Skip to main content

Intranasal Administration of Hsp70: Molecular and Therapeutic Consequences

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

Abstract

Hsp70 and other molecular chaperones function as a complex neuroprotective system, which fails in the brains of aged people and Alzheimer’s disease (AD)-type neuropathologies. It was demonstrated that intranasally injected exogenous Hsp70 (eHsp70) effectively bypassed the blood-brain barrier and penetrates brain regions of the model animals. It was shown that chronic administration of eHsp70 decreases beta-amyloid level and the number of Aβ-plaques in two mouse models of AD. In both cases eHsp70 restored learning and memory parameters as well as functional state of neurons. Characteristically, eHsp70 treatment increased synaptophysin level and protects neurons in brain areas most affected in AD patients such as hippocampus and neocortex. It was also demonstrated that eHsp70 can promote longevity and life quality in male mice. The eHsp70 treatment decreased accumulation of aging marker lipofuscin and modulates the activity of UPS by increasing expression of several proteasome subunits including immunoproteasome subunit β5i. Deep sequencing studies exploring brain regions of AD-model – 5XFAD mice treated with eHsp70 revealed candidate genes and signal pathways probably underlying beneficial effects of eHsp70 treatment. Taken together, our findings establish intranasal administration of exogenous human Hsp70 as a practical therapeutic approach for the treatment of various neurodegenerative diseases and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

BAG:

Bcl-2-associated athanogene-1

BBB:

Blood-brain barrier

BSA:

Bovine serum albumin

CHIP:

Carboxy-terminus of Hsc70-interacting protein

CNS:

Central nervous system

Hsp:

Heat shock protein

LPS:

Lipopolysaccharide

LTA:

Lipoteichoic acid

NMDA:

N-methyl-D-aspartate receptor

PTZ:

Pentylenetetrazole

ROS:

Reactive oxygen species

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

UPS:

Ubiquitin-proteasome system

References

  • Abkin, S. V., Pankratova, K. M., Komarova, E. Y., Guzhova, I. V., & Margulis, B. A. (2013). Hsp70 chaperone-based gel composition as a novel immunotherapeutic anti-tumor tool. Cell Stress & Chaperones, 18(3), 391–396.

    Article  CAS  Google Scholar 

  • Abkin, S. V., Ostroumova, O. S., Komarova, E. Y., et al. (2016). Phloretin increases the anti-tumor efficacy of intratumorally delivered heat-shock protein 70 kDa (HSP70) in a murine model of melanoma. Cancer Immunology, Immunotherapy, 65(1), 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Agulla, J., Brea, D., Argibay, B., et al. (2014). Quick adjustment of imaging tracer payload, for in vivo applications of theranostic nanostructures in the brain. Nanomedicine, 10(4), 851–858.

    Article  CAS  PubMed  Google Scholar 

  • Asea, A., & Brown, J. (Eds.). (2008). Heat shock proteins and the brain: Implications for neurodegenerative diseases and neuroprotection. Dordrecht: Springer.

    Google Scholar 

  • Asea, A., Rehli, M., Kabingu, E., et al. (2002). Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. The Journal of Biological Chemistry, 277(17), 15028–15034.

    Article  CAS  PubMed  Google Scholar 

  • Bence, N. F., Sampat, R. M., & Kopito, R. R. (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science, 292(5521), 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  • Bertoni-Freddari, C., Fattoretti, P., Casoli, T., Caselli, U., & Meier-Ruge, W. (1996). Deterioration threshold of synaptic morphology in aging and senile dementia of Alzheimer’s type. Analytical and Quantitative Cytology and Histology, 18(3), 209–213.

    PubMed  CAS  Google Scholar 

  • Bobkova, N. V., Nesterova, I. V., Medvinskaya, N. I., et al. (2005). Possible role of the olfactory system in Alzheimer’s disease genesis. In A. Fisher, I. Hanin, M. Memo, & F. Stocchi (Eds.), New trends in Alzheimer and Parkinson disorders: ADPD 2005 (pp. 91–95). Sorento: Medimond.

    Google Scholar 

  • Bobkova, N., Vorobyov, V., Medvinskaya, N., Aleksandrova, I., & Nesterova, I. (2008). Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels. Brain Research, 1232, 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Bobkova, N., Guzhova, I., Margulis, B., et al. (2013). Dynamics of endogenous Hsp70 synthesis in the brain of olfactory bulbectomized mice. Cell Stress & Chaperones, 18(1), 109–118.

    Article  CAS  Google Scholar 

  • Bobkova, N. V., Garbuz, D. G., Nesterova, I., et al. (2014). Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer’s disease. Journal of Alzheimer’s Disease, 38(2), 425–435.

    Article  PubMed  Google Scholar 

  • Bobkova, N. V., Evgen’ev, M., Garbuz, D. G., et al. (2015). Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. Proceedings of the National Academy of Sciences of the United States of America, 112(52), 16006–16011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calderwood, S. K., & Murshid, A. (2017). Molecular chaperone accumulation in cancer and decrease in Alzheimer’s disease: The potential roles of HSF1. Frontiers in Neuroscience, 11, 192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderwood, S. K., Gong, J., & Murshid, A. (2016). Extracellular HSPs: The complicated roles of extracellular HSPs in immunity. Frontiers in Immunology, 7, 159.

    PubMed  PubMed Central  Google Scholar 

  • Choi, J., Malakowsky, C. A., Talent, J. M., Conrad, C. C., & Gracy, R. W. (2002). Identification of oxidized plasma proteins in Alzheimer’s disease. Biochemical and Biophysical Research Communications, 293(5), 1566–1570.

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni, N., & Gonos, E. S. (2010). Proteasome function determines cellular homeostasis and the rate of aging. Advances in Experimental Medicine and Biology, 694, 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni, N., Petropoulos, I., Franceschi, C., Friguet, B., & Gonos, E. S. (2000). Fibroblast cultures from healthy centenarians have an active proteasome. Experimental Gerontology, 35(6–7), 721–728.

    Article  CAS  PubMed  Google Scholar 

  • Chondrogianni, N., Voutetakis, K., Kapetanou, M., et al. (2015). Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Research Reviews, 23(Pt A), 37–55.

    Article  CAS  PubMed  Google Scholar 

  • Cudkowicz, M. E., Shefner, J. M., Simpson, E., et al. (2008). Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle & Nerve, 38(1), 837–844.

    Article  CAS  Google Scholar 

  • Duncan, E. J., Cheetham, M. E., Chapple, J. P., & van der Spuy, J. (2015). The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Sub-Cellular Biochemistry, 78, 243–273.

    Article  CAS  PubMed  Google Scholar 

  • Ekimova, I. V., Nitsinskaya, L. E., Romanova, I. V., Pastukhov, Y. F., Margulis, B. A., & Guzhova, I. V. (2010). Exogenous protein Hsp70/Hsc70 can penetrate into brain structures and attenuate the severity of chemically-induced seizures. Journal of Neurochemistry, 115(4), 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  • Evgen’Ev, M. B., Garbuz, D. G., & Zatsepina, O. G. (2014). Heat shock proteins and whole body adaptation to extreme environments (Vol. XVII, p. 218). Dordrecht: Springer.

    Google Scholar 

  • Falcone, J. A., Salameh, T. S., Yi, X., et al. (2014). Intranasal administration as a route for drug delivery to the brain: Evidence for a unique pathway for albumin. The Journal of Pharmacology and Experimental Therapeutics, 351(1), 54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrington, D. A., & Gregerson, D. S. (2012). Immunoproteasomes: Structure, function, and antigen presentation. In T. Grune (Ed.), The proteasomal system in aging and disease (Progress in molecular biology and translational science, Vol. 109, pp. 75–112). Amsterdam: Academic.

    Google Scholar 

  • Ferrington, D. A., Husom, A. D., & Thompson, L. V. (2005). Altered proteasome structure, function, and oxidation in aged muscle. The FASEB Journal, 19(6), 644–646.

    Article  CAS  PubMed  Google Scholar 

  • Fleshner, M., & Johnson, J. D. (2005). Endogenous extra-cellular heat shock protein 72: Releasing signal(s) and function. International Journal of Hyperthermia, 21(5), 457–471.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, T. B., Krueger-Naug, A. M., Clarke, D. B., Arrigo, A. P., & Currie, R. W. (2005). The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. International Journal of Hyperthermia, 21(5), 379–392.

    Article  CAS  PubMed  Google Scholar 

  • Gehrig, S. M., van der Poel, C., Sayer, T. A., et al. (2012). Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 484(7394), 394–398.

    Article  CAS  PubMed  Google Scholar 

  • Gendelman, H. E., Anantharam, V., Bronich, T., et al. (2015). Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine, 11(3), 751–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gifondorwa, D. J., Robinson, M. B., Hayes, C. D., et al. (2008). Exogenous delivery of heat shock protein 70 increases lifespan in a mouse model of amyotrophic lateral sclerosis. The Journal of Neuroscience, 27(48), 13173–13180.

    Article  CAS  Google Scholar 

  • Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiological Reviews, 82(2), 373–428.

    Article  CAS  PubMed  Google Scholar 

  • Gong, J., Zhu, B., Murshid, A., et al. (2009). T cell activation by heat shock protein 70 vaccine requires TLR signaling and scavenger receptor expressed by endothelial cells-1. Journal of Immunology, 183(5), 3092–3098.

    Article  CAS  Google Scholar 

  • Grune, T., Catalgol, B., Licht, A., et al. (2011). HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radical Biology & Medicine, 51(7), 1355–1364.

    Article  CAS  Google Scholar 

  • Gurskiy, Y. G., Garbuz, D. G., Soshnikova, N. V., et al. (2016). The development of modified human Hsp70 (HSPA1A) and its production in the milk of transgenic mice. Cell Stress & Chaperones, 21(6), 1055–1064.

    Article  CAS  Google Scholar 

  • Guzhova, I., Kislyakova, K., Moskaliova, O., et al. (2001). In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Research, 914(1–2), 66–73.

    Article  CAS  PubMed  Google Scholar 

  • Guzhova, I., & Margulis, B. (2006). Hsp70 chaperone as a survival factor in cell pathology. International Review of Cytology, 254, 101–149.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, L. R., & Frey, W. H., 2nd. (2008). Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neuroscience, 9(Suppl. 3), S5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hipkiss, A. R. (2006). Accumulation of altered proteins and ageing: Causes and effects. Experimental Gerontology, 41(5), 464–473.

    Article  CAS  PubMed  Google Scholar 

  • Hoshino, T., Murao, N., Namba, T., et al. (2011). Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. The Journal of Neuroscience, 31(14), 5225–5234.

    Article  CAS  PubMed  Google Scholar 

  • Hoshino, T., Suzuki, K., Matsushima, T., Yamakawa, N., Suzuki, T., & Mizushima, T. (2013). Suppression of Alzheimer’s disease-related phenotypes by geranylgeranylacetone in mice. PLoS One, 8(10), e76306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinwal, U. K., Koren, J., O’Leary, J. C., Jones, J. R., Abisambra, J. F., & Dickey, C. A. (2010). Hsp70 ATPase modulators as therapeutics for Alzheimer’s and other neurodegenerative diseases. Molecular and Cellular Pharmacology, 2(2), 43–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson, J. D., & Fleshner, M. (2006). Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. Journal of Leukocyte Biology, 79(3), 425–434.

    Article  CAS  PubMed  Google Scholar 

  • Kästle, M., & Grune, T. (2012). Interactions of the proteasomal system with chaperones: Protein triage and protein quality control. In T. Grune (Ed.), The proteasomal system in aging and disease (Progress in molecular biology and translational science, Vol. 109, pp. 113–160). Amsterdam: Academic.

    Google Scholar 

  • Keller, J. N., Huang, F. F., & Markesbery, W. R. (2000). Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience, 98(1), 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard, T., Gray, J., Priestman, D. A., et al. (2016). Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Science Translational Medicine, 8(355), 355ra118.

    Article  CAS  PubMed  Google Scholar 

  • Kustanova, G. A., Murashev, A. N., Karpov, V. L., et al. (2006). Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress & Chaperones, 11(3), 276–286.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, Y. S., Shen, X. F., et al. (2008). Alterations of activity and intracellular distribution of the 20S proteasome in ageing retinal pigment epithelial cells. Experimental Gerontology, 43(12), 1114–1122.

    Article  CAS  PubMed  Google Scholar 

  • Margulis, B., Kinev, A., & Guzhova, I. (2006). Chaperones in neurodegenerative pathologies: Therapeutic prospects. In J. Radons & G. Multhoff (Eds.), Heat shock proteins in biology and medicine (pp. 305–329). Trivandrum: Research Singpost.

    Google Scholar 

  • Morimoto, R. I. (2011). The heat shock response: Systems biology of proteotoxic stress in aging and disease. Cold Spring Harbor Symposia on Quantitative Biology, 76, 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto, R. I., & Cuervo, A. M. (2014). Proteostasis and the aging proteome in health and disease. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(Suppl 1), S33–S38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morozov, A. V., Astakhova, T. M., Garbuz, D. G., et al. (2017). Interplay between recombinant Hsp70 and proteasomes: Proteasome activity modulation and ubiquitin-independent cleavage of Hsp70. Cell Stress & Chaperones. https://doi.org/10.1007/s12192-017-0792-y.

  • Morrissette, D. A., Parachikova, A., Green, K. N., & LaFerla, F. M. (2009). Relevance of transgenic mouse models to human Alzheimer disease. The Journal of Biological Chemistry, 284(10), 6033–6037.

    Article  CAS  PubMed  Google Scholar 

  • Multhoff, G., & Hightower, L. E. (2011). Distinguishing integral and receptor-bound heat shock protein 70 (Hsp70) on the cell surface by Hsp70-specific antibodies. Cell Stress & Chaperones, 16(3), 251–255.

    Article  CAS  Google Scholar 

  • Murshid, A., Eguchi, T., & Calderwood, S. K. (2013). Stress proteins in aging and life span. International Journal of Hyperthermia, 29(5), 442–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley, H., Cole, S. L., Logan, S., et al. (2006). Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. The Journal of Neuroscience, 26(40), 10129–10140.

    Article  CAS  PubMed  Google Scholar 

  • Pickering, A. M., Koop, A. L., Teoh, C. Y., Ermak, G., Grune, T., & Davies, K. J. (2010). The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. The Biochemical Journal, 432(3), 585–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickering, A. M., Lehr, M., & Miller, R. A. (2015). Lifespan of mice and primates correlates with immunoproteasome expression. The Journal of Clinical Investigation, 125(5), 2059–2068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratt, W. B., Gestwicki, J. E., Osawa, Y., & Lieberman, A. P. (2015). Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annual Review of Pharmacology and Toxicology, 55, 353–371.

    Article  CAS  PubMed  Google Scholar 

  • Radons, J. (2016). The human HSP70 family of chaperones: Where do we stand? Cell Stress & Chaperones, 21(3), 379–404.

    Article  CAS  Google Scholar 

  • Rattan, S. I. (1996). Synthesis, modifications, and turnover of proteins during aging. Experimental Gerontology, 31(1–2), 33–47.

    Article  CAS  PubMed  Google Scholar 

  • Reeg, S., Jung, T., Castro, J. P., Davies, K. J. A., Henze, A., & Grune, T. (2016). The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radical Biology & Medicine, 99, 153–166.

    Article  CAS  Google Scholar 

  • Rodriguez, K. A., Edrey, Y. H., Osmulski, P., Gaczynska, M., & Buffenstein, R. (2012). Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLoS One, 7(5), e35890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert, U., Bialy, L. P., Ebstein, F., et al. (2010). Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell, 142, 613–624.

    Article  CAS  PubMed  Google Scholar 

  • Shevtsov, M. A., Nikolaev, B. P., Yakovleva, L. Y., Parr, M. A., Marchenko, Y. Y., Eliseev, I., Yudenko, A., Dobrodumov, A. V., Zlobina, O., Zhakhov, A., Ischenko, A. M., Pitkin, E., & Multhoff, G. (2015). 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. Journal of Controlled Release, 220(Pt A), 329–340.

    Article  CAS  PubMed  Google Scholar 

  • Shevtsov, M. A., Nikolaev, B. P., Ryzhov, V. A., et al. (2016). Detection of experimental myocardium infarction in rats by MRI using heat shock protein 70 conjugated superparamagnetic iron oxide nanoparticle. Nanomedicine, 12(3), 611–621.

    Article  CAS  PubMed  Google Scholar 

  • Sitte, N., Huber, M., Grune, T., et al. (2000). Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. The FASEB Journal, 14(11), 1490–1498.

    Article  CAS  PubMed  Google Scholar 

  • Soti, C., & Csermely, P. (2002). Chaperones come of age. Cell Stress & Chaperones, 7(2), 186–190.

    Article  CAS  Google Scholar 

  • Tönnies, E., & Trushina, E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. Journal of Alzheimer’s Disease, 57(4), 1105–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinokurov, M., Ostrov, V., Yurinskaya, M., et al. (2012). Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels. Cell Stress & Chaperones, 17(1), 89–101.

    Article  CAS  Google Scholar 

  • Viteri, G., Carrard, G., Birlouez-Aragón, I., Silva, E., & Friguet, B. (2004). Age-dependent protein modifications and declining proteasome activity in the human lens. Archives of Biochemistry and Biophysics, 427(2), 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Wright, K. L., White, L. C., Kelly, A., Beck, S., Trowsdale, J., & Ting, J. P. (1995). Coordinate regulation of the human TAP1 and LMP2 genes from a shared bidirectional promoter. The Journal of Experimental Medicine, 181(4), 1459–1471.

    Article  CAS  PubMed  Google Scholar 

  • Ying, W. (2008). The nose may help the brain: Intranasal drug delivery for treating neurological diseases. Future Neurology, 3(1), 1–4.

    Article  CAS  Google Scholar 

  • Yurinskaya, M., Zatsepina, O. G., Vinokurov, M. G., et al. (2015). The fate of exogenous human HSP70 introduced into animal cells by different means. Current Drug Delivery, 12(5), 524–532.

    Article  CAS  PubMed  Google Scholar 

  • Yurinskaya, M. M., Funikov, S. Y., Evgen’ev, M. B., & Vinokurov, M. G. (2016). Exogenous heat shock protein HSP70 reduces response of human neuroblastoma cells to lipopolysaccharide. Doklady Biochemistry and Biophysics, 469(1), 239–243.

    Article  CAS  PubMed  Google Scholar 

  • Yurinskaya, M. M., Kochetkova, O. Y., Shabarchina, et al. (2017). Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes. Cell Stress & Chaperones, 22(2), 163–171.

    Article  CAS  Google Scholar 

  • Zhang, C., Rodriguez, C., Spaulding, J., AW, T. Y., & Feng, J. (2012). Age-dependent and tissue-related glutathione redox status in a mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease, 28(3), 655–666.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Nagaraja, G. M., Kaur, P., Asea, E. E., & Asea, A. (2010). Chaperokine function of recombinant Hsp72 produced in insect cells using a baculovirus expression system is retained. The Journal of Biological Chemistry, 285(1), 349–356.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Russian Science Foundation Grant №14-50-00060 and Program of fundamental research for state academies for 2013-2020 years (N-01201363817).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evgen’ev, M.B., Garbuz, D.G., Morozov, A.V., Bobkova, N.V. (2018). Intranasal Administration of Hsp70: Molecular and Therapeutic Consequences. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_16

Download citation

Publish with us

Policies and ethics