, Y. (2017). Requirement of Hsp105 in CoCl2-induced HIF-1α accumulation and transcriptional activation. Experimental Cell Research, 352, 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto, R. I., Sarge, K. D., & Abravaya, K. (1992). Transcriptional regulation of heat shock genes. The Journal of Biological Chemistry, 267, 21987–21990.

    PubMed  CAS  Google Scholar 

  • Muchemwa, F. C., Nakatsura, T., Ihn, H., & Kageshita, T. (2006). Heat shock protein 105 is overexpressed in squamous cell carcinoma and extramammary Paget disease but not in basal cell carcinoma. The British Journal of Dermatology, 155, 582–585.

    Article  CAS  PubMed  Google Scholar 

  • Muchemwa, F. C., Nakatsura, T., Fukushima, S., Nishimura, Y., Kageshita, T., & Ihn, H. (2008). Differential expression of heat shock protein 105 in melanoma and melanocytic naevi. Melanoma Research, 18, 166–171.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34, 1181–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsura, T., Senju, S., Yamada, K., Jotsuka, T., Ogawa, M., & Nishimura, Y. (2001). Gene cloning of immunogenic antigens overexpressed in pancreatic cancer. Biochemical and Biophysical Research Communications, 281, 936–944.

    Article  CAS  PubMed  Google Scholar 

  • Nillegoda, N. B., & Bukau, B. (2015). Metazoan Hsp70-based protein disaggregases: Emergence and mechanisms. Frontiers in Molecular Biosciences, 2, 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda, T., Morii, E., Inoue, M., Ikeda, J.-I., Aozasa, K., & Okumura, M. (2009). Prognostic significance of heat shock protein 105 in lung adenocarcinoma. Molecular Medicine Reports, 2, 603–607.

    PubMed  CAS  Google Scholar 

  • Prabhakar, N. R., & Semenza, G. L. (2012). Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiological Reviews, 92, 967–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray, S., Lu, Y., Kaufmann, S. H., Gustafson, W. C., Karp, J. E., Boldogh, I., Fields, A. P., & Brasier, A. R. (2004). Genomic mechanisms of p210BCR-ABL signaling: Induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. The Journal of Biological Chemistry, 279, 35604–35615.

    Article  CAS  PubMed  Google Scholar 

  • Safran, M., & Kaelin, W. G. (2003). HIF hydroxylation and the mammalian oxygen-sensing pathway. The Journal of Clinical Investigation, 111, 779–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito, Y., Yamagishi, N., & Hatayama, T. (2007). Different localization of Hsp105 family proteins in mammalian cells. Experimental Cell Research, 313, 3707–3717.

    Article  CAS  PubMed  Google Scholar 

  • Saito, Y., Yamagishi, N., & Hatayama, T. (2009). Nuclear localization mechanism of Hsp105β and its possible function in mammalian cells. Journal of Biochemistry, 145, 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Saito, Y., Yukawa, A., Matozaki, M., Mikami, H., Yamagami, T., Yamagishi, N., Kuga, T., & Nakayama, Y. (2014). Nmi interacts with Hsp105β and enhances the Hsp105β-mediated Hsp70 expression. Experimental Cell Research, 327, 163–170.

    Article  CAS  PubMed  Google Scholar 

  • Saito, Y., Nakagawa, T., Kakihana, A., Nakamura, Y., Nabika, T., Kasai, M., Takamori, M., Yamagishi, N., Kuga, T., Hatayama, T., & Nakayama, Y. (2016). Yeast two-hybrid and one-hybrid screenings identify regulators of hsp70 gene expression. Journal of Cellular Biochemistry, 117, 2109–2117.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G. L. (2009). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29, 625–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y., Mosser, D. D., & Morimoto, R. I. (1998). Molecular chaperones as HSF1-specific transcriptional repressors. Genes & Development, 12, 654–666.

    Article  CAS  Google Scholar 

  • Silver, J. T., & Noble, E. G. (2012). Regulation of survival gene hsp70. Cell Stress & Chaperones, 17, 1–9.

    Article  CAS  Google Scholar 

  • Stephanou, A., Isenberg, D. A., Nakajima, K., & Latchman, D. S. (1999). Signal transducer and activator of transcription-1 and heat shock factor-1 interact and activate the transcription of the Hsp-70 and Hsp-90β gene promoters. The Journal of Biological Chemistry, 274, 1723–1728.

    Article  CAS  PubMed  Google Scholar 

  • Taira, T., Sawai, M., Ikeda, M., Tamai, K., Iguchi-Ariga, S. M. M., & Ariga, H. (1999). Cell cycle-dependent switch of up- and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y. The Journal of Biological Chemistry, 274, 24270–24279.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G. L., & Semenza, G. L. (1995). Purification and characterization of Hypoxia-inducible Factor 1. The Journal of Biological Chemistry, 270, 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G. L., Jiang, B. H., Rue, E. A., & Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Genetics, 92, 5510–5514.

    CAS  Google Scholar 

  • Westerheide, S. D., Anckar, J., Stevens, S. M. J., Sistonen, L., & Morimoto, R. I. (2009). Stress-inducible regulation of Heat shock factor 1 by the deacetylase SIRT1. Science, 323, 1063–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi, N., Nishihori, H., Ishihara, K., Ohtsuka, K., & Hatayama, T. (2000). Modulation of the chaperone activities of Hsc70/Hsp40 by Hsp105α and Hsp105β. Biochemical and Biophysical Research Communications, 272, 850–855.

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi, N., Ishihara, K., & Hatayama, T. (2004). Hsp105α suppresses Hsc70 chaperone activity by inhibiting Hsc70 ATPase activity. The Journal of Biological Chemistry, 279, 41727–41733.

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi, N., Saito, Y., & Hatayama, T. (2008). Mammalian 105 kDa heat shock family proteins suppress hydrogen peroxide-induced apoptosis through a p38 MAPK-dependent mitochondrial pathway in HeLa cells. The FEBS Journal, 275, 4558–4570.

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi, N., Fujii, H., Saito, Y., & Hatayama, T. (2009). Hsp105β upregulates hsp70 gene expression through signal transducer and activator of transcription-3. The FEBS Journal, 276, 5870–5880.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, K., Furukawa, M. T., Fukumura, K., Kawamura, A., Yamada, T., Suzuki, H., Hirose, T., Sakamoto, H., & Inoue, K. (2016). Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes to Cells, 21, 1006–1014.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda, K., Nakai, A., Hatayama, T., & Nagata, K. (1995). Cloning and expression of murine high molecular mass heat shock proteins, HSP105. The Journal of Biological Chemistry, 270, 29718–29723.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda, K., Ishihara, K., Nakashima, K., & Hatayama, T. (1999). Genomic cloning and promoter analysis of the mouse 105-kDa heat shock protein (HSP105) gene. Biochemical and Biophysical Research Communications, 256, 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Yu, N., Kakunda, M., Pham, V., Lill, J. R., Du, P., Wongchenko, M., Matthew, Y., Yan, Y., Firestein, R., & Huang, X. (2015). HSP105 recruits protein phosphatase 2A to dephosphorylate β-catenin. Molecular and Cellular Biology, 35, 1390–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, Y., Hilliard, G., Ferguson, T., & Millhorn, D. E. (2013). Cobalt inhibits the interaction between hypoxia-inducible factor-α and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-α. The Journal of Biological Chemistry, 278, 15911–15916.

    Article  CAS  Google Scholar 

  • Zappasodi, R., Bongarzone, I., Ghedini, G. C., Castagnoli, L., Cabras, A. D., Messina, A., Tortoreto, M., Tripodo, C., Magni, M., Carlo-Stella, C., Gianni, A. M., Pupa, S. M., & Di Nicola, M. (2011). Serological identification of HSP105 as a novel non-Hodgkin lymphoma therapeutic target. Blood, 118, 4421–4430.

    Article  CAS  PubMed  Google Scholar 

  • Zappasodi, R., Ruggiero, G., Guarnotta, C., Tortoreto, M., Tringali, C., Cavanè, A., Cabras, A., Cabras, A. D., Castagnoli, L., Venerando, B., Zaffaroni, N., Gianni, A. M., De Braud, F., Tripodo, C., Pupa, S. M., & Di Nicola, M. (2015). HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the growth of human aggressive B-cell non-hodgkin lymphoma. Blood, 125, 1768–1771.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, M., John, S., Berg, M., & Leonard, W. J. (1999). Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFNgamma-mediated signaling. Cell, 96, 121–130.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by JSPS KAKENHI (Grant numbers: 26870701, YS and 16K08253, YN), the Kyoto Pharmaceutical University Fund for the Promotion of Scientific Research (YS), and the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (Grant number: S1311035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhei Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saito, Y., Nakayama, Y. (2018). Mammalian Heat Shock Protein Hsp105: The Hsp70 Inducer and a Potent Target for Cancer Therapy. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_18

Download citation

Publish with us

Policies and ethics