Skip to main content

Oscillatory Control of Notch Signaling in Development

  • Chapter
  • First Online:
Book cover Molecular Mechanisms of Notch Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1066))

Abstract

The Notch effectors Hes1 and Hes7 and the Notch ligand Delta-like1 (Dll1) are expressed in an oscillatory manner during neurogenesis and somitogenesis. These two biological events exhibit different types of oscillations: anti-/out-of-phase oscillation in neural stem cells during neurogenesis and in-phase oscillation in presomitic mesoderm (PSM) cells during somitogenesis. Accelerated or delayed Dll1 expression by shortening or elongating the size of the Dll1 gene, respectively, dampens or quenches Dll1 oscillation at intermediate levels, a phenomenon known as “amplitude/oscillation death” of coupled oscillators. Under this condition, both Hes1 oscillation in neural stem cells and Hes7 oscillation in PSM cells are also dampened. As a result, maintenance of neural stem cells is impaired, leading to microcephaly, while somite segmentation is impaired, leading to severe fusion of somites and their derivatives, such as vertebrae and ribs. Thus, the appropriate timing of Dll1 expression is critical for the oscillatory expression in Notch signaling and normal processes of neurogenesis and somitogenesis. Optogenetic analysis indicated that Dll1 oscillations transfer the oscillatory information between neighboring cells, which may induce anti−/out-of-phase and in-phase oscillations depending on the delay in signaling transmission. These oscillatory dynamics can be described in a unified manner by mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  • Aster JC, Pear WS, Blacklow SC (2016) The varied roles of notch in cancer. Annu Rev Pathol 12:245–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S, Kageyama R (2001) Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 15:2642–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessho Y, Hirata H, Masamizu Y, Kageyama R (2003) Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev 17:1451–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettenhausen B, Hrabe de Angelis M, Simon D, Guenet JL, Gossler A (1995) Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121:2407–2418

    PubMed  CAS  Google Scholar 

  • Bone RA, Bailey CSL, Wiedermann G, Ferjentsik Z, Appleton PL, Murray PJ, Maroto M, Dale JK (2014) Spatiotemporal oscillations of Notch1, Dll1 and NICD are coordinated across the mouse PSM. Development 141:4806–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17:722–735

    Article  CAS  PubMed  Google Scholar 

  • Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C et al (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25:930–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Thiagalingam A, Chopra H, Borges MW, Feder JN, Nelkin BD, Baylin SB, Ball DW (1997) Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc Natl Acad Sci U S A 94:5355–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaune EA, François P, Shih NP, Amacher SL (2012) Single-cell-resolution imaging of the impact of notch signaing and mitosis on segmentation clock dynamics. Dev Cell 23:995–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrard YA, Lun Y, Aulehla A, Gan L, Johnson RL (1998) lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 394:377–381

    Article  CAS  PubMed  Google Scholar 

  • Fishell G, Kriegstein AR (2003) Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 13:34–41

    Article  CAS  PubMed  Google Scholar 

  • Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647

    Article  CAS  PubMed  Google Scholar 

  • Fujita S (2003) The discovery of the matrix cell, the identification of the multipotent neural stem cell and the development of the central nervous system. Cell Struct Funct 28:205–228

    Article  PubMed  Google Scholar 

  • Gaiano N, Fishell G (2002) The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471–490

    Article  CAS  PubMed  Google Scholar 

  • Giudicelli F, Ozbudak EM, Wright GJ, Lewis J (2007) Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol 5:e150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788

    Article  CAS  PubMed  Google Scholar 

  • Harima Y, Takashima Y, Ueda Y, Ohtsuka T, Kageyama R (2013) Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep 3:1–7

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539–5550

    Article  CAS  PubMed  Google Scholar 

  • Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002) Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298:840–843

    Article  CAS  PubMed  Google Scholar 

  • Horikawa K, Ishimatsu K, Yoshimoto E, Kondo S, Takeda H (2006) Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441:719–723

    Article  CAS  PubMed  Google Scholar 

  • Hrabe de Angelis M, McIntyre J II, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue Dll1. Nature 386:717–721

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Kageyama R (2014) bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron 82:9–23

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara TK, Ishidate F, Kageyama R (2013) Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342:1203–1208

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, Kageyama R (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 13:1799–1805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F (1995) Targeted disruption of mammalian hairy and enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 9:3136–3148

    Article  CAS  PubMed  Google Scholar 

  • Isomura A, Ogushi F, Kori H, Kageyama R (2017) Optogenetic perturbation and bioluminescence imaging to analyze cell-to-cell transfer of oscillatory information. Genes Dev 31:524–535

    Google Scholar 

  • Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A (1995) Signalling downstream of activated mammalian notch. Nature 377:355–358

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y-J, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signaling and the synchronization of the somite segmentation clock. Nature 408:475–479

    Article  CAS  PubMed  Google Scholar 

  • Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I (2008) Dynamic notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 11:1247–1251

    Article  CAS  PubMed  Google Scholar 

  • Kopan R, Ilagan MXG (2009) The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mara A, Schroeder J, Chalouni C, Holley SA (2007) Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nat Cell Biol 9:523–530

    Article  CAS  PubMed  Google Scholar 

  • Maroto M, Dale JK, Dequéant M-L, Petit A-C, Pourquié O (2005) Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact. Int J Dev Biol 49:309–315

    Article  CAS  PubMed  Google Scholar 

  • Maruhashi M, Van de Putte T, Huylebroeck D, Kondoh H, Higashi Y (2005) Involvement of SIP1 in positioning of somite boundaries in the mouse embryo. Dev Dyn 234:332–338

    Article  CAS  PubMed  Google Scholar 

  • Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H, Kageyama R (2006) Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci U S A 103:1313–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller ED, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–369

    Article  CAS  PubMed  Google Scholar 

  • Niwa Y, Shimojo H, Isomura A, González A, Miyachi H, Kageyama R (2011) Different types of oscillations in notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. Genes Dev 25:1115–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R (2001) Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem 276:30467–30474

    Article  CAS  PubMed  Google Scholar 

  • Okubo Y, Sugawara T, Abe-Koduka N, Kanno J, Kimura A, Saga Y (2012) Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of notch signalling. Nat Commun 3:1141

    Article  CAS  PubMed  Google Scholar 

  • Özbudak EM, Lewis J (2008) Notch signaling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet 4:e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panin VM, Shao L, Lei L, Moloney DJ, Irvine KD, Haltiwanger RS (2002) Notch ligands are substrates for protein O-fucosyltransferase-1 and fringe. J Biol Chem 277:29945–29952

    Article  CAS  PubMed  Google Scholar 

  • Pierfelice T, Alberi L, Gaiano N (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69:840–855

    Article  CAS  PubMed  Google Scholar 

  • Pourquié O (2011) Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145:650–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramana Reddy DV, Sen A, Johnston GL (1998) Experimental evidence of time delay induced death in coupled limit cycle oscillators. Phys Rev Lett 80:5109–5112

    Article  CAS  Google Scholar 

  • Riedel-Kruse IH, Müller C, Oates AC (2007) Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317:1911–1915

    Article  CAS  PubMed  Google Scholar 

  • Shimojo H, Ohtsuka T, Kageyama R (2008) Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58:52–64

    Article  CAS  PubMed  Google Scholar 

  • Shimojo H, Isomura A, Ohtsuka T, Kori H, Miyachi H, Kageyama R (2016) Oscillatory control of Delta-like1 in cell interactions regulate dynamic gene expression and tissue morphogenesis. Genes Dev 30:102–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparrow DB, Chapman G, Smith AJ, Mattar MZ, Major JA, O’Reilly VC, Saga Y, Zackai EH, Dormans JP, Alman BA, McGregor L, Kageyama R, Kusumi K, Dunwoodie SL (2012) A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 149:295–306

    Article  CAS  PubMed  Google Scholar 

  • Takashima Y, Ohtsuka T, González A, Miyachi H, Kageyama R (2011) Intronic delay is essential for oscillatory expression in the segmentation clock. Proc Natl Acad Sci U S A 108:3300–3305

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsiairis CD, Aulehla A (2016) Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell 164:656–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9:266–269

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Gridley T (1998) Defects in somite formation in lunatic fringe-deficient mice. Nature 394:374–377

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Core Research for Evolutional Science and Technology (R.K.), Grant-in-Aid for Scientific Research on Innovative Areas (MEXT 16H06480 to R.K., MEXT 24116705 to H.S., and MEXT 26119708 to A.I.), Scientific Research (A) (JSPS 24240049) (R.K.), Young Scientists (A) (JSPS 15H05326) (A.I.) and Young Scientists (B) (JSPS 24700354) (H.S.) and Platform for Dynamic Approaches to Living System from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichiro Kageyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kageyama, R., Shimojo, H., Isomura, A. (2018). Oscillatory Control of Notch Signaling in Development. In: Borggrefe, T., Giaimo, B. (eds) Molecular Mechanisms of Notch Signaling. Advances in Experimental Medicine and Biology, vol 1066. Springer, Cham. https://doi.org/10.1007/978-3-319-89512-3_13

Download citation

Publish with us

Policies and ethics