Skip to main content

Control of Blood Vessel Formation by Notch Signaling

  • Chapter
  • First Online:
Book cover Molecular Mechanisms of Notch Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1066))

Abstract

Blood vessels span throughout the body to nourish tissue cells and to provide gateways for immune surveillance. Endothelial cells that line capillaries have the remarkable capacity to be quiescent for years but to switch rapidly into the activated state once new blood vessels need to be formed. In addition, endothelial cells generate niches for progenitor and tumor cells and provide organ-specific paracrine (angiocrine) factors that control organ development and regeneration, maintenance of homeostasis and tumor progression. Recent data indicate a pivotal role for blood vessels in responding to metabolic changes and that endothelial cell metabolism is a novel regulator of angiogenesis. The Notch pathway is the central signaling mode that cooperates with VEGF, WNT, BMP, TGF-β, angiopoietin signaling and cell metabolism to orchestrate angiogenesis, tip/stalk cell selection and arteriovenous specification. Here, we summarize the current knowledge and implications regarding the complex roles of Notch signaling during physiological and tumor angiogenesis, the dynamic nature of tip/stalk cell selection in the nascent vessel sprout and arteriovenous differentiation. Furthermore, we shed light on recent work on endothelial cell metabolism, perfusion-independent angiocrine functions of endothelial cells in organ-specific vascular beds and how manipulation of Notch signaling may be used to target the tumor vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam MG et al (2013) Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circ Res 113(11):1206–1218

    Article  PubMed  CAS  Google Scholar 

  • Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2(5):a001875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173

    Article  PubMed  CAS  Google Scholar 

  • Andersson ER, Lendahl U (2014) Therapeutic modulation of Notch signalling--are we there yet? Nat Rev Drug Discov 13(5):357–378

    Article  PubMed  CAS  Google Scholar 

  • Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86(2):226–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aspalter IM et al (2015) Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 6:7264

    Article  PubMed  Google Scholar 

  • Augustin HG et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin - Tie system. Nat Rev Mol Cell Biol 10(3):165–177

    Article  PubMed  CAS  Google Scholar 

  • Benedito R et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135

    Article  PubMed  CAS  Google Scholar 

  • Bentley K et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16(4):309–321

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Betz C et al (2016) Cell behaviors and dynamics during angiogenesis. Development 143(13):2249–2260

    Article  PubMed  CAS  Google Scholar 

  • Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3(1):a006569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boareto M et al (2015) Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. PNAS 112(29):E3836–E3844

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Briot A et al (2015) Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. J Exp Med 212(12):2147–2163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butler JM, Kobayashi H, Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10(2):138–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantelmo AR et al (2016) Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30(6):968–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9(2):107–115

    Article  PubMed  CAS  Google Scholar 

  • Cao Z et al (2014) Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25(3):350–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao Z et al (2016) Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med 22(2):154–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson TR et al (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. PNAS 102(28):9884–9889

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmeliet P et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    Article  PubMed  CAS  Google Scholar 

  • Chabriat H et al (2009) CADASIL. Lancet Neurol 8(7):643–653

    Article  PubMed  Google Scholar 

  • Chiorean EG et al (2015) A phase I first-in-human study of Enoticumab (REGN421), a fully human delta-like ligand 4 (Dll4) monoclonal antibody in patients with advanced solid tumors. Clin Cancer Res 21(12):2695–2703

    Article  PubMed  CAS  Google Scholar 

  • Claxton S, Fruttiger M (2004) Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr Patterns 5(1):123–127

    Article  PubMed  CAS  Google Scholar 

  • Corada M et al (2010) The Wnt/β-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/notch signaling. Dev Cell 18(6):938–949

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Corada M et al (2013) Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 4:2609

    Article  PubMed  CAS  Google Scholar 

  • Corada M, Morini MF, Dejana E (2014) Signaling pathways in the specification of arteries and veins. Arterioscler Thromb Vasc Biol 34(11):2372–2377

    Article  PubMed  CAS  Google Scholar 

  • Corvera S, Gealekman O (2014) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta Mol basis Dis 1842(3):463–472

    Article  CAS  Google Scholar 

  • Cruys B et al (2016) Glycolytic regulation of cell rearrangement in angiogenesis. Nat Commun 7:12240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Bock K et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154(3):651–663

    Article  PubMed  CAS  Google Scholar 

  • Del Toro R et al (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116(19):4025–4033

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y et al (2013) Endothelial RAF1 / ERK activation regulates arterial morphogenesis Endothelial RAF1 / ERK activation regulates arterial morphogenesis. Blood 121(19):3988–3997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diez H et al (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp Cell Res 313(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Dill MT et al (2012) Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis, and angiosarcomas in livers of mice. Gastroenterology 142(4):967–977.e2

    Article  PubMed  CAS  Google Scholar 

  • Dimova I et al (2013) Inhibition of Notch signaling induces extensive intussusceptive neo-angiogenesis by recruitment of mononuclear cells. Angiogenesis 16(4):921–937

    Article  PubMed  CAS  Google Scholar 

  • Domigan CK et al (2015) Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. J Cell Sci 128(12):2236–2248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dou G-R et al (2008) RBP-J, the transcription factor downstream of Notch receptors, is essential for the maintenance of vascular homeostasis in adult mice. FASEB J 22(5):1606–1617

    Article  PubMed  CAS  Google Scholar 

  • Duarte A et al (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18(20):2474–2478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dumont DJ et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949

    Article  PubMed  CAS  Google Scholar 

  • Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22(5):617–625

    Article  PubMed  CAS  Google Scholar 

  • Falchook G et al (2015) Phase 1 study of MEDI0639 in patients with advanced solid tumors. J Clin Oncol 33(suppl):abstr 3024

    Google Scholar 

  • Fantin A et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fantin A et al (2013) NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121(12):2352–2362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fantin A et al (2015) NRP1 regulates CDC42 activation to promote Filopodia formation in endothelial tip cells. Cell Rep 11(10):1577–1590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrara N et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442

    Article  PubMed  CAS  Google Scholar 

  • Fischer A et al (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18(8):901–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2007) Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg 42(1):1–11

    Article  PubMed  Google Scholar 

  • Fong G-HH et al (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70

    Article  PubMed  CAS  Google Scholar 

  • Fouillade C et al (2012) Notch signalling in smooth muscle cells during development and disease. Cardiovasc Res 95(2):138–146

    Article  PubMed  CAS  Google Scholar 

  • Funahashi Y et al (2008) A notch1 ectodomain construct inhibits endothelial notch signaling, tumor growth, and angiogenesis. Cancer Res 68(12):4727–4735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gale NW et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. PNAS 101(45):15949–15954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glomski K et al (2011) Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood 118(4):1163–1174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goel S et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121

    Article  PubMed  CAS  Google Scholar 

  • Gordon WR et al (2015) Mechanical Allostery: evidence for a force requirement in the proteolytic activation of notch. Dev Cell 33(6):729–736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guarani V et al (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473(7346):234–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagberg CE et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Kume T (2008) Foxc transcription factors directly regulate DLL4 and hey2 expression by interacting with the VEGF-notch signaling pathways in endothelial cells. PLoS One 3(6):1–9

    Article  CAS  Google Scholar 

  • Hellsten Y, Hoier B (2014) Capillary growth in human skeletal muscle: physiological factors and the balance between pro-angiogenic and angiostatic factors. Biochem Soc Trans 42(6):1616–1622

    Article  PubMed  CAS  Google Scholar 

  • Hellström M et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 1(3):133–136

    Google Scholar 

  • Herbert SP, Stainier DYR (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herbert SP et al (2009) Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326(5950):294–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herreman A et al (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. PNAS 96(21):11872–11877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hofmann JJ, Luisa Iruela-Arispe M (2007) Notch expression patterns in the retina: an eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns 7(4):461–470

    Article  PubMed  CAS  Google Scholar 

  • Hong CC, Kume T, Peterson RT (2008) Role of crosstalk between phosphatidylinositol 3-kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase pathways in artery-vein specification. Circ Res 103(6):573–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huppert SS et al (2000) Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 405(June):966–970

    Article  PubMed  CAS  Google Scholar 

  • Iso T et al (2006) Dll4-selective Notch signaling induces ephrinB2 gene expression in endothelial cells. Biochem Biophys Res Commun 341(3):708–714

    Article  PubMed  CAS  Google Scholar 

  • Isogai S et al (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290

    Article  PubMed  CAS  Google Scholar 

  • Jais A et al (2016) Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 166(5):1338–1340

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson L et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953

    Article  PubMed  CAS  Google Scholar 

  • Joutel A et al (2010) Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Investig 120(2):433–445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jubb AM et al (2012) Expression of vascular Notch ligands Delta-like 4 and Jagged-1 in glioblastoma. Histopathology 60(5):740–747

    Article  PubMed  Google Scholar 

  • Kageyama R, Masamizu Y, Niwa Y (2007) Oscillator mechanism of Notch pathway in the segmentation clock. Dev Dyn 236(6):1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Kamba T et al (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290(2):H560–H576

    Article  PubMed  CAS  Google Scholar 

  • Kangsamaksin T et al (2015) NOTCH decoys that selectively block DLL/NOTCH or JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth. Cancer Discov 5(2):182–197

    Article  PubMed  CAS  Google Scholar 

  • Kim YH et al (2008) Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 135(22):3755–3764

    Article  PubMed  CAS  Google Scholar 

  • Klose R et al (2015) Soluble Notch ligand and receptor peptides act antagonistically during angiogenesis. Cardiovasc Res 107(1):153–163

    Article  PubMed  CAS  Google Scholar 

  • Kohli V et al (2013) Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell 25(2):196–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kokubo H et al (2005) Mouse hesr1 and hesr2 genes are redundantly required to mediate Notch signaling in the developing cardiovascular system. Dev Biol 278(2):301–309

    Article  PubMed  CAS  Google Scholar 

  • Kopan R, Ilagan MXG (2009) The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krebs LT et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14(11):1343–1352

    PubMed  PubMed Central  CAS  Google Scholar 

  • Krebs LT et al (2001) The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the notch signaling pathway. Dev Biol 238(1):110–119

    Article  PubMed  CAS  Google Scholar 

  • Krebs LT et al (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18(20):2469–2473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krebs LT et al (2010) Notch1 activation in mice causes arteriovenous malformations phenocopied by EphrinB2 and EphB4 mutants. Genesis 48(3):146–150

    PubMed  PubMed Central  CAS  Google Scholar 

  • Krueger J et al (2011) Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138(10):2111–2120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusumbe AP et al (2016) Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532(7599):380–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lammert E et al (2003) Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 13(12):1070–1074

    Article  PubMed  CAS  Google Scholar 

  • Lanahan A et al (2013) The Neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent Arteriogenesis. Dev Cell 25(2):156–168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanner F et al (2013) Hypoxia-induced arterial differentiation requires adrenomedullin and notch signaling. Stem Cells Dev 22(9):1360–1369

    Google Scholar 

  • Larrivée B et al (2012) ALK1 signaling inhibits angiogenesis by cooperating with the notch pathway. Dev Cell 22(3):489–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawson ND et al (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128(19):3675–3683

    PubMed  CAS  Google Scholar 

  • Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3(1):127–136

    Article  PubMed  CAS  Google Scholar 

  • Lawton MT et al (2015) Brain arteriovenous malformations. Nat Rev Dis Prim 1(Table 1):15008

    Article  PubMed  Google Scholar 

  • Le Noble F et al (2005) Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res 65(3):619–628

    Article  PubMed  CAS  Google Scholar 

  • Lee SH et al (2014) Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis. Circ Res 115(2):215–226

    Article  PubMed  CAS  Google Scholar 

  • Lehoux S, Jones EA (2016) Shear stress, arterial identity and atherosclerosis. Thromb Haemost 115(3):467–473

    Article  PubMed  Google Scholar 

  • Leslie JD et al (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134(5):839–844

    Article  PubMed  CAS  Google Scholar 

  • Li T et al (2003) Nicastrin is required for assembly of Presenilin/γ-Secretase complexes to mediate notch signaling and for processing and trafficking of β-amyloid precursor protein in mammals. J Neurosci 23(8):3272–3277

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li JL et al (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67(23):11244–11253

    Article  PubMed  CAS  Google Scholar 

  • Liebler SS et al (2012) No evidence for a functional role of bi-directional notch signaling during angiogenesis. PLoS One 7(12):1–10

    Article  CAS  Google Scholar 

  • Limbourg FP et al (2005) Essential role of endothelial Notch1 in angiogenesis. Circulation 111(14):1826–1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Limbourg A et al (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100:363–371

    Article  PubMed  CAS  Google Scholar 

  • Lindskog H et al (2014) Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development 141(5):1120–1128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu ZJ et al (2006) Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB J 20(7):1009–1011

    Article  PubMed  CAS  Google Scholar 

  • Liu Z et al (2011) Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Investig 121(2):800–808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z-J et al (2012) Notch activation induces endothelial cell senescence and pro-inflammatory response: implication of Notch signaling in atherosclerosis. Atherosclerosis 225(2):296–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lobov IB et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. PNAS 104(9):3219–3224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu C et al (2007) Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma. Cancer Res 67(4):1757–1768

    Article  PubMed  CAS  Google Scholar 

  • Lu J et al (2013) Endothelial cells promote the colorectal Cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23(2):171–185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mackenzie F, Ruhrberg C (2012) Diverse roles for VEGF-A in the nervous system. Development 139(8):1371–1380

    Article  PubMed  CAS  Google Scholar 

  • Mailhos C et al (2001) Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differ Res Biol Divers 69(2–3):135–144

    Article  CAS  Google Scholar 

  • Makanya AN, Hlushchuk R, Djonov VG (2009) Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12(2):113–123

    Article  PubMed  CAS  Google Scholar 

  • Mazzone M et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miniati D et al (2010) Constitutively active endothelial Notch4 causes lung arteriovenous shunts in mice. Am J Physiol Lung Cell Mol Physiol 298(2):L169–L177

    Article  PubMed  CAS  Google Scholar 

  • Mouillesseaux KP et al (2016) Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat Commun 7:13247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moya IM et al (2012) Stalk cell phenotype depends on integration of notch and Smad1/5 signaling cascades. Dev Cell 22(3):501–514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy DA, Courtneidge SA (2011) The “ins” and “outs” of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12(7):413–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy P a et al (2008) Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. PNAS 105(31):10901–10906

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy P a et al (2009) Endothelial notch signaling is upregulated in human brain arteriovenous malformations and a mouse model of the disease. Lab Investig 89(9):971–982

    Article  PubMed  CAS  Google Scholar 

  • Murphy PA et al (2012) Notch4 normalization reduces blood vessel size in arteriovenous malformations. Sci Transl Med 4(117):117ra8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy PA et al (2014) Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. PNAS 111(50):18007–18012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakazawa MS, Keith B, Simon MC (2016) Oxygen availability and metabolic adaptations. Nat Rev Cancer 16(10):663–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noguera-Troise I et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444(7122):1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Noguera-Troise I et al (2007) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Novartis Found Symp 283:106–120

    Article  PubMed  CAS  Google Scholar 

  • Outtz HH et al (2011) Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood 118(12):3436–3439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel NS et al (2005) Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 65(19):8690–8697

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa A-R et al (2015) Endothelial Jagged1 promotes solid tumor growth through both pro-angiogenic and angiocrine functions. Oncotarget 6(27):24404–24423

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelton JC et al (2014) Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation. Development 141(21):4121–4126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters K et al (2009) Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of “aerobic glycolysis” and proliferation. Cell Physiol Biochem 24(5–6):483–492

    Article  CAS  PubMed  Google Scholar 

  • Phng LK et al (2009) Nrarp coordinates endothelial notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16(1):70–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phng L-K, Stanchi F, Gerhardt H (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140(19):4031–4040

    Article  CAS  PubMed  Google Scholar 

  • Potente M, Carmeliet P (2017) The link between angiogenesis and endothelial metabolism. Annu Rev Physiol 79(1). p.annurev-physiol-021115-105134

    Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  • Poulos MG et al (2013) Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 4(5):1022–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Preuße K et al (2015) Context-dependent functional divergence of the notch ligands DLL1 and DLL4 in vivo. PLoS Genet 11(6):e1005328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quillien A et al (2014) Distinct Notch signaling outputs pattern the developing arterial system. Development 141(7):1544–1552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rafii S, Butler JM, Ding B-S (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529(7586):316–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramasamy SK et al (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramasamy SK et al (2016) Blood flow controls bone vascular function and osteogenesis. Nat Commun 7:13601

    Article  PubMed  PubMed Central  Google Scholar 

  • Redeker C et al (2013) Normal development in mice over-expressing the intracellular domain of DLL1 argues against reverse signaling by DLL1 in vivo. PLoS One 8(10):e79050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren B et al (2010) ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Investig 120(4):1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridgway J et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087

    Article  CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  CAS  PubMed  Google Scholar 

  • Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  CAS  PubMed  Google Scholar 

  • Robciuc MR et al (2016) VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab 23(4):712–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruhrberg C et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sacilotto N et al (2013) Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. PNAS 110(29):11893–11898

    Article  PubMed  PubMed Central  Google Scholar 

  • Sainson RC et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029

    Article  CAS  PubMed  Google Scholar 

  • Scehnet JS et al (2007) Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood 109(11):4753–4760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoors S et al (2015) Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520(7546):192–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491(7424):364–373

    Article  CAS  PubMed  Google Scholar 

  • Seano G et al (2014) Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nat Cell Biol 16(10):931–941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seo S et al (2006) The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol 294(2):458–470

    Article  CAS  PubMed  Google Scholar 

  • Serra H et al (2015) PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat Commun 6:7935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shalaby F et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  • Sharghi-Namini S et al (2014) Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sci Rep 4:4031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheldon H et al (2010) New mechanism for Notch signaling to endothelium at a distance by delta-like 4 incorporation into exosomes. Blood 116(13):2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784

    Article  CAS  PubMed  Google Scholar 

  • Siekmann AF, Affolter M, Belting HG (2013) The tip cell concept 10 years after: new players tune in for a common theme. Exp Cell Res 319(9):1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 10(10):611–625

    Article  CAS  Google Scholar 

  • Smith DC et al (2014) A phase I dose escalation and expansion study of the anticancer stem cell agent Demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin Cancer Res 20(24):6295–6303

    Article  CAS  PubMed  Google Scholar 

  • Sonoshita M et al (2011) Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 19(1):125–137

    Article  CAS  PubMed  Google Scholar 

  • Sörensen I, Adams RH, Gossler A (2009) DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113(22):5680–5688

    Article  CAS  PubMed  Google Scholar 

  • Spuul P et al (2016) VEGF-A/notch-induced Podosomes Proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis. Cell Rep 17(2):484–500

    Article  CAS  PubMed  Google Scholar 

  • Stenzel D et al (2011) Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep 12(11):1135–1143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suchting S et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. PNAS 104(9):3225–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104(5):576–588

    Article  CAS  PubMed  Google Scholar 

  • Swift MR et al (2014) SoxF factors and Notch regulate nr2f2 gene expression during venous differentiation in zebrafish. Dev Biol 390(2):116–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeshita K et al (2007) Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res 100(1):70–78

    Article  CAS  PubMed  Google Scholar 

  • Tammela T et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660

    Article  PubMed  CAS  Google Scholar 

  • Tammela T et al (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13(10):1202–1213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor KL, Henderson AM, Hughes CCW (2002) Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and Downregulates VEGFR-2/KDR expression. Microvasc Res 64(3):372–383

    Article  PubMed  CAS  Google Scholar 

  • Trindade A et al (2008) Overexpression of delta-like 4 induces arterialization and attenuates vessel formation in developing mouse embryos. Blood 112(5):1720–1729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ubezio B et al (2016) Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion. eLife 5:e12167

    Article  PubMed  PubMed Central  Google Scholar 

  • Uyttendaele H et al (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. PNAS 98(10):5643–5648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Verginelli F et al (2014) Activation of an endothelial Notch1-Jagged1 circuit induces VCAM1 expression, an effect amplified by interleukin-1β. Oncotarget 6(41):43216–43229

    Google Scholar 

  • Villa N et al (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108(1–2):161–164

    Article  PubMed  CAS  Google Scholar 

  • Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93(5):741–753

    Article  PubMed  CAS  Google Scholar 

  • Wieland E et al (2017) Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31(3):355–367

    Article  CAS  PubMed  Google Scholar 

  • Wild R et al (2017) Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization. Nat Commun 10(8)

    Google Scholar 

  • Wilhelm K et al (2016) FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529(7585):216–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkinson RN et al (2012) Hedgehog signaling via a calcitonin receptor-like receptor can induce arterial differentiation independently of VEGF signaling in zebrafish. Blood 120(2):477–488

    Article  PubMed  CAS  Google Scholar 

  • Wu Y et al (2010) Therapeutic antibody targeting of individual Notch receptors. Nature 464(7291):1052–1057

    Article  CAS  PubMed  Google Scholar 

  • Xu C et al (2014) Arteries are formed by vein-derived endothelial tip cells. Nat Commun 5:5758

    Article  PubMed  CAS  Google Scholar 

  • Xue Y et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8(5):723–730

    Article  CAS  PubMed  Google Scholar 

  • Yamamizu K et al (2010) Convergence of Notch and β-catenin signaling induces arterial fate in vascular progenitors. J Cell Biol 189(2):325–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan M et al (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463(7282):E6–E7

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Oliver G (2014) Development of the mammalian lymphatic vasculature. J Clin Investig 124(3):888–897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yeh WL, Lin CJ, Fu WM (2008) Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol 73(1):170–177

    Article  PubMed  CAS  Google Scholar 

  • Yoon CH et al (2014) High glucose-induced jagged 1 in endothelial cells disturbs notch signaling for angiogenesis: a novel mechanism of diabetic vasculopathy. J Mol Cell Cardiol 69:52–66

    Article  PubMed  CAS  Google Scholar 

  • You L-R et al (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435(7038):98–104

    Article  PubMed  CAS  Google Scholar 

  • Zarkada G et al (2015) VEGFR3 does not sustain retinal angiogenesis without VEGFR2. PNAS 112(3):761–766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang J et al (2011) Angiopoietin-1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing Delta-like 4 expression through AKT-mediated activation of β-catenin. J Biol Chem 286(10):8055–8066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong TP et al (2000) Gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287(5459):1820–1824

    Article  PubMed  CAS  Google Scholar 

  • Zhong TP et al (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414(6860):216–220

    Article  PubMed  CAS  Google Scholar 

  • Zhu TS et al (2011) Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res 71(18):6061–6072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuge Q et al (2009) Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain 132(12):3231–3241

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all members of the Fischer laboratory for critical discussion and apologize to all colleagues whose work could not be cited in this chapter. Work in our laboratory on these topics has been supported by the Deutsche Forschungsgemeinschaft (DFG-FI1568/3-1; FI1568/5-1; SFB-TR23), the Helmholtz Society and the German Cancer Research Center Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tetzlaff, F., Fischer, A. (2018). Control of Blood Vessel Formation by Notch Signaling. In: Borggrefe, T., Giaimo, B. (eds) Molecular Mechanisms of Notch Signaling. Advances in Experimental Medicine and Biology, vol 1066. Springer, Cham. https://doi.org/10.1007/978-3-319-89512-3_16

Download citation

Publish with us

Policies and ethics