Skip to main content

Adipokines, Inflammation, and Insulin Resistance in Obesity

  • Chapter
  • First Online:
Book cover Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function

Abstract

Humans have highly integrated system to regulate energy storage and expenditure. Adipose tissue is a major depot to store triglycerides during energy excess and release fatty acids and glycerol for systemic energy need. However, adipose tissues have also been shown as highly active endocrine and metabolically important organs to modulate energy expenditure and glucose homeostasis. Brown adipose tissue plays an essential role in non-shivering thermogenesis and in energy dissipation that can serve to protect against obesity. White adipose tissue, referred as either subcutaneous or visceral adipose tissue, has been shown to secret an array of molecules, termed adipokines. These adipokines function as circulating hormones to communicate with other organs including the brain, liver, muscle, immune system, and adipose tissue itself, resulting in the regulation of glucose homeostasis. The dysregulation of adipokines has been implicated in obesity, type 2 diabetes, and cardiovascular disease. Recently, inflammatory responses in adipose tissue have also been shown as one of the major mechanisms to induce peripheral tissue glucose intolerance and insulin resistance. Although leptin and adiponectin regulate feeding behavior and energy expenditure, these adipokines are also involved in the regulation of obesity-induced inflammation. Adipose tissue secretes various pro- and anti-inflammatory adipokines to modulate inflammation and insulin resistance. In obese humans and rodent models, the expression of pro-inflammatory adipokines is enhanced and can directly result in insulin resistance. Collectively, these findings have suggested that obesity-induced insulin resistance may result, at least in part, from an imbalance in the production of pro- and anti-inflammatory adipokines at adipose tissues. Thus, we will describe the recent progress regarding the physiological and molecular function of adipokines in the obesity-induced inflammation and insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382, 250–252.

    Article  CAS  PubMed  Google Scholar 

  • Akbay, E., Muslu, N., Nayir, E., Ozhan, O., & Kiykim, A. (2010). Serum retinol binding protein 4 level is related with renal functions in type 2 diabetes. Journal of Endocrinological Investigation, 33, 725–729.

    Article  PubMed  CAS  Google Scholar 

  • Albanesi, C., Scarponi, C., Pallotta, S., Daniele, R., Bosisio, D., Madonna, S., Fortugno, P., Gonzalvo-Feo, S., Franssen, J. D., Parmentier, M., et al. (2009). Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. The Journal of Experimental Medicine, 206, 249–258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aleffi, S., Petrai, I., Bertolani, C., Parola, M., Colombatto, S., Novo, E., Vizzutti, F., Anania, F. A., Milani, S., Rombouts, K., et al. (2005). Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology, 42, 1339–1348.

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft, F. M., & Rorsman, P. (2012). Diabetes mellitus and the beta cell: The last ten years. Cell, 148, 1160–1171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Attane, C., Foussal, C., Le Gonidec, S., Benani, A., Daviaud, D., Wanecq, E., Guzman-Ruiz, R., Dray, C., Bezaire, V., Rancoule, C., et al. (2012). Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice. Diabetes, 61, 310–320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badin, P. M., Vila, I. K., Louche, K., Mairal, A., Marques, M. A., Bourlier, V., Tavernier, G., Langin, D., & Moro, C. (2013). High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology, 154, 1444–1453.

    Article  PubMed  CAS  Google Scholar 

  • Badman, M. K., Pissios, P., Kennedy, A. R., Koukos, G., Flier, J. S., & Maratos-Flier, E. (2007). Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metabolism, 5, 426–437.

    Article  PubMed  CAS  Google Scholar 

  • Badman, M. K., Koester, A., Flier, J. S., Kharitonenkov, A., & Maratos-Flier, E. (2009). Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology, 150, 4931–4940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bard-Chapeau, E. A., Hevener, A. L., Long, S., Zhang, E. E., Olefsky, J. M., & Feng, G. S. (2005). Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nature Medicine, 11, 567–571.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, S., Wanninger, J., Schmidhofer, S., Weigert, J., Neumeier, M., Dorn, C., Hellerbrand, C., Zimara, N., Schaffler, A., Aslanidis, C., et al. (2011). Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology, 152, 26–35.

    Article  PubMed  CAS  Google Scholar 

  • Bendelac, A., Savage, P. B., & Teyton, L. (2007). The biology of NKT cells. Annual Review of Immunology, 25, 297–336.

    Article  PubMed  CAS  Google Scholar 

  • Benomar, Y., Gertler, A., De Lacy, P., Crepin, D., Hamouda, H. O., Riffault, L., & Taouis, M. (2012). Central resistin overexposure induces insulin resistance through toll-like receptor 4. Diabetes.

    Google Scholar 

  • Bertola, A., Ciucci, T., Rousseau, D., Bourlier, V., Duffaut, C., Bonnafous, S., Blin-Wakkach, C., Anty, R., Iannelli, A., Gugenheim, J., et al. (2012). Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes, 61, 2238–2247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bokarewa, M., Nagaev, I., Dahlberg, L., Smith, U., & Tarkowski, A. (2005). Resistin, an adipokine with potent proinflammatory properties. Journal of Immunology, 174, 5789–5795.

    Article  CAS  Google Scholar 

  • Bondue, B., Wittamer, V., & Parmentier, M. (2011). Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine & Growth Factor Reviews, 22, 331–338.

    Article  CAS  Google Scholar 

  • Boucher, J., Masri, B., Daviaud, D., Gesta, S., Guigne, C., Mazzucotelli, A., Castan-Laurell, I., Tack, I., Knibiehler, B., Carpene, C., et al. (2005). Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology, 146, 1764–1771.

    Article  PubMed  CAS  Google Scholar 

  • Boura-Halfon, S., & Zick, Y. (2009). Phosphorylation of IRS proteins, insulin action, and insulin resistance. American Journal of Physiology. Endocrinology and Metabolism, 296, E581–E591.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A., & Butler, P. C. (2003). Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 52, 102–110.

    Article  PubMed  CAS  Google Scholar 

  • Cancello, R., Tordjman, J., Poitou, C., Guilhem, G., Bouillot, J. L., Hugol, D., Coussieu, C., Basdevant, A., Bar Hen, A., Bedossa, P., et al. (2006). Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes, 55, 1554–1561.

    Article  PubMed  CAS  Google Scholar 

  • Carey, A. L., Steinberg, G. R., Macaulay, S. L., Thomas, W. G., Holmes, A. G., Ramm, G., Prelovsek, O., Hohnen-Behrens, C., Watt, M. J., James, D. E., et al. (2006). Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes, 55, 2688–2697.

    Article  PubMed  CAS  Google Scholar 

  • Carpene, C., Dray, C., Attane, C., Valet, P., Portillo, M. P., Churruca, I., Milagro, F. I., & Castan-Laurell, I. (2007). Expanding role for the apelin/APJ system in physiopathology. Journal of Physiology and Biochemistry, 63, 359–373.

    Article  PubMed  CAS  Google Scholar 

  • Cash, J. L., Hart, R., Russ, A., Dixon, J. P., Colledge, W. H., Doran, J., Hendrick, A. G., Carlton, M. B., & Greaves, D. R. (2008). Synthetic chemerin-derived peptides suppress inflammation through ChemR23. The Journal of Experimental Medicine, 205, 767–775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chavez, J. A., & Summers, S. A. (2012). A ceramide-centric view of insulin resistance. Cell Metabolism, 15, 585–594.

    Article  PubMed  CAS  Google Scholar 

  • Chiefari, E., Tanyolac, S., Paonessa, F., Pullinger, C. R., Capula, C., Iiritano, S., Mazza, T., Forlin, M., Fusco, A., Durlach, V., et al. (2011). Functional variants of the HMGA1 gene and type 2 diabetes mellitus. JAMA, 305, 903–912.

    Article  PubMed  CAS  Google Scholar 

  • Chin, J. E., Liu, F., & Roth, R. A. (1994). Activation of protein kinase C alpha inhibits insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. Molecular Endocrinology, 8, 51–58.

    PubMed  CAS  Google Scholar 

  • Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B., 3rd, Kaestner, K. H., Bartolomei, M. S., Shulman, G. I., & Birnbaum, M. J. (2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science, 292, 1728–1731.

    Article  PubMed  CAS  Google Scholar 

  • Cipolletta, D., Feuerer, M., Li, A., Kamei, N., Lee, J., Shoelson, S. E., Benoist, C., & Mathis, D. (2012). PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 486, 549–553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cook, K. S., Min, H. Y., Johnson, D., Chaplinsky, R. J., Flier, J. S., Hunt, C. R., & Spiegelman, B. M. (1987). Adipsin: A circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science, 237, 402–405.

    Article  PubMed  CAS  Google Scholar 

  • Cornejo, M. P., Hentges, S. T., Maliqueo, M., Coirini, H., Becu-Villalobos, D., & Elias, C. F. (2016). Neuroendocrine regulation of metabolism. Journal of Neuroendocrinology, 28.

    Google Scholar 

  • Cornier, M. A., Dabelea, D., Hernandez, T. L., Lindstrom, R. C., Steig, A. J., Stob, N. R., Van Pelt, R. E., Wang, H., & Eckel, R. H. (2008). The metabolic syndrome. Endocrine Reviews, 29, 777–822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785–789.

    Article  PubMed  CAS  Google Scholar 

  • Day, R. T., Cavaglieri, R. C., & Feliers, D. (2013). Apelin retards the progression of diabetic nephropathy. American Journal of Physiology. Renal Physiology, 304, F788–F800.

    Article  PubMed  CAS  Google Scholar 

  • de Souza Batista, C. M., Yang, R. Z., Lee, M. J., Glynn, N. M., Yu, D. Z., Pray, J., Ndubuizu, K., Patil, S., Schwartz, A., Kligman, M., et al. (2007). Omentin plasma levels and gene expression are decreased in obesity. Diabetes, 56, 1655–1661.

    Article  PubMed  CAS  Google Scholar 

  • DeFuria, J., Belkina, A. C., Jagannathan-Bogdan, M., Snyder-Cappione, J., Carr, J. D., Nersesova, Y. R., Markham, D., Strissel, K. J., Watkins, A. A., Zhu, M., et al. (2013). B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proceedings of the National Academy of Sciences of the United States of America, 110, 5133–5138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng, J., Liu, Y., Yang, M., Wang, S., Zhang, M., Wang, X., Ko, K. H., Hua, Z., Sun, L., Cao, X., et al. (2012). Leptin exacerbates collagen-induced arthritis via enhancement of Th17 cell response. Arthritis and Rheumatism, 64, 3564–3573.

    Article  PubMed  CAS  Google Scholar 

  • Dinarello, C. A. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology, 27, 519–550.

    Article  PubMed  CAS  Google Scholar 

  • Ding, X., Boney-Montoya, J., Owen, B. M., Bookout, A. L., Coate, K. C., Mangelsdorf, D. J., & Kliewer, S. A. (2012). betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metabolism, 16, 387–393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donath, M. Y., Gross, D. J., Cerasi, E., & Kaiser, N. (1999). Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes, 48, 738–744.

    Article  PubMed  CAS  Google Scholar 

  • Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J. H., Masiarz, F., Kan, Y. W., Goldfine, I. D., et al. (1985). The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling. Cell, 40, 747–758.

    Article  PubMed  CAS  Google Scholar 

  • Ehses, J. A., Lacraz, G., Giroix, M. H., Schmidlin, F., Coulaud, J., Kassis, N., Irminger, J. C., Kergoat, M., Portha, B., Homo-Delarche, F., et al. (2009). IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proceedings of the National Academy of Sciences of the United States of America, 106, 13998–14003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ernst, M. C., Issa, M., Goralski, K. B., & Sinal, C. J. (2010). Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology, 151, 1998–2007.

    Article  PubMed  CAS  Google Scholar 

  • Faggioni, R., Jones-Carson, J., Reed, D. A., Dinarello, C. A., Feingold, K. R., Grunfeld, C., & Fantuzzi, G. (2000). Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: Role of tumor necrosis factor alpha and IL-18. Proceedings of the National Academy of Sciences of the United States of America, 97, 2367–2372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farjo, K. M., Farjo, R. A., Halsey, S., Moiseyev, G., & Ma, J. X. (2012). Retinol-binding protein 4 induces inflammation in human endothelial cells by a NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Molecular and Cellular Biology.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feingold, K. R., Grunfeld, C., Heuer, J. G., Gupta, A., Cramer, M., Zhang, T., Shigenaga, J. K., Patzek, S. M., Chan, Z. W., Moser, A., et al. (2012). FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology, 153, 2689–2700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feuerer, M., Herrero, L., Cipolletta, D., Naaz, A., Wong, J., Nayer, A., Lee, J., Goldfine, A. B., Benoist, C., Shoelson, S., et al. (2009). Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine, 15, 930–939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finkelstein, E. A., Khavjou, O. A., Thompson, H., Trogdon, J. G., Pan, L., Sherry, B., & Dietz, W. (2012). Obesity and severe obesity forecasts through 2030. American Journal of Preventive Medicine, 42, 563–570.

    Article  PubMed  Google Scholar 

  • Fisher, F. M., Kleiner, S., Douris, N., Fox, E. C., Mepani, R. J., Verdeguer, F., Wu, J., Kharitonenkov, A., Flier, J. S., Maratos-Flier, E., et al. (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes & Development, 26, 271–281.

    Article  CAS  Google Scholar 

  • Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E., & Klein, S. (2007). Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes, 56, 1010–1013.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395, 763–770.

    Article  PubMed  CAS  Google Scholar 

  • Gaich, G., Chien, J. Y., Fu, H., Glass, L. C., Deeg, M. A., Holland, W. L., Kharitonenkov, A., Bumol, T., Schilske, H. K., & Moller, D. E. (2013). The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metabolism, 18, 333–340.

    Article  PubMed  CAS  Google Scholar 

  • Gainsford, T., Willson, T. A., Metcalf, D., Handman, E., McFarlane, C., Ng, A., Nicola, N. A., Alexander, W. S., & Hilton, D. J. (1996). Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 93, 14564–14568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan, L., Guo, K., Cremona, M. L., McGraw, T. E., Leibel, R. L., & Zhang, Y. (2012). TNF-alpha up-regulates protein level and cell surface expression of the leptin receptor by stimulating its export via a PKC-dependent mechanism. Endocrinology.

    Google Scholar 

  • Ghosh, A. R., Bhattacharya, R., Bhattacharya, S., Nargis, T., Rahaman, O., Duttagupta, P., Raychaudhuri, D., Liu, C. S., Roy, S., Ghosh, P., et al. (2016). Adipose recruitment and activation of plasmacytoid dendritic cells fuel metaflammation. Diabetes, 65, 3440–3452.

    Article  PubMed  CAS  Google Scholar 

  • Ghoshal, S., Witta, J., Zhong, J., de Villiers, W., & Eckhardt, E. (2009). Chylomicrons promote intestinal absorption of lipopolysaccharides. Journal of Lipid Research, 50, 90–97.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gay, M. A., De Matias, J. M., Gonzalez-Juanatey, C., Garcia-Porrua, C., Sanchez-Andrade, A., Martin, J., & Llorca, J. (2006). Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clinical and Experimental Rheumatology, 24, 83–86.

    PubMed  CAS  Google Scholar 

  • Goralski, K. B., McCarthy, T. C., Hanniman, E. A., Zabel, B. A., Butcher, E. C., Parlee, S. D., Muruganandan, S., & Sinal, C. J. (2007). Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. The Journal of Biological Chemistry, 282, 28175–28188.

    Article  PubMed  CAS  Google Scholar 

  • Graham, T. E., Yang, Q., Bluher, M., Hammarstedt, A., Ciaraldi, T. P., Henry, R. R., Wason, C. J., Oberbach, A., Jansson, P. A., Smith, U., et al. (2006). Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. The New England Journal of Medicine, 354, 2552–2563.

    Article  PubMed  CAS  Google Scholar 

  • Gregor, M. F., & Hotamisligil, G. S. (2011). Inflammatory mechanisms in obesity. Annual Review of Immunology, 29, 415–445.

    Article  PubMed  CAS  Google Scholar 

  • Grgurevic, L., Christensen, G. L., Schulz, T. J., & Vukicevic, S. (2016). Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine & Growth Factor Reviews, 27, 105–118.

    Article  CAS  Google Scholar 

  • Griffin, M. E., Marcucci, M. J., Cline, G. W., Bell, K., Barucci, N., Lee, D., Goodyear, L. J., Kraegen, E. W., White, M. F., & Shulman, G. I. (1999). Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 48, 1270–1274.

    Article  PubMed  CAS  Google Scholar 

  • Grunfeld, C., Zhao, C., Fuller, J., Pollack, A., Moser, A., Friedman, J., & Feingold, K. R. (1996). Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. The Journal of Clinical Investigation, 97, 2152–2157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta, R. K., Mepani, R. J., Kleiner, S., Lo, J. C., Khandekar, M. J., Cohen, P., Frontini, A., Bhowmick, D. C., Ye, L., Cinti, S., et al. (2012). Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metabolism, 15, 230–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gustafson, B., Hammarstedt, A., Hedjazifar, S., Hoffmann, J. M., Svensson, P. A., Grimsby, J., Rondinone, C., & Smith, U. (2015). BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes, 64, 1670–1681.

    Article  PubMed  CAS  Google Scholar 

  • Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Heldmaier, G., Maier, R., Theussl, C., Eder, S., et al. (2006). Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science, 312, 734–737.

    Article  PubMed  CAS  Google Scholar 

  • Han, M. S., Jung, D. Y., Morel, C., Lakhani, S. A., Kim, J. K., Flavell, R. A., & Davis, R. J. (2013). JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science, 339, 218–222.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, O. T., Czech, M. P., & Corvera, S. (2012). What causes the insulin resistance underlying obesity? Current Opinion in Endocrinology, Diabetes, and Obesity, 19, 81–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harman-Boehm, I., Bluher, M., Redel, H., Sion-Vardy, N., Ovadia, S., Avinoach, E., Shai, I., Kloting, N., Stumvoll, M., Bashan, N., et al. (2007). Macrophage infiltration into omental versus subcutaneous fat across different populations: Effect of regional adiposity and the comorbidities of obesity. The Journal of Clinical Endocrinology and Metabolism, 92, 2240–2247.

    Article  PubMed  CAS  Google Scholar 

  • Hegele, R. A. (2003). Monogenic forms of insulin resistance: Apertures that expose the common metabolic syndrome. Trends in Endocrinology and Metabolism, 14, 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Heymsfield, S. B., Greenberg, A. S., Fujioka, K., Dixon, R. M., Kushner, R., Hunt, T., Lubina, J. A., Patane, J., Self, B., Hunt, P., et al. (1999). Recombinant leptin for weight loss in obese and lean adults: A randomized, controlled, dose-escalation trial. JAMA, 282, 1568–1575.

    Article  PubMed  CAS  Google Scholar 

  • Hida, K., Wada, J., Eguchi, J., Zhang, H., Baba, M., Seida, A., Hashimoto, I., Okada, T., Yasuhara, A., Nakatsuka, A., et al. (2005). Visceral adipose tissue-derived serine protease inhibitor: A unique insulin-sensitizing adipocytokine in obesity. Proceedings of the National Academy of Sciences of the United States of America, 102, 10610–10615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiramatsu-Ito, M., Shibata, R., Ohashi, K., Uemura, Y., Kanemura, N., Kambara, T., Enomoto, T., Yuasa, D., Matsuo, K., Ito, M., et al. (2016). Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice. Cardiovascular Research, 110, 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., & Hotamisligil, G. S. (2002). A central role for JNK in obesity and insulin resistance. Nature, 420, 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Holcomb, I. N., Kabakoff, R. C., Chan, B., Baker, T. W., Gurney, A., Henzel, W., Nelson, C., Lowman, H. B., Wright, B. D., Skelton, N. J., et al. (2000). FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. The EMBO Journal, 19, 4046–4055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holland, W. L., Adams, A. C., Brozinick, J. T., Bui, H. H., Miyauchi, Y., Kusminski, C. M., Bauer, S. M., Wade, M., Singhal, E., Cheng, C. C., et al. (2013). An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metabolism, 17, 790–797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444, 860–867.

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science, 259, 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil, G. S., Peraldi, P., Budavari, A., Ellis, R., White, M. F., & Spiegelman, B. M. (1996). IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science, 271, 665–668.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, N. (2014). FGF21 as a hepatokine, adipokine, and myokine in metabolism and diseases. Frontiers in Endocrinology, 5, 107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagannathan-Bogdan, M., McDonnell, M. E., Shin, H., Rehman, Q., Hasturk, H., Apovian, C. M., & Nikolajczyk, B. S. (2011). Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. Journal of Immunology, 186, 1162–1172.

    Article  CAS  Google Scholar 

  • Jornayvaz, F. R., & Shulman, G. I. (2012). Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metabolism, 15, 574–584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S., Egashira, K., et al. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of Clinical Investigation, 116, 1494–1505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawano, Y., Nakae, J., Watanabe, N., Kikuchi, T., Tateya, S., Tamori, Y., Kaneko, M., Abe, T., Onodera, M., & Itoh, H. (2016). Colonic pro-inflammatory macrophages cause insulin resistance in an intestinal Ccl2/Ccr2-dependent manner. Cell Metabolism, 24, 295–310.

    Article  PubMed  CAS  Google Scholar 

  • Kazama, K., Usui, T., Okada, M., Hara, Y., & Yamawaki, H. (2012). Omentin plays an anti-inflammatory role through inhibition of TNF-alpha-induced superoxide production in vascular smooth muscle cells. European Journal of Pharmacology, 686, 116–123.

    Article  PubMed  CAS  Google Scholar 

  • Kharitonenkov, A., Shiyanova, T. L., Koester, A., Ford, A. M., Micanovic, R., Galbreath, E. J., Sandusky, G. E., Hammond, L. J., Moyers, J. S., Owens, R. A., et al. (2005). FGF-21 as a novel metabolic regulator. The Journal of Clinical Investigation, 115, 1627–1635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kievit, P., Howard, J. K., Badman, M. K., Balthasar, N., Coppari, R., Mori, H., Lee, C. E., Elmquist, J. K., Yoshimura, A., & Flier, J. S. (2006). Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells. Cell Metabolism, 4, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. Y., van de Wall, E., Laplante, M., Azzara, A., Trujillo, M. E., Hofmann, S. M., Schraw, T., Durand, J. L., Li, H., Li, G., et al. (2007a). Obesity-associated improvements in metabolic profile through expansion of adipose tissue. The Journal of Clinical Investigation, 117, 2621–2637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, F., Pham, M., Luttrell, I., Bannerman, D. D., Tupper, J., Thaler, J., Hawn, T. R., Raines, E. W., & Schwartz, M. W. (2007b). Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circulation Research, 100, 1589–1596.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D., & Heinecke, J. W. (2008). Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes, 57, 1254–1261.

    Article  PubMed  CAS  Google Scholar 

  • Kitade, H., Sawamoto, K., Nagashimada, M., Inoue, H., Yamamoto, Y., Sai, Y., Takamura, T., Yamamoto, H., Miyamoto, K., Ginsberg, H. N., et al. (2012). CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes, 61, 1680–1690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleinridders, A., Schenten, D., Konner, A. C., Belgardt, B. F., Mauer, J., Okamura, T., Wunderlich, F. T., Medzhitov, R., & Bruning, J. C. (2009). MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metabolism, 10, 249–259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knudsen, J. G., Murholm, M., Carey, A. L., Bienso, R. S., Basse, A. L., Allen, T. L., Hidalgo, J., Kingwell, B. A., Febbraio, M. A., Hansen, J. B., et al. (2014). Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One, e84910, 9.

    Google Scholar 

  • Kopp, H. P., Kopp, C. W., Festa, A., Krzyzanowska, K., Kriwanek, S., Minar, E., Roka, R., & Schernthaner, G. (2003). Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1042–1047.

    Article  PubMed  CAS  Google Scholar 

  • Kumada, M., Kihara, S., Ouchi, N., Kobayashi, H., Okamoto, Y., Ohashi, K., Maeda, K., Nagaretani, H., Kishida, K., Maeda, N., et al. (2004). Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation, 109, 2046–2049.

    Article  PubMed  CAS  Google Scholar 

  • Kursawe, R., Caprio, S., Giannini, C., Narayan, D., Lin, A., D'Adamo, E., Shaw, M., Pierpont, B., Cushman, S. W., & Shulman, G. I. (2013). Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: Associations with insulin resistance and hyperglycemia. Diabetes, 62, 837–844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larsen, C. M., Faulenbach, M., Vaag, A., Volund, A., Ehses, J. A., Seifert, B., Mandrup-Poulsen, T., & Donath, M. Y. (2007). Interleukin-1-receptor antagonist in type 2 diabetes mellitus. The New England Journal of Medicine, 356, 1517–1526.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. Y., Sohn, K. H., Rhee, S. H., & Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. The Journal of Biological Chemistry, 276, 16683–16689.

    Article  PubMed  CAS  Google Scholar 

  • Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S., & De Robertis, E. M. (1997). Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell, 88, 747–756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, S., Shin, H. J., Ding, E. L., & van Dam, R. M. (2009). Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA, 302, 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Z., Tian, H., Lam, K. S., Lin, S., Hoo, R. C., Konishi, M., Itoh, N., Wang, Y., Bornstein, S. R., Xu, A., et al. (2013). Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metabolism, 17, 779–789.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Divoux, A., Sun, J., Zhang, J., Clement, K., Glickman, J. N., Sukhova, G. K., Wolters, P. J., Du, J., Gorgun, C. Z., et al. (2009). Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Medicine, 15, 940–945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y., Palanivel, R., Rai, E., Park, M., Gabor, T. V., Scheid, M. P., Xu, A., & Sweeney, G. (2015). Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes, 64, 36–48.

    Article  PubMed  CAS  Google Scholar 

  • Lord, G. M., Matarese, G., Howard, J. K., Baker, R. J., Bloom, S. R., & Lechler, R. I. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature, 394, 897–901.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., Zhu, X., Liang, G. X., Cui, R. R., Liu, Y., Wu, S. S., Liang, Q. H., Liu, G. Y., Jiang, Y., Liao, X. B., et al. (2012). Apelin-APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-kappaB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids, 43, 2125–2136.

    Article  PubMed  CAS  Google Scholar 

  • Lumeng, C. N., Bodzin, J. L., & Saltiel, A. R. (2007a). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of Clinical Investigation, 117, 175–184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lumeng, C. N., Deyoung, S. M., Bodzin, J. L., & Saltiel, A. R. (2007b). Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes, 56, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, L., Nowak, M., Varghese, B., Clark, J., Hogan, A. E., Toxavidis, V., Balk, S. P., O'Shea, D., O'Farrelly, C., & Exley, M. A. (2012). Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity, 37, 574–587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maeda, N., Takahashi, M., Funahashi, T., Kihara, S., Nishizawa, H., Kishida, K., Nagaretani, H., Matsuda, M., Komuro, R., Ouchi, N., et al. (2001). PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes, 50, 2094–2099.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, N., Shimomura, I., Kishida, K., Nishizawa, H., Matsuda, M., Nagaretani, H., Furuyama, N., Kondo, H., Takahashi, M., Arita, Y., et al. (2002). Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Medicine, 8, 731–737.

    Article  PubMed  CAS  Google Scholar 

  • Mandal, P., Pratt, B. T., Barnes, M., McMullen, M. R., & Nagy, L. E. (2011). Molecular mechanism for adiponectin-dependent M2 macrophage polarization: Link between the metabolic and innate immune activity of full-length adiponectin. The Journal of Biological Chemistry, 286, 13460–13469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mantell, B. S., Stefanovic-Racic, M., Yang, X., Dedousis, N., Sipula, I. J., & O'Doherty, R. M. (2011). Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity. PLoS One, 6, e19831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25, 677–686.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, F. O., Helming, L., & Gordon, S. (2009). Alternative activation of macrophages: An immunologic functional perspective. Annual Review of Immunology, 27, 451–483.

    Article  PubMed  CAS  Google Scholar 

  • Matarese, G., Di Giacomo, A., Sanna, V., Lord, G. M., Howard, J. K., Di Tuoro, A., Bloom, S. R., Lechler, R. I., Zappacosta, S., & Fontana, S. (2001). Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. Journal of Immunology, 166, 5909–5916.

    Article  CAS  Google Scholar 

  • Matthews, V. B., Allen, T. L., Risis, S., Chan, M. H., Henstridge, D. C., Watson, N., Zaffino, L. A., Babb, J. R., Boon, J., Meikle, P. J., et al. (2010). Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia, 53, 2431–2441.

    Article  PubMed  CAS  Google Scholar 

  • Meier, C. A., Bobbioni, E., Gabay, C., Assimacopoulos-Jeannet, F., Golay, A., & Dayer, J. M. (2002). IL-1 receptor antagonist serum levels are increased in human obesity: A possible link to the resistance to leptin? The Journal of Clinical Endocrinology and Metabolism, 87, 1184–1188.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi, H., Souza, S. C., Zhang, H. H., Strissel, K. J., Christoffolete, M. A., Kovsan, J., Rudich, A., Kraemer, F. B., Bianco, A. C., Obin, M. S., et al. (2006). Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. The Journal of Biological Chemistry, 281, 15837–15844.

    Article  PubMed  CAS  Google Scholar 

  • Mohamed-Ali, V., Goodrick, S., Rawesh, A., Katz, D. R., Miles, J. M., Yudkin, J. S., Klein, S., & Coppack, S. W. (1997). Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. The Journal of Clinical Endocrinology and Metabolism, 82, 4196–4200.

    PubMed  CAS  Google Scholar 

  • Monteiro, M., Almeida, C. F., Agua-Doce, A., & Graca, L. (2013). Induced IL-17-producing invariant NKT cells require activation in presence of TGF-beta and IL-1beta. Journal of Immunology, 190, 805–811.

    Article  CAS  Google Scholar 

  • Moraes-Vieira, P. M., Yore, M. M., Dwyer, P. M., Syed, I., Aryal, P., & Kahn, B. B. (2014). RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metabolism, 19, 512–526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8, 958–969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulder, P., van den Hoek, A. M., & Kleemann, R. (2017). The CCR2 inhibitor propagermanium attenuates diet-induced insulin resistance, adipose tissue inflammation and non-alcoholic steatohepatitis. PLoS One, 12, e0169740.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulvihill, E. E., & Drucker, D. J. (2014). Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocrine Reviews, 35, 992–1019.

    Article  PubMed  CAS  Google Scholar 

  • Myers, M. G., Jr., Backer, J. M., Sun, X. J., Shoelson, S., Hu, P., Schlessinger, J., Yoakim, M., Schaffhausen, B., & White, M. F. (1992). IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proceedings of the National Academy of Sciences of the United States of America, 89, 10350–10354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura, T., Furuhashi, M., Li, P., Cao, H., Tuncman, G., Sonenberg, N., Gorgun, C. Z., & Hotamisligil, G. S. (2010). Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell, 140, 338–348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamura, K., Sano, S., Fuster, J. J., Kikuchi, R., Shimizu, I., Ohshima, K., Katanasaka, Y., Ouchi, N., & Walsh, K. (2016). Secreted frizzled-related protein 5 diminishes cardiac inflammation and protects the heart from ischemia/reperfusion injury. The Journal of Biological Chemistry, 291, 2566–2575.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, S., Manabe, I., Nagasaki, M., Eto, K., Yamashita, H., Ohsugi, M., Otsu, M., Hara, K., Ueki, K., Sugiura, S., et al. (2009). CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine, 15, 914–920.

    Article  PubMed  CAS  Google Scholar 

  • Odegaard, J. I., & Chawla, A. (2013). Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science, 339, 172–177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ofei, F., Hurel, S., Newkirk, J., Sopwith, M., & Taylor, R. (1996). Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes, 45, 881–885.

    Article  PubMed  Google Scholar 

  • Okada-Iwabu, M., Yamauchi, T., Iwabu, M., Honma, T., Hamagami, K., Matsuda, K., Yamaguchi, M., Tanabe, H., Kimura-Someya, T., Shirouzu, M., et al. (2013). A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature, 503, 493–499.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, Y., Kihara, S., Ouchi, N., Nishida, M., Arita, Y., Kumada, M., Ohashi, K., Sakai, N., Shimomura, I., Kobayashi, H., et al. (2002). Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 106, 2767–2770.

    Article  PubMed  CAS  Google Scholar 

  • Ouchi, N., Higuchi, A., Ohashi, K., Oshima, Y., Gokce, N., Shibata, R., Akasaki, Y., Shimono, A., & Walsh, K. (2010). Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science, 329, 454–457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nature Reviews. Immunology, 11, 85–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozcan, L., Ergin, A. S., Lu, A., Chung, J., Sarkar, S., Nie, D., Myers, M. G., Jr., & Ozcan, U. (2009). Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metabolism, 9, 35–51.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, B. K., Steensberg, A., Fischer, C., Keller, C., Keller, P., Plomgaard, P., Wolsk-Petersen, E., & Febbraio, M. (2004). The metabolic role of IL-6 produced during exercise: Is IL-6 an exercise factor? The Proceedings of the Nutrition Society, 63, 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Perry, R. J., Zhang, X. M., Zhang, D., Kumashiro, N., Camporez, J. P., Cline, G. W., Rothman, D. L., & Shulman, G. I. (2014). Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nature Medicine, 20, 759–763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry, R. J., Camporez, J. P., Kursawe, R., Titchenell, P. M., Zhang, D., Perry, C. J., Jurczak, M. J., Abudukadier, A., Han, M. S., Zhang, X. M., et al. (2015). Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell, 160, 745–758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pessin, J. E., & Saltiel, A. R. (2000). Signaling pathways in insulin action: Molecular targets of insulin resistance. The Journal of Clinical Investigation, 106, 165–169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phalitakul, S., Okada, M., Hara, Y., & Yamawaki, H. (2011). Vaspin prevents TNF-alpha-induced intracellular adhesion molecule-1 via inhibiting reactive oxygen species-dependent NF-kappaB and PKCtheta activation in cultured rat vascular smooth muscle cells. Pharmacological Research, 64, 493–500.

    Article  PubMed  CAS  Google Scholar 

  • Qi, L., van Dam, R. M., Meigs, J. B., Manson, J. E., Hunter, D., & Hu, F. B. (2006a). Genetic variation in IL6 gene and type 2 diabetes: Tagging-SNP haplotype analysis in large-scale case-control study and meta-analysis. Human Molecular Genetics, 15, 1914–1920.

    Article  PubMed  CAS  Google Scholar 

  • Qi, Y., Nie, Z., Lee, Y. S., Singhal, N. S., Scherer, P. E., Lazar, M. A., & Ahima, R. S. (2006b). Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes, 55, 3083–3090.

    Article  PubMed  CAS  Google Scholar 

  • Qi, D., Tang, X., He, J., Wang, D., Zhao, Y., Deng, W., Deng, X., Zhou, G., Xia, J., Zhong, X., et al. (2016). Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism. Cell Death & Disease, e2360, 7.

    Google Scholar 

  • Quan, W., Kim, H. K., Moon, E. Y., Kim, S. S., Choi, C. S., Komatsu, M., Jeong, Y. T., Lee, M. K., Kim, K. W., Kim, M. S., et al. (2012). Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology, 153, 1817–1826.

    Article  PubMed  CAS  Google Scholar 

  • Ramnanan, C. J., Edgerton, D. S., Rivera, N., Irimia-Dominguez, J., Farmer, B., Neal, D. W., Lautz, M., Donahue, E. P., Meyer, C. M., Roach, P. J., et al. (2010). Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes, 59, 1302–1311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravussin, E., & Galgani, J. E. (2011). The implication of brown adipose tissue for humans. Annual Review of Nutrition, 31, 33–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebrin, K., Steil, G. M., Mittelman, S. D., & Bergman, R. N. (1996). Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. The Journal of Clinical Investigation, 98, 741–749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology, 7, 885–896.

    Article  PubMed  CAS  Google Scholar 

  • Rui, L., Yuan, M., Frantz, D., Shoelson, S., & White, M. F. (2002). SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. The Journal of Biological Chemistry, 277, 42394–42398.

    Article  PubMed  CAS  Google Scholar 

  • Samuel, V. T., & Shulman, G. I. (2012). Mechanisms for insulin resistance: Common threads and missing links. Cell, 148, 852–871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307, 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  • Sauter, N. S., Schulthess, F. T., Galasso, R., Castellani, L. W., & Maedler, K. (2008). The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology, 149, 2208–2218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savkur, R. S., Philips, A. V., & Cooper, T. A. (2001). Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nature Genetics, 29, 40–47.

    Article  PubMed  CAS  Google Scholar 

  • Schaffler, A., Neumeier, M., Herfarth, H., Furst, A., Scholmerich, J., & Buchler, C. (2005). Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochimica et Biophysica Acta, 1732, 96–102.

    Article  PubMed  CAS  Google Scholar 

  • Schenk, S., Saberi, M., & Olefsky, J. M. (2008). Insulin sensitivity: Modulation by nutrients and inflammation. The Journal of Clinical Investigation, 118, 2992–3002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scherer, P. E., Williams, S., Fogliano, M., Baldini, G., & Lodish, H. F. (1995). A novel serum protein similar to C1q, produced exclusively in adipocytes. The Journal of Biological Chemistry, 270, 26746–26749.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, H. S., Rakhshandehroo, M., van de Graaf, S. F., Venken, K., Koppen, A., Stienstra, R., Prop, S., Meerding, J., Hamers, N., Besra, G., et al. (2012). Natural killer T cells in adipose tissue prevent insulin resistance. The Journal of Clinical Investigation, 122, 3343–3354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulte, D. M., Muller, N., Neumann, K., Oberhauser, F., Faust, M., Gudelhofer, H., Brandt, B., Krone, W., & Laudes, M. (2012). Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects. PLoS One, 7, e32437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz, D. R., & Lazar, M. A. (2011). Human resistin: Found in translation from mouse to man. Trends in Endocrinology and Metabolism, 22, 259–265.

    PubMed  CAS  Google Scholar 

  • Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Scime, A., Devarakonda, S., Conroe, H. M., Erdjument-Bromage, H., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454, 961–967.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sell, H., Bluher, M., Kloting, N., Schlich, R., Willems, M., Ruppe, F., Knoefel, W. T., Dietrich, A., Fielding, B. A., Arner, P., et al. (2013). Adipose dipeptidyl peptidase-4 and obesity: Correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care, 36, 4083–4090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Senn, J. J., Klover, P. J., Nowak, I. A., Zimmers, T. A., Koniaris, L. G., Furlanetto, R. W., & Mooney, R. A. (2003). Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. The Journal of Biological Chemistry, 278, 13740–13746.

    Article  PubMed  CAS  Google Scholar 

  • Shah, O. J., & Hunter, T. (2006). Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Molecular and Cellular Biology, 26, 6425–6434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi, H., Kokoeva, M. V., Inouye, K., Tzameli, I., Yin, H., & Flier, J. S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of Clinical Investigation, 116, 3015–3025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimomura, I., Matsuda, M., Hammer, R. E., Bashmakov, Y., Brown, M. S., & Goldstein, J. L. (2000). Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Molecular Cell, 6, 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Shoelson, S. E., Lee, J., & Goldfine, A. B. (2006). Inflammation and insulin resistance. The Journal of Clinical Investigation, 116, 1793–1801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sleeman, M. W., Wortley, K. E., Lai, K. M., Gowen, L. C., Kintner, J., Kline, W. O., Garcia, K., Stitt, T. N., Yancopoulos, G. D., Wiegand, S. J., et al. (2005). Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nature Medicine, 11, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Solinas, G., & Karin, M. (2010). JNK1 and IKKbeta: Molecular links between obesity and metabolic dysfunction. The FASEB Journal, 24, 2596–2611.

    Article  PubMed  CAS  Google Scholar 

  • Souza, S. C., de Vargas, L. M., Yamamoto, M. T., Lien, P., Franciosa, M. D., Moss, L. G., & Greenberg, A. S. (1998). Overexpression of perilipin A and B blocks the ability of tumor necrosis factor alpha to increase lipolysis in 3T3-L1 adipocytes. The Journal of Biological Chemistry, 273, 24665–24669.

    Article  PubMed  CAS  Google Scholar 

  • Spranger, J., Kroke, A., Mohlig, M., Hoffmann, K., Bergmann, M. M., Ristow, M., Boeing, H., & Pfeiffer, A. F. (2003). Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes, 52, 812–817.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, T. L., Zanni, M. V., Johnsen, S., Rasheed, S., Makimura, H., Lee, H., Khor, V. K., Ahima, R. S., & Grinspoon, S. K. (2011). TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. The Journal of Clinical Endocrinology and Metabolism, 96, E146–E150.

    Article  PubMed  CAS  Google Scholar 

  • Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., Patel, H. R., Ahima, R. S., & Lazar, M. A. (2001). The hormone resistin links obesity to diabetes. Nature, 409, 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Steppan, C. M., Wang, J., Whiteman, E. L., Birnbaum, M. J., & Lazar, M. A. (2005). Activation of SOCS-3 by resistin. Molecular and Cellular Biology, 25, 1569–1575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stienstra, R., Joosten, L. A., Koenen, T., van Tits, B., van Diepen, J. A., van den Berg, S. A., Rensen, P. C., Voshol, P. J., Fantuzzi, G., Hijmans, A., et al. (2010). The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metabolism, 12, 593–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stienstra, R., Tack, C. J., Kanneganti, T. D., Joosten, L. A., & Netea, M. G. (2012). The inflammasome puts obesity in the danger zone. Cell Metabolism, 15, 10–18.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Q., Kiernan, U. A., Shi, L., Phillips, D. A., Kahn, B. B., Hu, F. B., Manson, J. E., Albert, C. M., & Rexrode, K. M. (2013). Plasma retinol-binding protein 4 (RBP4) levels and risk of coronary heart disease: A prospective analysis among women in the nurses' health study. Circulation, 127, 1938–1947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talukdar, S., Oh, D. Y., Bandyopadhyay, G., Li, D., Xu, J., McNelis, J., Lu, M., Li, P., Yan, Q., Zhu, Y., et al. (2012). Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. In Nat Med.

    Google Scholar 

  • Tan, B. K., Adya, R., Farhatullah, S., Chen, J., Lehnert, H., & Randeva, H. S. (2010). Metformin treatment may increase omentin-1 levels in women with polycystic ovary syndrome. Diabetes, 59, 3023–3031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang, Q. Q., & Lane, M. D. (2012). Adipogenesis: From stem cell to adipocyte. Annual Review of Biochemistry, 81, 715–736.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, C. M., Emanuelli, B., & Kahn, C. R. (2006). Critical nodes in signalling pathways: Insights into insulin action. Nature Reviews. Molecular Cell Biology, 7, 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Tatemoto, K., Hosoya, M., Habata, Y., Fujii, R., Kakegawa, T., Zou, M. X., Kawamata, Y., Fukusumi, S., Hinuma, S., Kitada, C., et al. (1998). Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochemical and Biophysical Research Communications, 251, 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Than, A., He, H. L., Chua, S. H., Xu, D., Sun, L., Leow, M. K., & Chen, P. (2015). Apelin enhances brown adipogenesis and browning of white adipocytes. The Journal of Biological Chemistry, 290, 14679–14691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiemessen, M. M., Jagger, A. L., Evans, H. G., van Herwijnen, M. J., John, S., & Taams, L. S. (2007). CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proceedings of the National Academy of Sciences of the United States of America, 104, 19446–19451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timmons, J. A., Wennmalm, K., Larsson, O., Walden, T. B., Lassmann, T., Petrovic, N., Hamilton, D. L., Gimeno, R. E., Wahlestedt, C., Baar, K., et al. (2007). Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proceedings of the National Academy of Sciences of the United States of America, 104, 4401–4406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Townsend, K. L., Suzuki, R., Huang, T. L., Jing, E., Schulz, T. J., Lee, K., Taniguchi, C. M., Espinoza, D. O., McDougall, L. E., Zhang, H., et al. (2012). Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. The FASEB Journal, 26, 2187–2196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tran, K. V., Gealekman, O., Frontini, A., Zingaretti, M. C., Morroni, M., Giordano, A., Smorlesi, A., Perugini, J., De Matteis, R., Sbarbati, A., et al. (2012). The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metabolism, 15, 222–229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y. C., Tsubokawa, M., et al. (1985). Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature, 313, 756–761.

    Article  PubMed  CAS  Google Scholar 

  • Uysal, K. T., Wiesbrock, S. M., Marino, M. W., & Hotamisligil, G. S. (1997). Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature, 389, 610–614.

    Article  CAS  PubMed  Google Scholar 

  • Villarroya, F., Cereijo, R., Villarroya, J., & Giralt, M. (2017). Brown adipose tissue as a secretory organ. Nature Reviews. Endocrinology, 13, 26–35.

    Article  PubMed  CAS  Google Scholar 

  • von Holstein-Rathlou, S., BonDurant, L. D., Peltekian, L., Naber, M. C., Yin, T. C., Claflin, K. E., Urizar, A. I., Madsen, A. N., Ratner, C., Holst, B., et al. (2016). FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metabolism, 23, 335–343.

    Article  CAS  Google Scholar 

  • Waki, H., & Tontonoz, P. (2007). Endocrine functions of adipose tissue. Annual Review of Pathology, 2, 31–56.

    Article  PubMed  CAS  Google Scholar 

  • Wallenius, V., Wallenius, K., Ahren, B., Rudling, M., Carlsten, H., Dickson, S. L., Ohlsson, C., & Jansson, J. O. (2002). Interleukin-6-deficient mice develop mature-onset obesity. Nature Medicine, 8, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Krinks, M., Lin, K., Luyten, F. P., & Moos, M., Jr. (1997). Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell, 88, 757–766.

    Article  PubMed  CAS  Google Scholar 

  • Weisberg, S. P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., Charo, I., Leibel, R. L., & Ferrante, A. W., Jr. (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. The Journal of Clinical Investigation, 116, 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M. T., Brickey, W. J., & Ting, J. P. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology, 12, 408–415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wijesekara, N., Konrad, D., Eweida, M., Jefferies, C., Liadis, N., Giacca, A., Crackower, M., Suzuki, A., Mak, T. W., Kahn, C. R., et al. (2005). Muscle-specific Pten deletion protects against insulin resistance and diabetes. Molecular and Cellular Biology, 25, 1135–1145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilk, S., Scheibenbogen, C., Bauer, S., Jenke, A., Rother, M., Guerreiro, M., Kudernatsch, R., Goerner, N., Poller, W., Elligsen-Merkel, D., et al. (2011). Adiponectin is a negative regulator of antigen-activated T cells. European Journal of Immunology, 41, 2323–2332.

    Article  PubMed  CAS  Google Scholar 

  • Wilk, S., Jenke, A., Stehr, J., Yang, C. A., Bauer, S., Goldner, K., Kotsch, K., Volk, H. D., Poller, W., Schultheiss, H. P., et al. (2013). Adiponectin modulates NK-cell function. European Journal of Immunology, 43, 1024–1033.

    Article  PubMed  CAS  Google Scholar 

  • Winer, S., Paltser, G., Chan, Y., Tsui, H., Engleman, E., Winer, D., & Dosch, H. M. (2009a). Obesity predisposes to Th17 bias. European Journal of Immunology, 39, 2629–2635.

    Article  PubMed  CAS  Google Scholar 

  • Winer, S., Chan, Y., Paltser, G., Truong, D., Tsui, H., Bahrami, J., Dorfman, R., Wang, Y., Zielenski, J., Mastronardi, F., et al. (2009b). Normalization of obesity-associated insulin resistance through immunotherapy. Nature Medicine, 15, 921–929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winer, D. A., Winer, S., Shen, L., Wadia, P. P., Yantha, J., Paltser, G., Tsui, H., Wu, P., Davidson, M. G., Alonso, M. N., et al. (2011). B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nature Medicine, 17, 610–617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wittamer, V., Franssen, J. D., Vulcano, M., Mirjolet, J. F., Le Poul, E., Migeotte, I., Brezillon, S., Tyldesley, R., Blanpain, C., Detheux, M., et al. (2003). Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. The Journal of Experimental Medicine, 198, 977–985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, D., Molofsky, A. B., Liang, H. E., Ricardo-Gonzalez, R. R., Jouihan, H. A., Bando, J. K., Chawla, A., & Locksley, R. M. (2011). Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science, 332, 243–247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, J., Bostrom, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A. H., Khandekar, M., Virtanen, K. A., Nuutila, P., Schaart, G., et al. (2012a). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 150, 366–376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, L., Parekh, V. V., Gabriel, C. L., Bracy, D. P., Marks-Shulman, P. A., Tamboli, R. A., Kim, S., Mendez-Fernandez, Y. V., Besra, G. S., Lomenick, J. P., et al. (2012b). Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proceedings of the National Academy of Sciences of the United States of America, 109, E1143–E1152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, A., Wang, Y., Keshaw, H., Xu, L. Y., Lam, K. S., & Cooper, G. J. (2003). The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. The Journal of Clinical Investigation, 112, 91–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine, 8, 1288–1295.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Q., Graham, T. E., Mody, N., Preitner, F., Peroni, O. D., Zabolotny, J. M., Kotani, K., Quadro, L., & Kahn, B. B. (2005). Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436, 356–362.

    Article  PubMed  CAS  Google Scholar 

  • Yang, R. Z., Lee, M. J., Hu, H., Pray, J., Wu, H. B., Hansen, B. C., Shuldiner, A. R., Fried, S. K., McLenithan, J. C., & Gong, D. W. (2006). Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. American Journal of Physiology. Endocrinology and Metabolism, 290, E1253–E1261.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, T., Oritani, K., Takahashi, I., Ishikawa, J., Matsuyama, A., Ouchi, N., Kihara, S., Funahashi, T., Tenner, A. J., Tomiyama, Y., et al. (2000). Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood, 96, 1723–1732.

    PubMed  CAS  Google Scholar 

  • Youn, B. S., Kloting, N., Kratzsch, J., Lee, N., Park, J. W., Song, E. S., Ruschke, K., Oberbach, A., Fasshauer, M., Stumvoll, M., et al. (2008). Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes, 57, 372–377.

    Article  PubMed  CAS  Google Scholar 

  • Yue, P., Jin, H., Aillaud, M., Deng, A. C., Azuma, J., Asagami, T., Kundu, R. K., Reaven, G. M., Quertermous, T., & Tsao, P. S. (2010). Apelin is necessary for the maintenance of insulin sensitivity. American Journal of Physiology. Endocrinology and Metabolism, 298, E59–E67.

    Article  PubMed  CAS  Google Scholar 

  • Yue, P., Jin, H., Xu, S., Aillaud, M., Deng, A. C., Azuma, J., Kundu, R. K., Reaven, G. M., Quertermous, T., & Tsao, P. S. (2011). Apelin decreases lipolysis via G(q), G(i), and AMPK-dependent mechanisms. Endocrinology, 152, 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F., & Kalluri, R. (2003). BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nature Medicine, 9, 964–968.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. H., Halbleib, M., Ahmad, F., Manganiello, V. C., & Greenberg, A. S. (2002). Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes, 51, 2929–2935.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Zhang, G., Zhang, H., Karin, M., Bai, H., & Cai, D. (2008). Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell, 135, 61–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, C., Shao, M., Yang, H., Chen, L., Yu, L., Cong, W., Tian, H., Zhang, F., Cheng, P., Jin, L., et al. (2013). Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation. PLoS One, e82275, 8.

    Google Scholar 

  • Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455, 627–632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuge, F., Ni, Y., Nagashimada, M., Nagata, N., Xu, L., Mukaida, N., Kaneko, S., & Ota, T. (2016). DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes, 65, 2966–2979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Pessin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kwon, H., Pessin, J.E. (2018). Adipokines, Inflammation, and Insulin Resistance in Obesity. In: Nillni, E. (eds) Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function. Springer, Cham. https://doi.org/10.1007/978-3-319-89506-2_9

Download citation

Publish with us

Policies and ethics