Skip to main content
  • 821 Accesses

Abstract

The hypothalamus is an important center for coordinating mammalian physiology and maintenance of homeostasis. Accordingly, the hypothalamus regulates feeding, body temperature, energy expenditure, glucose metabolism, thirst, blood pressure, reproductive axis, and other metabolic functions associated with the overall metabolism. At the central level, the hypothalamus is the primary component of the nervous system in interpreting adiposity and nutrient-related inputs; it delivers hormonal and behavioral responses with the ultimate purpose of regulating body weight, food intake, and energy consumption (Williams et al. 2001; Wardlaw 2011; Toorie and Nillni 2014). Among the hormonal inputs that feed into the hypothalamic circuitries are adipose tissue-derived hormone leptin and adiponectin, pancreatic hormone insulin, and several hormones secreted by the gastrointestinal tract, such as ghrelin. The activity of the hypothalamic feeding centers is also responsive to basic nutrients including glucose, amino acids, and fatty acids besides other metabolites, such as ketone bodies. Much like the hypothalamus acting at the organismal level to regulate homeostasis by integrating such hormonal and nutritional signals, there are evolutionarily conserved proteins and protein complexes that act at the cellular level as “nutrient sensors” that couple cellular energetics to downstream pathways to regulate various cellular functions. The activity of these nutrient sensors in key hypothalamic feeding centers plays a major role in the regulation of energy balance and glucose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adan, R. A. H., Tiesjema, B., Hillebrand, J. J. G., la Fleur, S. E., Kas, M. J. H., & de Krom, M. (2006). The MC4 receptor and control of appetite. British Journal of Pharmacology, 149(7), 815–827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aguilera, G., Subburaju, S., Young, S., & Chen, J. (2008). The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Progress in Brain Research, 170, 29–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akieda-Asai, S., Zaima, N., Ikegami, K., Kahyo, T., & Yao, I. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kγ [subscript gamma] Activity through Deacetylation of Specific Lysine Residues in …. 2010. Available at: https://dspace.mit.edu/handle/1721.1/60353.

  • Aksoy, P., White, T. A., Thompson, M., & Chini, E. N. (2006a). Regulation of intracellular levels of NAD: A novel role for CD38. Biochemical and Biophysical Research Communications, 345(4), 1386–1392.

    Article  PubMed  CAS  Google Scholar 

  • Aksoy, P., Escande, C., White, T. A., Thompson, M., Soares, S., Benech, J. C., & Chini, E. N. (2006b). Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38. Biochemical and Biophysical Research Communications, 349(1), 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Al-Qassab, H., Smith, M. A., Irvine, E. E., Guillermet-Guibert, J., Claret, M., Choudhury, A. I., Selman, C., Piipari, K., Clements, M., Lingard, S., Chandarana, K., Bell, J. D., Barsh, G. S., Smith, A. J. H., Batterham, R. L., Ashford, M. L. J., Vanhaesebroeck, B., & Withers, D. J. (2009). Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metabolism, 10(5), 343–354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson, K. A., Ribar, T. J., Lin, F., Noeldner, P. K., Green, M. F., Muehlbauer, M. J., Witters, L. A., Kemp, B. E., & Means, A. R. (2008). Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metabolism, 7(5), 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, E. J. P., Çakir, I., Carrington, S. J., Cone, R. D., Ghamari-Langroudi, M., Gillyard, T., Gimenez, L. E., & Litt, M. J. (2016). 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. Journal of Molecular Endocrinology, 56(4), T157–T174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson, K. A., Huynh, F. K., Fisher-Wellman, K., Stuart, J. D., Peterson, B. S., Douros, J. D., Wagner, G. R., Thompson, J. W., Madsen, A. S., Green, M. F., Sivley, R. M., Ilkayeva, O. R., Stevens, R. D., Backos, D. S., Capra, J. A., Olsen, C. A., Campbell, J. E., Muoio, D. M., Grimsrud, P. A., & Hirschey, M. D. (2017). SIRT4 is a lysine Deacylase that controls leucine metabolism and insulin secretion. Cell Metabolism, 25(4), 838–855.e15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersson, U., Filipsson, K., Abbott, C. R., Woods, A., Smith, K., Bloom, S. R., Carling, D., & Small, C. J. (2004). AMP-activated protein kinase plays a role in the control of food intake. The Journal of Biological Chemistry, 279(13), 12005–12008.

    Article  PubMed  CAS  Google Scholar 

  • Araki, T., Sasaki, Y., & Milbrandt, J. (2004). Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science, 305(5686), 1010–1013.

    Article  PubMed  CAS  Google Scholar 

  • Asher, G., Gatfield, D., Stratmann, M., Reinke, H., Dibner, C., Kreppel, F., Mostoslavsky, R., Alt, F. W., & Schibler, U. (2008). SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell, 134(2), 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Barbosa, M. T. P., Soares, S. M., Novak, C. M., Sinclair, D., Levine, J. A., Aksoy, P., & Chini, E. N. (2007). The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. The FASEB Journal, 21(13), 3629–3639.

    Article  PubMed  CAS  Google Scholar 

  • Bar-Peled, L., Schweitzer, L. D., Zoncu, R., & Sabatini, D. M. (2012). Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 150(6), 1196–1208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bates, S. H., Stearns, W. H., Dundon, T. A., Schubert, M., Tso, A. W. K., Wang, Y., Banks, A. S., Lavery, H. J., Haq, A. K., Maratos-Flier, E., Neel, B. G., Schwartz, M. W., & Myers, M. G., Jr. (2003). STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature, 421(6925), 856–859.

    Article  PubMed  CAS  Google Scholar 

  • Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., Prabhu, V. V., Allard, J. S., Lopez-Lluch, G., Lewis, K., Pistell, P. J., Poosala, S., Becker, K. G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G., Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., de Cabo, R., & Sinclair, D. A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 444(7117), 337–342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beiroa, D., Imbernon, M., Gallego, R., Senra, A., Herranz, D., Villarroya, F., Serrano, M., Fernø, J., Salvador, J., Escalada, J., Dieguez, C., Lopez, M., Frühbeck, G., & Nogueiras, R. (2014). GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes, 63(10), 3346–3358.

    Article  PubMed  CAS  Google Scholar 

  • Belgardt, B. F., Husch, A., Rother, E., Ernst, M. B., Wunderlich, F. T., Hampel, B., Klöckener, T., Alessi, D., Kloppenburg, P., & Brüning, J. C. (2008). PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metabolism, 7(4), 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Benjannet, S., Rondeau, N., Day, R., Chrétien, M., & Seidah, N. G. (1991). PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proceedings of the National Academy of Sciences of the United States of America, 88(9), 3564–3568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benoit, S. C., Air, E. L., Coolen, L. M., Strauss, R., Jackman, A., Clegg, D. J., Seeley, R. J., & Woods, S. C. (2002). The catabolic action of insulin in the brain is mediated by melanocortins. The Journal of Neuroscience, 22(20), 9048–9052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Sahra, I., Howell, J. J., Asara, J. M., & Manning, B. D. (2013). Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science, 339(6125), 1323–1328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M., & Manning, B. D. (2016). mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science, 351(6274), 728–733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blander, G., & Guarente, L. (2004). The Sir2 family of protein deacetylases. Annual Review of Biochemistry, 73, 417–435.

    Article  PubMed  CAS  Google Scholar 

  • Blouet, C., Ono, H., & Schwartz, G. J. (2008). Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metabolism, 8(6), 459–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bordone, L., & Guarente, L. (2005). Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nature Reviews. Molecular Cell Biology, 6(4), 298–305.

    Article  PubMed  CAS  Google Scholar 

  • Bordone, L., Motta, M. C., Picard, F., Robinson, A., Jhala, U. S., Apfeld, J., McDonagh, T., Lemieux, M., McBurney, M., Szilvasi, A., Easlon, E. J., Lin, S.-J., & Guarente, L. (2006). Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biology, 4(2), e31.

    Article  PubMed  CAS  Google Scholar 

  • Bordone, L., Cohen, D., Robinson, A., Motta, M. C., van Veen, E., Czopik, A., Steele, A. D., Crowe, H., Marmor, S., Luo, J., Gu, W., & Guarente, L. (2007a). SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell, 6(6), 759–767.

    Article  PubMed  CAS  Google Scholar 

  • Bordone, L., Guarente - Diabetes L., & Metabolism O. (2007b). Sirtuins and β‐cell function. Wiley Online Library 2007. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1463-1326.2007.00769.x/full.

  • Brakch, N., Galanopoulou, A. S., Patel, Y. C., Boileau, G., & Seidah, N. G. (1995). Comparative proteolytic processing of rat prosomatostatin by the convertases PC1, PC2, furin, PACE4 and PC5 in constitutive and regulated secretory pathways. FEBS Letters, 362(2), 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Brar, B., Sanderson, T., Wang, N., & Lowry, P. J. (1997). Post-translational processing of human procorticotrophin-releasing factor in transfected mouse neuroblastoma and Chinese hamster ovary cell lines. The Journal of Endocrinology, 154(3), 431–440.

    Article  PubMed  CAS  Google Scholar 

  • Breslin, M. B., Lindberg, I., Benjannet, S., & Mathis - Journal of Biological … JP. (1993). Differential processing of proenkephalin by prohormone convertases 1 (3) and 2 and furin. ASBMB 1993. Available at: http://www.jbc.org/content/268/36/27084.short.

  • Brooks, C. L., & Gu, W. (2009). How does SIRT1 affect metabolism, senescence and cancer? Nature Reviews. Cancer, 9(2), 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Cakir, I., Perello, M., Lansari, O., Messier, N. J., Vaslet, C. A., & Nillni, E. A. (2009). Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One, 4(12), e8322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cakir, I., Cyr, N. E., Perello, M., Litvinov, B. P., Romero, A., Stuart, R. C., & Nillni, E. A. (2013). Obesity induces hypothalamic endoplasmic reticulum stress and impairs proopiomelanocortin (POMC) post-translational processing. The Journal of Biological Chemistry, 288(24), 17675–17688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantó, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P., & Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 458(7241), 1056–1060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantó, C., Houtkooper, R. H., Pirinen, E., Youn, D. Y., Oosterveer, M. H., Cen, Y., Fernandez-Marcos, P. J., Yamamoto, H., Andreux, P. A., Cettour-Rose, P., Gademann, K., Rinsch, C., Schoonjans, K., Sauve, A. A., & Auwerx, J. (2012). The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metabolism, 15(6), 838–847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao, J., Papadopoulou, N., Kempuraj, D., Boucher, W. S., Sugimoto, K., Cetrulo, C. L., & Theoharides, T. C. (2005). Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. Journal of Immunology, 174(12), 7665–7675.

    Article  CAS  Google Scholar 

  • Caron, A., Labbé, S. M., Lanfray, D., Blanchard, P.-G., Villot, R., Roy, C., Sabatini, D. M., Richard, D., & Laplante, M. (2016a). Mediobasal hypothalamic overexpression of DEPTOR protects against high-fat diet-induced obesity. Molecular Metabolism, 5(2), 102–112.

    Article  PubMed  CAS  Google Scholar 

  • Caron, A., Labbé, S. M., Mouchiroud, M., Huard, R., Lanfray, D., Richard, D., & Laplante, M. (2016b). DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 310(11), R1322–R1331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro, M., Lowenstein, P., Glynn, B., Hannah, M., Linton, E., & Lowry, P. (1991). Post-translational processing and regulated release of corticotropin-releasing hormone (CRH) in AtT20 cells expressing the human proCRH gene. Biochemical Society Transactions, 19(3), 246S.

    Article  PubMed  CAS  Google Scholar 

  • Chalkiadaki, A., & Guarente, L. (2012). High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metabolism, 16(2), 180–188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Challis, B. G., Pritchard, L. E., & Creemers - Human molecular … J. (2002). A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel …. academic.oup.com 2002. Available at: https://academic.oup.com/hmg/article-abstract/11/17/1997/589952.

  • Chang, H.-C., & Guarente, L. (2013). SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell, 153(7), 1448–1460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang, H.-C., & Guarente, L. (2014). SIRT1 and other sirtuins in metabolism. Trends in Endocrinology and Metabolism, 25(3), 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Chantranupong, L., Scaria, S. M., Saxton, R. A., Gygi, M. P., Shen, K., Wyant, G. A., Wang, T., Harper, J. W., Gygi, S. P., & Sabatini, D. M. (2016). The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell, 165(1), 153–164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Y., Wu, R., Chen, H.-Z., Xiao, Q., Wang, W.-J., He, J.-P., Li, X.-X., Yu, X.-W., Li, L., Wang, P., Wan, X.-C., Tian, X.-H., Li, S.-J., Yu, X., & Wu, Q. (2015). Enhancement of hypothalamic STAT3 acetylation by nuclear receptor Nur77 dictates leptin sensitivity. Diabetes, 64(6), 2069–2081.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, X.-B., Wen, J.-P., Yang, J., Yang, Y., Ning, G., & Li, X.-Y. (2011). GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine, 39(1), 6–12.

    Article  PubMed  CAS  Google Scholar 

  • Chikahisa, S., Fujiki, N., Kitaoka, K., Shimizu, N., & Séi, H. (2009). Central AMPK contributes to sleep homeostasis in mice. Neuropharmacology, 57(4), 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Choudhury, A. I., Heffron, H., Smith, M. A., Al-Qassab, H., Xu, A. W., Selman, C., Simmgen, M., Clements, M., Claret, M., Maccoll, G., Bedford, D. C., Hisadome, K., Diakonov, I., Moosajee, V., Bell, J. D., Speakman, J. R., Batterham, R. L., Barsh, G. S., Ashford, M. L. J., & Withers, D. J. (2005). The role of insulin receptor substrate 2 in hypothalamic and beta cell function. The Journal of Clinical Investigation, 115(4), 940–950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chrousos, G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England Journal of Medicine, 332(20), 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  • Claret, M., Smith, M. A., Batterham, R. L., Selman, C., Choudhury, A. I., Fryer, L. G. D., Clements, M., Al-Qassab, H., Heffron, H., Xu, A. W., Speakman, J. R., Barsh, G. S., Viollet, B., Vaulont, S., Ashford, M. L. J., Carling, D., & Withers, D. J. (2007). AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. The Journal of Clinical Investigation, 117(8), 2325–2336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Claret, M., Smith, M. A., Knauf, C., Al-Qassab, H., Woods, A., Heslegrave, A., Piipari, K., Emmanuel, J. J., Colom, A., Valet, P., Cani, P. D., Begum, G., White, A., Mucket, P., Peters, M., Mizuno, K., Batterham, R. L., Giese, K. P., Ashworth, A., Burcelin, R., Ashford, M. L., Carling, D., & Withers, D. J. (2011). Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes, 60(3), 735–745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen, H. Y., Miller, C., Bitterman, K. J., Wall, N. R., Hekking, B., Kessler, B., Howitz, K. T., Gorospe, M., de Cabo, R., & Sinclair, D. A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 305(5682), 390–392.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G., & Guarente, L. P. (2009). Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes & Development, 23(24), 2812–2817.

    Article  CAS  Google Scholar 

  • Cone, R. D. (2005). Anatomy and regulation of the central melanocortin system. Nature Neuroscience, 8(5), 571–578.

    Article  PubMed  CAS  Google Scholar 

  • Constam, D. B., Calfon, M., & Robertson, E. J. (1996). SPC4, SPC6, and the novel protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during embryogenesis. The Journal of Cell Biology, 134(1), 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Cota, D., Proulx, K., Smith, K. A. B., Kozma, S. C., Thomas, G., Woods, S. C., & Seeley, R. J. (2006). Hypothalamic mTOR signaling regulates food intake. Science, 312(5775), 927–930.

    Article  PubMed  CAS  Google Scholar 

  • Cota, D., Matter, E. K., Woods, S. C., & Seeley, R. J. (2008). The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. The Journal of Neuroscience, 28(28), 7202–7208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cottrell, E. C., & Ozanne, S. E. (2008). Early life programming of obesity and metabolic disease. Physiology & Behavior, 94(1), 17–28.

    Article  CAS  Google Scholar 

  • Coupé, B., Ishii, Y., Dietrich, M. O., Komatsu, M., Horvath, T. L., & Bouret, S. G. (2012). Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metabolism, 15(2), 247–255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cowley, M. A., Smart, J. L., Rubinstein, M., Cerdán, M. G., Diano, S., Horvath, T. L., Cone, R. D., & Low, M. J. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411(6836), 480–484.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, D. E., & Schwartz, M. W. (2000). Melanocortins and body weight: A tale of two receptors. Nature Genetics, 26(1), 8–9.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, J. T., Rodgers, J. T., Arlow, D. H., Vazquez, F., Mootha, V. K., & Puigserver, P. (2007). mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature, 450(7170), 736–740.

    Article  PubMed  CAS  Google Scholar 

  • Cyr, N. E., Toorie, A. M., Steger, J. S., Sochat, M. M., Hyner, S., Perello, M., Stuart, R., & Nillni, E. A. (2013). Mechanisms by which the orexigen NPY regulates anorexigenic α-MSH and TRH. American Journal of Physiology. Endocrinology and Metabolism, 304(6), E640–E650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cyr, N. E., Steger, J. S., Toorie, A. M., Yang, J. Z., & Stuart, R. (2014). Central Sirt1 regulates body weight and energy expenditure along with the POMC-derived peptide α-MSH and the processing enzyme CPE production in diet- …. press.endocrine.org 2014. Available at: http://press.endocrine.org/doi/pdf/10.1210/en.2013-1998.

  • da Silva Xavier, G., Farhan, H., Kim, H., Caxaria, S., Johnson, P., Hughes, S., Bugliani, M., Marselli, L., Marchetti, P., Birzele, F., Sun, G., Scharfmann, R., Rutter, J., Siniakowicz, K., Weir, G., Parker, H., Reimann, F., Gribble, F. M., & Rutter, G. A. (2011). Per-arnt-Sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia, 54(4), 819–827.

    Article  PubMed  CAS  Google Scholar 

  • Dagon, Y., Hur, E., Zheng, B., Wellenstein, K., Cantley, L. C., & Kahn, B. B. (2012). p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake. Cell Metabolism, 16(1), 104–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dasgupta, M., Unal, H., Willard, B., Yang, J., Karnik, S. S., & Stark, G. R. (2014). Critical role for lysine 685 in gene expression mediated by transcription factor unphosphorylated STAT3. The Journal of Biological Chemistry, 289(44), 30763–30771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Ruijter, A. J. M., van Gennip, A. H., Caron, H. N., Kemp, S., & van Kuilenburg, A. B. P. (2003). Histone deacetylases (HDACs): Characterization of the classical HDAC family. The Biochemical Journal, 370(Pt 3), 737–749.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeMille, D., & Grose, J. H. (2013). PAS kinase: A nutrient sensing regulator of glucose homeostasis. IUBMB Life, 65(11), 921–929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng, X.-Q., Chen, L.-L., & Li, N.-X. (2007). The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver International, 27(5), 708–715.

    Article  PubMed  CAS  Google Scholar 

  • Dey, A., Xhu, X., Carroll, R., Turck, C. W., Stein, J., & Steiner, D. F. (2003). Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3. The Journal of Biological Chemistry, 278(17), 15007–15014.

    Article  PubMed  CAS  Google Scholar 

  • Dey, A., Norrbom, C., Zhu, X., Stein, J., Zhang, C., Ueda, K., & Steiner, D. F. (2004). Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone. Endocrinology, 145(4), 1961–1971.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, M. O., Antunes, C., Geliang, G., Liu, Z.-W., Borok, E., Nie, Y., Xu, A. W., Souza, D. O., Gao, Q., Diano, S., Gao, X.-B., & Horvath, T. L. (2010). Agrp neurons mediate Sirt1’s action on the melanocortin system and energy balance: Roles for Sirt1 in neuronal firing and synaptic plasticity. The Journal of Neuroscience, 30(35), 11815–11825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., Choi, B. H., He, B., Chen, W., Zhang, S., Cerione, R. A., Auwerx, J., Hao, Q., & Lin, H. (2011). Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 334(6057), 806–809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong W1., Seidel B., Marcinkiewicz M., Chrétien M., Seidah NG., Day R. (1997). Cellular localization of the prohormone convertases in the hypothalamic paraventricular and supraoptic nuclei: selective regulation of PC1 in corticotrophin-releasing hormone parvocellular neurons mediated by glucocorticoids. J Neurosci. 15;17(2):563–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Düvel, K., Yecies, J. L., Menon, S., Raman, P., Lipovsky, A. I., Souza, A. L., Triantafellow, E., Ma, Q., Gorski, R., Cleaver, S., Vander Heiden, M. G., MacKeigan, J. P., Finan, P. M., Clish, C. B., Murphy, L. O., & Manning, B. D. (2010). Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Molecular Cell, 39(2), 171–183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S., Kohnz, R. A., Mair, W., Vasquez, D. S., Joshi, A., Gwinn, D. M., Taylor, R., Asara, J. M., Fitzpatrick, J., Dillin, A., Viollet, B., Kundu, M., Hansen, M., & Shaw, R. J. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 331(6016), 456–461.

    Article  PubMed  CAS  Google Scholar 

  • Elson, A. E., & Simerly, R. B. (2015). Developmental specification of metabolic circuitry. Frontiers in Neuroendocrinology, 39, 38–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ernst, M. B., Wunderlich, C. M., Hess, S., Paehler, M., Mesaros, A., Koralov, S. B., Kleinridders, A., Husch, A., Münzberg, H., Hampel, B., Alber, J., Kloppenburg, P., Brüning, J. C., & Wunderlich, F. T. (2009). Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. The Journal of Neuroscience, 29(37), 11582–11593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox, D. L., & Good, D. J. (2008). Nescient helix-loop-helix 2 interacts with signal transducer and activator of transcription 3 to regulate transcription of prohormone convertase 1/3. Molecular Endocrinology, 22(6), 1438–1448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frescas, D., Valenti, L., & Accili, D. (2005). Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. The Journal of Biological Chemistry, 280(21), 20589–20595.

    Article  PubMed  CAS  Google Scholar 

  • Fricker, L. D., Berman, Y. L., Leiter, E. H., & Devi, L. A. (1996). Carboxypeptidase E activity is deficient in mice with the fat mutation: EFFECT ON PEPTIDE PROCESSING. The Journal of Biological Chemistry, 271(48), 30619–30624.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, T. C., Loh, Y. P., Cawley, N. X., Birch, N. P., Huang, S. S., Jackson, I. M., & Nillni, E. A. (1995). Processing of prothyrotropin-releasing hormone (pro-TRH) by bovine intermediate lobe secretory vesicle membrane PC1 and PC2 enzymes. Endocrinology, 136(10), 4462–4472.

    Article  PubMed  CAS  Google Scholar 

  • Fryer, L. G. D., Foufelle, F., Barnes, K., Baldwin, S. A., Woods, A., & Carling, D. (2002). Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. The Biochemical Journal, 363(Pt 1), 167–174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fulco, M., Schiltz, R. L., Iezzi, S., King, M. T., Zhao, P., Kashiwaya, Y., Hoffman, E., Veech, R. L., & Sartorelli, V. (2003). Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Molecular Cell, 12(1), 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Funato, H., Tsai, A. L., Willie, J. T., Kisanuki, Y., Williams, S. C., Sakurai, T., & Yanagisawa, M. (2009). Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metabolism, 9(1), 64–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funato, H., Oda, S., Yokofujita, J., Igarashi, H., & Kuroda, M. (2011). Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS One, 6(4), e18950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furuta, M., Yano, H., Zhou, A., Rouillé, Y., Holst, J. J., Carroll, R., Ravazzola, M., Orci, L., Furuta, H., & Steiner, D. F. (1997). Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 6646–6651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Füzesi, T., Wittmann, G., Liposits, Z., Lechan, R. M., & Fekete, C. (2007). Contribution of noradrenergic and adrenergic cell groups of the brainstem and agouti-related protein-synthesizing neurons of the arcuate nucleus to neuropeptide-y innervation of corticotropin-releasing hormone neurons in hypothalamic paraventricular nucleus of the rat. Endocrinology, 148(11), 5442–5450.

    Article  PubMed  CAS  Google Scholar 

  • Galanopoulou, A. S., Kent, G., Rabbani, S. N., Seidah, N. G., & Patel, Y. C. (1993). Heterologous processing of prosomatostatin in constitutive and regulated secretory pathways. Putative role of the endoproteases furin, PC1, and PC2. The Journal of Biological Chemistry, 268(8), 6041–6049.

    PubMed  CAS  Google Scholar 

  • Gan, X., Wang, J., Wang, C., Sommer, E., Kozasa, T., Srinivasula, S., Alessi, D., Offermanns, S., Simon, M. I., & Wu, D. (2012). PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα12. Nature Cell Biology, 14(7), 686–696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, Q., Wolfgang, M. J., Neschen, S., Morino, K., Horvath, T. L., Shulman, G. I., & Fu, X.-Y. (2004). Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4661–4666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, S., Kinzig, K. P., Aja, S., Scott, K. A., Keung, W., Kelly, S., Strynadka, K., Chohnan, S., Smith, W. W., Tamashiro, K. L. K., Ladenheim, E. E., Ronnett, G. V., Tu, Y., Birnbaum, M. J., Lopaschuk, G. D., & Moran, T. H. (2007). Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proceedings of the National Academy of Sciences of the United States of America, 104(44), 17358–17363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garfield, A. S., Shah, B. P., Burgess, C. R., Li, M. M., Li, C., Steger, J. S., Madara, J. C., Campbell, J. N., Kroeger, D., Scammell, T. E., Tannous, B. A., Myers, M. G., Jr., Andermann, M. L., Krashes, M. J., & Lowell, B. B. (2016). Dynamic GABAergic afferent modulation of AgRP neurons. Nature Neuroscience, 19(12), 1628–1635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh, H. S., McBurney, M., & Robbins, P. D. (2010). SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One, 5(2), e9199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill, J. F., Delezie, J., Santos, G., & Handschin, C. (2016). PGC-1α expression in murine AgRP neurons regulates food intake and energy balance. Molecular Metabolism, 5(7), 580–588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gillum, M. P., Kotas, M. E., Erion, D. M., Kursawe, R., Chatterjee, P., Nead, K. T., Muise, E. S., Hsiao, J. J., Frederick, D. W., Yonemitsu, S., Banks, A. S., Qiang, L., Bhanot, S., Olefsky, J. M., Sears, D. D., Caprio, S., & Shulman, G. I. (2011). SirT1 regulates adipose tissue inflammation. Diabetes, 60(12), 3235–3245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Good, D. J., Li, M., & Deater-Deckard, K. (2015). A genetic basis for motivated exercise. Exercise and Sport Sciences Reviews, 43(4), 231–237.

    Article  PubMed  Google Scholar 

  • Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E., & Shaw, R. J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell, 30(2), 214–226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagiwara, A., Cornu, M., Cybulski, N., Polak, P., Betz, C., Trapani, F., Terracciano, L., Heim, M. H., Rüegg, M. A., & Hall, M. N. (2012). Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metabolism, 15(5), 725–738.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, T. M., Breininger, J. F., Baskin, D. G., & Schwartz, M. W. (1998). Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neuroscience, 1(4), 271–272.

    Article  PubMed  CAS  Google Scholar 

  • Haigis, M. C., & Sinclair, D. A. (2010). Mammalian sirtuins: Biological insights and disease relevance. Annual Review of Pathology, 5, 253–295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao, H.-X., Cardon, C. M., Swiatek, W., Cooksey, R. C., Smith, T. L., Wilde, J., Boudina, S., Abel, E. D., McClain, D. A., & Rutter, J. (2007). PAS kinase is required for normal cellular energy balance. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15466–15471.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardie, D. G., & Pan, D. A. (2002). Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochemical Society Transactions, 30(Pt 6), 1064–1070.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, S. M., Guo, D.-F., Morgan, D. A., Fernandes-Santos, C., & Rahmouni, K. (2013). Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metabolism, 17(4), 599–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasegawa, K., Kawahara, T., Fujiwara, K., Shimpuku, M., Sasaki, T., Kitamura, T., & Yoshikawa, K. (2012). Necdin controls Foxo1 acetylation in hypothalamic arcuate neurons to modulate the thyroid axis. The Journal of Neuroscience, 32(16), 5562–5572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Mäkelä, T. P., Alessi, D. R., & Hardie, D. G. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. Journal of Biology, 2(4), 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., & Hardie, D. G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metabolism, 2(1), 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, S. A., Ross, F. A., Gowans, G. J., Tibarewal, P., Leslie, N. R., & Hardie, D. G. (2014). Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. The Biochemical Journal, 459(2), 275–287.

    Article  PubMed  CAS  Google Scholar 

  • Heathcote, H. R., Mancini, S. J., Strembitska, A., Jamal, K., Reihill, J. A., Palmer, T. M., Gould, G. W., & Salt, I. P. (2016). Protein kinase C phosphorylates AMP-activated protein kinase α1 Ser487. The Biochemical Journal, 473(24), 4681–4697.

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs, S. C., Menzaghi, F., Pich, E. M., Hauger, R. L., & Koob, G. F. (1993). Corticotropin-releasing factor in the paraventricular nucleus modulates feeding induced by neuropeptide Y. Brain Research, 611(1), 18–24.

    Article  PubMed  CAS  Google Scholar 

  • Henckens, M. J. A. G., Deussing, J. M., & Chen, A. (2016). Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nature Reviews. Neuroscience, 17(10), 636–651.

    Article  PubMed  CAS  Google Scholar 

  • Heuer, H., Maier, M. K., Iden, S., Mittag, J., Friesema, E. C. H., Visser, T. J., & Bauer, K. (2005). The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology, 146(4), 1701–1706.

    Article  PubMed  CAS  Google Scholar 

  • Hill, J. W., Williams, K. W., Ye, C., Luo, J., Balthasar, N., Coppari, R., Cowley, M. A., Cantley, L. C., Lowell, B. B., & Elmquist, J. K. (2008). Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. The Journal of Clinical Investigation, 118(5), 1796–1805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill, J. W., Xu, Y., Preitner, F., Fukuda, M., Cho, Y.-R., Luo, J., Balthasar, N., Coppari, R., Cantley, L. C., Kahn, B. B., Zhao, J. J., & Elmquist, J. K. (2009). Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology, 150(11), 4874–4882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hisahara, S., Chiba, S., Matsumoto, H., Tanno, M., Yagi, H., Shimohama, S., Sato, M., & Horio, Y. (2008). Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15599–15604.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou, X., Xu, S., Maitland-Toolan, K. A., Sato, K., Jiang, B., Ido, Y., Lan, F., Walsh, K., Wierzbicki, M., Verbeuren, T. J., Cohen, R. A., & Zang, M. (2008). SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. The Journal of Biological Chemistry, 283(29), 20015–20026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature Reviews. Molecular Cell Biology, 13(4), 225–238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu, Z., Cha, S. H., Chohnan, S., & Lane, M. D. (2003). Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12624–12629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, H., & Tindall, D. J. (2007). Dynamic FoxO transcription factors. Journal of Cell Science, 120(Pt 15), 2479–2487.

    Article  PubMed  CAS  Google Scholar 

  • Hurtado-Carneiro, V., Roncero, I., Blazquez, E., Alvarez, E., & Sanz, C. (2013). PAS kinase as a nutrient sensor in neuroblastoma and hypothalamic cells required for the normal expression and activity of other cellular nutrient and energy sensors. Molecular Neurobiology, 48(3), 904–920.

    Article  PubMed  CAS  Google Scholar 

  • Hurtado-Carneiro, V., Roncero, I., Egger, S. S., Wenger, R. H., Blazquez, E., Sanz, C., & Alvarez, E. (2014). PAS kinase is a nutrient and energy sensor in hypothalamic areas required for the normal function of AMPK and mTOR/S6K1. Molecular Neurobiology, 50(2), 314–326.

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim, N., Bosch, M. A., Smart, J. L., Qiu, J., Rubinstein, M., Rønnekleiv, O. K., Low, M. J., & Kelly, M. J. (2003). Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology, 144(4), 1331–1340.

    Article  PubMed  CAS  Google Scholar 

  • Inoki, K., Zhu, T., & Guan, K.-L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115(5), 577–590.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, A., Fairlie, D. P., & Brown, L. (2012). Lysine acetylation in obesity, diabetes and metabolic disease. Immunology and Cell Biology, 90(1), 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Rüegg, M. A., Hall, A., & Hall, M. N. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biology, 6(11), 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, R. S., Creemers, J. W., Ohagi, S., Raffin-Sanson, M. L., Sanders, L., Montague, C. T., Hutton, J. C., & O’Rahilly, S. (1997). Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature Genetics, 16(3), 303–306.

    Article  PubMed  CAS  Google Scholar 

  • Jäger, S., Handschin, C., St-Pierre, J., & Spiegelman, B. M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12017–12022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jang, M., & Romsos, D. R. (1998). Neuropeptide Y and corticotropin-releasing hormone concentrations within specific hypothalamic regions of lean but not Ob/Ob mice respond to food-deprivation and refeeding. The Journal of Nutrition, 128(12), 2520–2525.

    Article  PubMed  CAS  Google Scholar 

  • Jay, P., Rougeulle, C., Massacrier, A., Moncla, A., Mattei, M. G., Malzac, P., Roëckel, N., Taviaux, S., Lefranc, J. L., Cau, P., Berta, P., Lalande, M., & Muscatelli, F. (1997). The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nature Genetics, 17(3), 357–361.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R., Ge, E., Mostoslavsky, R., Hang, H. C., Hao, Q., & Lin, H. (2013). SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature, 496(7443), 110–113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jing, E., Nillni, E. A., Sanchez, V. C., Stuart, R. C., & Good, D. J. (2004). Deletion of the Nhlh2 transcription factor decreases the levels of the anorexigenic peptides alpha melanocyte-stimulating hormone and thyrotropin-releasing hormone and implicates prohormone convertases I and II in obesity. Endocrinology, 145(4), 1503–1513.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J., Genau, H. M., & Behrends, C. (2015). Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Molecular and Cellular Biology, 35(14), 2479–2494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kabra, D. G., Pfuhlmann, K., García-Cáceres, C., Schriever, S. C., Casquero García, V., Kebede, A. F., Fuente-Martin, E., Trivedi, C., Heppner, K., Uhlenhaut, N. H., Legutko, B., Kabra, U. D., Gao, Y., Yi, C.-X., Quarta, C., Clemmensen, C., Finan, B., Müller, T. D., Meyer, C. W., Paez-Pereda, M., Stemmer, K., Woods, S. C., Perez-Tilve, D., Schneider, R., Olson, E. N., Tschöp, M. H., & Pfluger, P. T. (2016). Hypothalamic leptin action is mediated by histone deacetylase 5. Nature Communications, 7, 10782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanfi, Y., Peshti, V., Gozlan, Y. M., Rathaus, M., Gil, R., & Cohen, H. Y. (2008). Regulation of SIRT1 protein levels by nutrient availability. FEBS Letters, 582(16), 2417–2423.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H., Jung, J.-W., Kim, M. K., & Chung, J. H. (2009). CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS One, 4(8), e6611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaur, C., & Ling, E.-A. (2017). The circumventricular organs. Histology and Histopathology, 32(9), 879–892.

    PubMed  Google Scholar 

  • Kaushik, S., Rodriguez-Navarro, J. A., Arias, E., Kiffin, R., Sahu, S., Schwartz, G. J., Cuervo, A. M., & Singh, R. (2011). Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metabolism, 14(2), 173–183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaushik, S., Arias, E., Kwon, H., Lopez, N. M., Athonvarangkul, D., Sahu, S., Schwartz, G. J., Pessin, J. E., & Singh, R. (2012). Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Reports, 13(3), 258–265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, M.-S., Park, J.-Y., Namkoong, C., Jang, P.-G., Ryu, J.-W., Song, H.-S., Yun, J.-Y., Namgoong, I.-S., Ha, J., Park, I.-S., Lee, I.-K., Viollet, B., Youn, J. H., Lee, H.-K., & Lee, K.-U. (2004). Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nature Medicine, 10(7), 727–733.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.-S., Pak, Y. K., Jang, P.-G., Namkoong, C., Choi, Y.-S., Won, J.-C., Kim, K.-S., Kim, S.-W., Kim, H.-S., Park, J.-Y., Kim, Y.-B., & Lee, K.-U. (2006). Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nature Neuroscience, 9(7), 901–906.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E.-J., Kho, J.-H., Kang, M.-R., & Um, S.-J. (2007a). Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Molecular Cell, 28(2), 277–290.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D., Nguyen, M. D., Dobbin, M. M., Fischer, A., Sananbenesi, F., Rodgers, J. T., Delalle, I., Baur, J. A., Sui, G., Armour, S. M., Puigserver, P., Sinclair, D. A., & Tsai, L.-H. (2007b). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. The EMBO Journal, 26(13), 3169–3179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P., & Guan, K.-L. (2008a). Regulation of TORC1 by rag GTPases in nutrient response. Nature Cell Biology, 10(8), 935–945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, J.-E., Chen, J., & Lou, Z. (2008b). DBC1 is a negative regulator of SIRT1. Nature, 451(7178), 583–586.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Kundu, M., Viollet, B., & Guan, K.-L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 13(2), 132–141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinote, A., Faria, J. A., Roman, E. A., Solon, C., Razolli, D. S., Ignacio-Souza, L. M., Sollon, C. S., Nascimento, L. F., de Araújo, T. M., Barbosa, A. P. L., Lellis-Santos, C., Velloso, L. A., Bordin, S., & Anhê, G. F. (2012). Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels. Endocrinology, 153(8), 3633–3645.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, T., Feng, Y., Kitamura, Y. I., Chua, S. C., Jr., Xu, A. W., Barsh, G. S., Rossetti, L., & Accili, D. (2006). Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature Medicine, 12(5), 534–540.

    Article  PubMed  CAS  Google Scholar 

  • Knight, C. M., Gutierrez-Juarez, R., Lam, T. K. T., Arrieta-Cruz, I., Huang, L., Schwartz, G., Barzilai, N., & Rossetti, L. (2011). Mediobasal hypothalamic SIRT1 is essential for resveratrol’s effects on insulin action in rats. Diabetes, 60(11), 2691–2700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kocalis, H. E., Hagan, S. L., George, L., Turney, M. K., Siuta, M. A., Laryea, G. N., Morris, L. C., Muglia, L. J., Printz, R. L., Stanwood, G. D., & Niswender, K. D. (2014). Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Molecular Metabolism, 3(4), 394–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kolthur-Seetharam, U., Teerds, K., de Rooij, D. G., Wendling, O., McBurney, M., Sassone-Corsi, P., & Davidson, I. (2009). The histone deacetylase SIRT1 controls male fertility in mice through regulation of hypothalamic-pituitary gonadotropin signaling. Biology of Reproduction, 80(2), 384–391.

    Article  PubMed  CAS  Google Scholar 

  • Kong, X., Yu, J., Bi, J., Qi, H., Di, W., Wu, L., Wang, L., Zha, J., Lv, S., Zhang, F., Li, Y., Hu, F., Liu, F., Zhou, H., Liu, J., & Ding, G. (2015). Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes, 64(2), 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Korosi, A., & Baram, T. Z. (2008). The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 583(2–3), 204–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovács, K. J. (2013). CRH: The link between hormonal-, metabolic- and behavioral responses to stress. Journal of Chemical Neuroanatomy, 54, 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, N., Yano, W., Kubota, T., Yamauchi, T., Itoh, S., Kumagai, H., Kozono, H., Takamoto, I., Okamoto, S., Shiuchi, T., Suzuki, R., Satoh, H., Tsuchida, A., Moroi, M., Sugi, K., Noda, T., Ebinuma, H., Ueta, Y., Kondo, T., Araki, E., Ezaki, O., Nagai, R., Tobe, K., Terauchi, Y., Ueki, K., Minokoshi, Y., & Kadowaki, T. (2007). Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metabolism, 6(1), 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, M. V., Shimokawa, T., Nagy, T. R., & Lane, M. D. (2002). Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 1921–1925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, A., Lawrence, J. C., Jr., Jung, D. Y., Ko, H. J., Keller, S. R., Kim, J. K., Magnuson, M. A., & Harris, T. E. (2010). Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes, 59(6), 1397–1406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurth-Kraczek, E. J., Hirshman, M. F., Goodyear, L. J., & Winder, W. W. (1999). 5’ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes, 48(8), 1667–1671.

    Article  PubMed  CAS  Google Scholar 

  • Lafontaine-Lacasse, M., Richard, D., & Picard, F. (2010). Effects of age and gender on Sirt 1 mRNA expressions in the hypothalamus of the mouse. Neuroscience Letters, 480(1), 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Lagerlöf, O., Slocomb, J. E., Hong, I., Aponte, Y., Blackshaw, S., Hart, G. W., & Huganir, R. L. (2016). The nutrient sensor OGT in PVN neurons regulates feeding. Science, 351(6279), 1293–1296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., & Auwerx, J. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127(6), 1109–1122.

    Article  PubMed  CAS  Google Scholar 

  • Lamming, D. W., & Sabatini, D. M. (2013). A central role for mTOR in lipid homeostasis. Cell Metabolism, 18(4), 465–469.

    Article  PubMed  CAS  Google Scholar 

  • Lan, F., Cacicedo, J. M., Ruderman, N., & Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. The Journal of Biological Chemistry, 283(41), 27628–27635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lane, M. D., Wolfgang, M., Cha, S.-H., & Dai, Y. (2008). Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. International Journal of Obesity, 32(Suppl 4), S49–S54.

    Article  PubMed  CAS  Google Scholar 

  • Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laryea, G., Schütz, G., & Muglia, L. J. (2013). Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Molecular Endocrinology, 27(10), 1655–1665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurent, V., Kimble, A., Peng, B., Zhu, P., Pintar, J. E., Steiner, D. F., & Lindberg, I. (2002). Mortality in 7B2 null mice can be rescued by adrenalectomy: Involvement of dopamine in ACTH hypersecretion. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3087–3092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurent, G., German, N. J., Saha, A. K., de Boer, V. C. J., Davies, M., Koves, T. R., Dephoure, N., Fischer, F., Boanca, G., Vaitheesvaran, B., Lovitch, S. B., Sharpe, A. H., Kurland, I. J., Steegborn, C., Gygi, S. P., Muoio, D. M., Ruderman, N. B., & Haigis, M. C. (2013). SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Molecular Cell, 50(5), 686–698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, K., Li, B., Xi, X., Suh, Y., & Martin, R. J. (2005). Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology, 146(1), 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. W., Park, S., Takahashi, Y., & Wang, H.-G. (2010). The association of AMPK with ULK1 regulates autophagy. PLoS One, 5(11), e15394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lembke, V., Goebel, M., Frommelt, L., Inhoff, T., Lommel, R., Stengel, A., Taché, Y., Grötzinger, C., Bannert, N., Wiedenmann, B., Klapp, B. F., & Kobelt, P. (2011). Sulfated cholecystokinin-8 activates phospho-mTOR immunoreactive neurons of the paraventricular nucleus in rats. Peptides, 32(1), 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Levin, B. E., Dunn-Meynell, A. A., Balkan, B., & Keesey, R. E. (1997). Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. The American Journal of Physiology, 273(2 Pt 2), R725–R730.

    PubMed  CAS  Google Scholar 

  • Lewis, C. A., Griffiths, B., Santos, C. R., Pende, M., & Schulze, A. (2011). Regulation of the SREBP transcription factors by mTORC1. Biochemical Society Transactions, 39(2), 495–499.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., & Gao, T. (2014). mTORC2 phosphorylates protein kinase Cζ to regulate its stability and activity. EMBO Reports, 15(2), 191–198.

    PubMed  CAS  Google Scholar 

  • Libert, S., Pointer, K., Bell, E. L., Das, A., Cohen, D. E., Asara, J. M., Kapur, K., Bergmann, S., Preisig, M., Otowa, T., Kendler, K. S., Chen, X., Hettema, J. M., van den Oord, E. J., Rubio, J. P., & Guarente, L. (2011). SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell, 147(7), 1459–1472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, K., Paterson, A. J., Chin, E., & Kudlow, J. E. (2000). Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells: Linkage of O-linked GlcNAc to beta cell death. Proceedings of the National Academy of Sciences of the United States of America, 97(6), 2820–2825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y., Dentin, R., Chen, D., Hedrick, S., Ravnskjaer, K., Schenk, S., Milne, J., Meyers, D. J., Cole, P., Yates, J., 3rd, Olefsky, J., Guarente, L., & Montminy, M. (2008). A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 456(7219), 269–273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lizcano, J. M., Göransson, O., Toth, R., Deak, M., Morrice, N. A., Boudeau, J., Hawley, S. A., Udd, L., Mäkelä, T. P., Hardie, D. G., & Alessi, D. R. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. The EMBO Journal, 23(4), 833–843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lloyd, D. J., Bohan, S., & Gekakis, N. (2006). Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Human Molecular Genetics, 15(11), 1884–1893.

    Article  PubMed  CAS  Google Scholar 

  • Löffler, A. S., Alers, S., Dieterle, A. M., Keppeler, H., Franz-Wachtel, M., Kundu, M., Campbell, D. G., Wesselborg, S., Alessi, D. R., & Stork, B. (2011). Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy, 7(7), 696–706.

    Article  PubMed  CAS  Google Scholar 

  • Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett, G. V., Lane, M. D., & Kuhajda, F. P. (2000). Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science, 288(5475), 2379–2381.

    Article  PubMed  CAS  Google Scholar 

  • López, M., Lage, R., Saha, A. K., Pérez-Tilve, D., Vázquez, M. J., Varela, L., Sangiao-Alvarellos, S., Tovar, S., Raghay, K., Rodríguez-Cuenca, S., Deoliveira, R. M., Castañeda, T., Datta, R., Dong, J. Z., Culler, M., Sleeman, M. W., Alvarez, C. V., Gallego, R., Lelliott, C. J., Carling, D., Tschöp, M. H., Diéguez, C., & Vidal-Puig, A. (2008). Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metabolism, 7(5), 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy, D. A., Chang, B. S. W., Lovejoy, N. R., & del Castillo, J. (2014). Molecular evolution of GPCRs: CRH/CRH receptors. Journal of Molecular Endocrinology, 52(3), T43–T60.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X.-Y., Barsh, G. S., Akil, H., & Watson, S. J. (2003). Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. The Journal of Neuroscience, 23(21), 7863–7872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, M., Sarruf, D. A., Li, P., Osborn, O., Sanchez-Alavez, M., Talukdar, S., Chen, A., Bandyopadhyay, G., Xu, J., Morinaga, H., Dines, K., Watkins, S., Kaiyala, K., Schwartz, M. W., & Olefsky, J. M. (2013). Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues. The Journal of Biological Chemistry, 288(15), 10722–10735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacDonald, H. R., & Wevrick, R. (1997). The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Human Molecular Genetics, 6(11), 1873–1878.

    Article  PubMed  CAS  Google Scholar 

  • Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A., & Gorbunova, V. (2011). SIRT6 promotes DNA repair under stress by activating PARP1. Science, 332(6036), 1443–1446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marsin, A. S., Bertrand, L., Rider, M. H., Deprez, J., Beauloye, C., Vincent, M. F., Van den Berghe, G., Carling, D., & Hue, L. (2000). Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biology, 10(20), 1247–1255.

    Article  PubMed  CAS  Google Scholar 

  • Marsin, A.-S., Bouzin, C., Bertrand, L., & Hue, L. (2002). The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. The Journal of Biological Chemistry, 277(34), 30778–30783.

    Article  PubMed  CAS  Google Scholar 

  • Martin, T. L., Alquier, T., Asakura, K., Furukawa, N., Preitner, F., & Kahn, B. B. (2006). Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. The Journal of Biological Chemistry, 281(28), 18933–18941.

    Article  PubMed  CAS  Google Scholar 

  • Martínez de Morentin, P. B., González-García, I., Martins, L., Lage, R., Fernández-Mallo, D., Martínez-Sánchez, N., Ruíz-Pino, F., Liu, J., Morgan, D. A., Pinilla, L., Gallego, R., Saha, A. K., Kalsbeek, A., Fliers, E., Bisschop, P. H., Diéguez, C., Nogueiras, R., Rahmouni, K., Tena-Sempere, M., & López, M. (2014). Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metabolism, 20(1), 41–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Sánchez, N., Seoane-Collazo, P., Contreras, C., Varela, L., Villarroya, J., Rial-Pensado, E., Buqué, X., Aurrekoetxea, I., Delgado, T. C., Vázquez-Martínez, R., González-García, I., Roa, J., Whittle, A. J., Gomez-Santos, B., Velagapudi, V., YCL, T., Morgan, D. A., Voshol, P. J., Martínez de Morentin, P. B., López-González, T., Liñares-Pose, L., Gonzalez, F., Chatterjee, K., Sobrino, T., Medina-Gómez, G., Davis, R. J., Casals, N., Orešič, M., Coll, A. P., Vidal-Puig, A., Mittag, J., Tena-Sempere, M., Malagón, M. M., Diéguez, C., Martínez-Chantar, M. L., Aspichueta, P., Rahmouni, K., Nogueiras, R., Sabio, G., Villarroya, F., & López, M. (2017). Hypothalamic AMPK-ER stress-JNK1 Axis mediates the central actions of thyroid hormones on energy balance. Cell Metabolism, 26(1), 212–229.e12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins, L., Fernández-Mallo, D., Novelle, M. G., Vázquez, M. J., Tena-Sempere, M., Nogueiras, R., López, M., & Diéguez, C. (2012). Hypothalamic mTOR signaling mediates the orexigenic action of ghrelin. PLoS One, 7(10), e46923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins, L., Seoane-Collazo, P., Contreras, C., González-García, I., Martínez-Sánchez, N., González, F., Zalvide, J., Gallego, R., Diéguez, C., Nogueiras, R., Tena-Sempere, M., & López, M. (2016). A functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Reports, 16(8), 2231–2242.

    Article  PubMed  CAS  Google Scholar 

  • Mastorakos, G., & Zapanti, E. (2004). The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: The role of corticotropin releasing hormone. Nutritional Neuroscience, 7(5–6), 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Meikle, L., Talos, D. M., Onda, H., Pollizzi, K., Rotenberg, A., Sahin, M., Jensen, F. E., & Kwiatkowski, D. J. (2007). A mouse model of tuberous sclerosis: Neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. The Journal of Neuroscience, 27(21), 5546–5558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menzies, K. J., Zhang, H., Katsyuba, E., & Auwerx, J. (2016). Protein acetylation in metabolism - metabolites and cofactors. Nature Reviews. Endocrinology, 12(1), 43–60.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, G. F., Kurth, E. J., Hardie, D. G., & Winder, W. W. (1997). AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. The American Journal of Physiology, 273(6 Pt 1), E1107–E1112.

    PubMed  CAS  Google Scholar 

  • Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y.-B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferré, P., Birnbaum, M. J., Stuck, B. J., & Kahn, B. B. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428(6982), 569–574.

    Article  PubMed  CAS  Google Scholar 

  • Moloughney, J. G., Kim, P. K., Vega-Cotto, N. M., Wu, C.-C., Zhang, S., Adlam, M., Lynch, T., Chou, P.-C., Rabinowitz, J. D., Werlen, G., & Jacinto, E. (2016). mTORC2 responds to glutamine catabolite levels to modulate the Hexosamine biosynthesis enzyme GFAT1. Molecular Cell, 63(5), 811–826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Momcilovic, M., Hong, S.-P., & Carlson, M. (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. The Journal of Biological Chemistry, 281(35), 25336–25343.

    Article  PubMed  CAS  Google Scholar 

  • Mori, H., Inoki, K., Münzberg, H., Opland, D., Faouzi, M., Villanueva, E. C., Ikenoue, T., Kwiatkowski, D., MacDougald, O. A., Myers, M. G., Jr., & Guan, K.-L. (2009). Critical role for hypothalamic mTOR activity in energy balance. Cell Metabolism, 9(4), 362–374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S., & Schwartz, M. W. (2006). Central nervous system control of food intake and body weight. Nature, 443(7109), 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Moynihan, K. A., Grimm, A. A., Plueger, M. M., Bernal-Mizrachi, E., Ford, E., Cras-Méneur, C., Permutt, M. A., & Imai, S.-I. (2005). Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metabolism, 2(2), 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Muta, K., Morgan, D. A., & Rahmouni, K. (2015). The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice. Endocrinology, 156(4), 1398–1407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naggert, J. K., Fricker, L. D., Varlamov, O., Nishina, P. M., Rouille, Y., Steiner, D. F., Carroll, R. J., Paigen, B. J., & Leiter, E. H. (1995). Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nature Genetics, 10(2), 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., Guarente, L. P., & Sassone-Corsi, P. (2008). The NAD+−dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell, 134(2), 329–340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M., & Sassone-Corsi, P. (2009). Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science, 324(5927), 654–657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nasrin, N., Kaushik, V. K., Fortier, E., Wall, D., Pearson, K. J., de Cabo, R., & Bordone, L. (2009). JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One, 4(12), e8414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nie, Y., Erion, D. M., Yuan, Z., Dietrich, M., Shulman, G. I., Horvath, T. L., & Gao, Q. (2009). STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nature Cell Biology, 11(4), 492–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nillni, E. A. (2010). Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Frontiers in Neuroendocrinology, 31(2), 134–156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nillni - Endocrinology EA. (2007). Regulation of prohormone convertases in hypothalamic neurons: implications for prothyrotropin-releasing hormone and proopiomelanocortin. press.endocrine.org 2007. Available at: http://press.endocrine.org/doi/abs/10.1210/en.2007-0173.

  • Nillni, E. A., Friedman, T. C., Todd, R. B., Birch, N. P., Loh, Y. P., & Jackson, I. M. (1995). Pro-thyrotropin-releasing hormone processing by recombinant PC1. Journal of Neurochemistry, 65(6), 2462–2472.

    Article  PubMed  CAS  Google Scholar 

  • Nillni, E. A., Xie, W., Mulcahy, L., Sanchez, V. C., & Wetsel, W. C. (2002). Deficiencies in pro-thyrotropin-releasing hormone processing and abnormalities in thermoregulation in Cpefat/fat mice. The Journal of Biological Chemistry, 277(50), 48587–48595.

    Article  PubMed  CAS  Google Scholar 

  • Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S.-K., Hartlerode, A., Stegmuller, J., Hafner, A., Loerch, P., Wright, S. M., Mills, K. D., Bonni, A., Yankner, B. A., Scully, R., Prolla, T. A., Alt, F. W., & Sinclair, D. A. (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell, 135(5), 907–918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obici, S., Feng, Z., Morgan, K., Stein, D., Karkanias, G., & Rossetti, L. (2002). Central administration of oleic acid inhibits glucose production and food intake. Diabetes, 51(2), 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Oh, T. S., Cho, H., Cho, J. H., Yu, S.-W., & Kim, E.-K. (2016). Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression. Autophagy, 12(11), 2009–2025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orozco-Solis, R., & Sassone-Corsi, P. (2014). Epigenetic control and the circadian clock: Linking metabolism to neuronal responses. Neuroscience, 264, 76–87.

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Solis, R., Ramadori, G., Coppari, R., & Sassone-Corsi, P. (2015). SIRT1 relays nutritional inputs to the circadian clock through the Sf1 neurons of the ventromedial hypothalamus. Endocrinology, 156(6), 2174–2184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortega-Molina, A., Lopez-Guadamillas, E., Mattison, J. A., Mitchell, S. J., Muñoz-Martin, M., Iglesias, G., Gutierrez, V. M., Vaughan, K. L., Szarowicz, M. D., González-García, I., López, M., Cebrián, D., Martinez, S., Pastor, J., de Cabo, R., & Serrano, M. (2015). Pharmacological inhibition of PI3K reduces adiposity and metabolic syndrome in obese mice and rhesus monkeys. Cell Metabolism, 21(4), 558–570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paquet, L., Massie, B., & Mains, R. E. (1996). Proneuropeptide Y processing in large dense-core vesicles: Manipulation of prohormone convertase expression in sympathetic neurons using adenoviruses. The Journal of Neuroscience, 16(3), 964–973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, H.-K., & Ahima, R. S. (2014). Leptin signaling. F1000prime Reports, 6, 73.

    PubMed  PubMed Central  Google Scholar 

  • Peek, C. B., Ramsey, K. M., Marcheva, B., & Bass, J. (2012). Nutrient sensing and the circadian clock. Trends in Endocrinology and Metabolism, 23(7), 312–318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perello, M., Stuart, R. C., & Nillni, E. A. (2007). Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract. American Journal of Physiology. Endocrinology and Metabolism, 292(5), E1348–E1357.

    Article  PubMed  CAS  Google Scholar 

  • Perone, M. J., Murray, C. A., Brown, O. A., Gibson, S., White, A., Linton, E. A., Perkins, A. V., Lowenstein, P. R., & Castro, M. G. (1998). Procorticotrophin-releasing hormone: Endoproteolytic processing and differential release of its derived peptides within AtT20 cells. Molecular and Cellular Endocrinology, 142(1–2), 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Pfister, J. A., Ma, C., Morrison, B. E., & D’Mello, S. R. (2008). Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One, 3(12), e4090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W., & Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429(6993), 771–776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plum, L., Lin, H. V., Dutia, R., Tanaka, J., Aizawa, K. S., Matsumoto, M., Kim, A. J., Cawley, N. X., Paik, J.-H., Loh, Y. P., DePinho, R. A., Wardlaw, S. L., & Accili, D. (2009). The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nature Medicine, 15(10), 1195–1201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Posner, S. F., Vaslet, C. A., Jurofcik, M., Lee, A., Seidah, N. G., & Nillni, E. A. (2004). Stepwise posttranslational processing of progrowth hormone-releasing hormone (proGHRH) polypeptide by furin and PC1. Endocrine, 23(2–3), 199–213.

    Article  PubMed  CAS  Google Scholar 

  • Price, N. L., Gomes, A. P., Ling, A. J. Y., Duarte, F. V., Martin-Montalvo, A., North, B. J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J. S., Hubbard, B. P., Varela, A. T., Davis, J. G., Varamini, B., Hafner, A., Moaddel, R., Rolo, A. P., Coppari, R., Palmeira, C. M., de Cabo, R., Baur, J. A., & Sinclair, D. A. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism, 15(5), 675–690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Proulx, K., Cota, D., Woods, S. C., & Seeley, R. J. (2008). Fatty acid synthase inhibitors modulate energy balance via mammalian target of rapamycin complex 1 signaling in the central nervous system. Diabetes, 57(12), 3231–3238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prozorovski, T., Schulze-Topphoff, U., Glumm, R., Baumgart, J., Schröter, F., Ninnemann, O., Siegert, E., Bendix, I., Brüstle, O., Nitsch, R., Zipp, F., & Aktas, O. (2008). Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nature Cell Biology, 10(4), 385–394.

    Article  PubMed  CAS  Google Scholar 

  • Pu, L. P., Ma, W., Barker, J. L., & Loh - Endocrinology YP. (1996). Differential coexpression of genes encoding prothyrotropin-releasing hormone (pro-TRH) and prohormone convertases (PC1 and PC2) in rat brain neurons: …. academic.oup.com 1996. Available at: https://academic.oup.com/endo/article-abstract/137/4/1233/3037181.

  • Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., Zhao, W., Thiyagarajan, M., MacGrogan, D., Rodgers, J. T., Puigserver, P., Sadoshima, J., Deng, H., Pedrini, S., Gandy, S., Sauve, A. A., & Pasinetti, G. M. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. The Journal of Biological Chemistry, 281(31), 21745–21754.

    Article  PubMed  CAS  Google Scholar 

  • Quan, W., Kim, H.-K., Moon, E.-Y., Kim, S. S., Choi, C. S., Komatsu, M., Jeong, Y. T., Lee, M.-K., Kim, K.-W., Kim, M.-S., & Lee, M.-S. (2012). Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology, 153(4), 1817–1826.

    Article  PubMed  CAS  Google Scholar 

  • Quiñones, M., Al-Massadi, O., Gallego, R., Fernø, J., Diéguez, C., López, M., & Nogueiras, R. (2015). Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Molecular Metabolism, 4(12), 961–970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raadsheer, F. C., Sluiter, A. A., Ravid, R., Tilders, F. J. H., & Swaab, D. F. (1993). Localization of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the human hypothalamus; age-dependent colocalization with vasopressin. Brain Research, 615(1), 50–62.

    Article  PubMed  CAS  Google Scholar 

  • Rafalski, V. A., Ho, P. P., Brett, J. O., Ucar, D., Dugas, J. C., Pollina, E. A., Chow, L. M. L., Ibrahim, A., Baker, S. J., Barres, B. A., Steinman, L., & Brunet, A. (2013). Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nature Cell Biology, 15(6), 614–624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramadori, G., Lee, C. E., Bookout, A. L., Lee, S., Williams, K. W., Anderson, J., Elmquist, J. K., & Coppari, R. (2008). Brain SIRT1: Anatomical distribution and regulation by energy availability. The Journal of Neuroscience, 28(40), 9989–9996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramadori, G., Fujikawa, T., Fukuda, M., Anderson, J., Morgan, D. A., Mostoslavsky, R., Stuart, R. C., Perello, M., Vianna, C. R., Nillni, E. A., Rahmouni, K., & Coppari, R. (2010). SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metabolism, 12(1), 78–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramadori, G., Fujikawa, T., Anderson, J., Berglund, E. D., Frazao, R., Michán, S., Vianna, C. R., Sinclair, D. A., Elias, C. F., & Coppari, R. (2011). SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metabolism, 14(3), 301–312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramsey, K. M., Yoshino, J., Brace, C. S., Abrassart, D., Kobayashi, Y., Marcheva, B., Hong, H.-K., Chong, J. L., Buhr, E. D., Lee, C., Takahashi, J. S., Imai, S.-I., & Bass, J. (2009). Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science, 324(5927), 651–654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebsamen, M., Pochini, L., Stasyk, T., de Araújo, M. E. G., Galluccio, M., Kandasamy, R. K., Snijder, B., Fauster, A., Rudashevskaya, E. L., Bruckner, M., Scorzoni, S., Filipek, P. A., Huber, K. V. M., Bigenzahn, J. W., Heinz, L. X., Kraft, C., Bennett, K. L., Indiveri, C., Huber, L. A., & Superti-Furga, G. (2015). SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature, 519(7544), 477–481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren, H., Orozco, I. J., Su, Y., Suyama, S., Gutiérrez-Juárez, R., Horvath, T. L., Wardlaw, S. L., Plum, L., Arancio, O., & Accili, D. (2012). FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell, 149(6), 1314–1326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Revollo, J. R., Grimm, A. A., & Imai, S.-I. (2004). The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. The Journal of Biological Chemistry, 279(49), 50754–50763.

    Article  PubMed  CAS  Google Scholar 

  • Rho, J. H., & Swanson, L. W. (1987). Neuroendocrine CRF motoneurons: Intrahypothalamic axon terminals shown with a new retrograde-Lucifer-immuno method. Brain Research, 436(1), 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Richard, D., Huang, Q., & Timofeeva, E. (2000). The corticotropin-releasing hormone system in the regulation of energy balance in obesity. International Journal of Obesity, 24, S36–S39.

    Article  PubMed  CAS  Google Scholar 

  • Rivier, J., Rivier, C., Spiess, J., & Vale, W. (1983). High-performance liquid chromatographic purification of peptide hormones: Ovine hypothalamic Amunine (Corticotropin releasing factor)1. In M. T. W. Hearn, F. E. Regnier, & C. T. Wehr (Eds.), High-performance liquid chromatography of proteins and peptides (pp. 233–241). Academic Press. Cambridge, Massachusetts

    Chapter  Google Scholar 

  • Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., & Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029), 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Ropelle, E. R., Fernandes, M. F. A., Flores, M. B. S., Ueno, M., Rocco, S., Marin, R., Cintra, D. E., Velloso, L. A., Franchini, K. G., Saad, M. J. A., & Carvalheira, J. B. C. (2008). Central exercise action increases the AMPK and mTOR response to leptin. PLoS One, 3(12), e3856.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roth, S. Y., Denu, J. M., & Allis, C. D. (2001). Histone acetyltransferases. Annual Review of Biochemistry, 70, 81–120.

    Article  PubMed  CAS  Google Scholar 

  • Rougon, G., Nédélec, J., Malapert, P., Goridis, C., & Chesselet, M. F. (1990). Post-translation modifications of neural cell surface molecules. Acta Histochemica. Supplementband, 38, 51–57.

    PubMed  CAS  Google Scholar 

  • Rouillé, Y., Duguay, S. J., Lund, K., Furuta, M., Gong, Q., Lipkind, G., Oliva, A. A., Jr., Chan, S. J., & Steiner, D. F. (1995). Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: The subtilisin-like proprotein convertases. Frontiers in Neuroendocrinology, 16(4), 322–361.

    Article  PubMed  Google Scholar 

  • Ruan, H.-B., Dietrich, M. O., Liu, Z.-W., Zimmer, M. R., Li, M.-D., Singh, J. P., Zhang, K., Yin, R., Wu, J., Horvath, T. L., & Yang, X. (2014). O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell, 159(2), 306–317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto, J., Miura, T., Shimamoto, K., & Horio, Y. (2004). Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Letters, 556(1–3), 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richardson, J. A., Kozlowski, G. P., Wilson, S., Arch, J. R., Buckingham, R. E., Haynes, A. C., Carr, S. A., Annan, R. S., McNulty, D. E., Liu, W. S., Terrett, J. A., Elshourbagy, N. A., Bergsma, D. J., & Yanagisawa, M. (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92(4), 573–585.

    Article  PubMed  CAS  Google Scholar 

  • Sancak, Y., Thoreen, C. C., Peterson, T. R., Lindquist, R. A., Kang, S. A., Spooner, E., Carr, S. A., & Sabatini, D. M. (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Molecular Cell, 25(6), 903–915.

    Article  PubMed  CAS  Google Scholar 

  • Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L., & Sabatini, D. M. (2008). The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320(5882), 1496–1501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., & Sabatini, D. M. (2010). Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 141(2), 290–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A., & Carling, D. (2007). Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. The Biochemical Journal, 403(1), 139–148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarbassov, D. D., Ali, S. M., Kim, D.-H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., Tempst, P., & Sabatini, D. M. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current Biology, 14(14), 1296–1302.

    Article  PubMed  CAS  Google Scholar 

  • Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T., Maier, B., Koclega, K. D., Chruszcz, M., Gluba, W., Stukenberg, P. T., Minor, W., & Scrable, H. (2008). Phosphorylation regulates SIRT1 function. PLoS One, 3(12), e4020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki, T., Kim, H.-J., Kobayashi, M., Kitamura, Y.-I., Yokota-Hashimoto, H., Shiuchi, T., Minokoshi, Y., & Kitamura, T. (2010). Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology, 151(6), 2556–2566.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T., Kikuchi, O., Shimpuku, M., Susanti, V. Y., Yokota-Hashimoto, H., Taguchi, R., Shibusawa, N., Sato, T., Tang, L., Amano, K., Kitazumi, T., Kuroko, M., Fujita, Y., Maruyama, J., Lee, Y.-S., Kobayashi, M., Nakagawa, T., Minokoshi, Y., Harada, A., Yamada, M., & Kitamura, T. (2014). Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice. Diabetologia, 57(4), 819–831.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, A., Brace, C. S., Ben-Josef, G., West, T., Wozniak, D. F., Holtzman, D. M., Herzog, E. D., & Imai, S.-I. (2010). SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. The Journal of Neuroscience, 30(30), 10220–10232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satoh, A., Brace, C. S., Rensing, N., Cliften, P., Wozniak, D. F., Herzog, E. D., Yamada, K. A., & Imai, S.-I. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metabolism, 18(3), 416–430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168(6), 960–976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schafer, M. K., Day, R., Cullinan, W. E., Chretien, M., Seidah, N. G., & Watson, S. J. (1993). Gene expression of prohormone and proprotein convertases in the rat CNS: A comparative in situ hybridization analysis. The Journal of Neuroscience, 13(3), 1258–1279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaner, P., Todd, R. B., Seidah, N. G., & Nillni, E. A. (1997). Processing of prothyrotropin-releasing hormone by the family of prohormone convertases. The Journal of Biological Chemistry, 272(32), 19958–19968.

    Article  CAS  PubMed  Google Scholar 

  • Seidah, N. G., Gaspar, L., & Mion - DNA and cell … P. (1990). cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone …. online.liebertpub.com 1990. Available at: http://online.liebertpub.com/doi/abs/10.1089/dna.1990.9.415.

  • Seidah, N. G., Marcinkiewicz, M., & Benjannet - Molecular … S. (1991). Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: distinct chromosomal localization and …. academic.oup.com 1991. Available at: https://academic.oup.com/mend/article-abstract/5/1/111/2714242.

  • Seidah, N. G., Day, R., Hamelin, J., Gaspar, A., Collard, M. W., & Chrétien, M. (1992). Testicular expression of PC4 in the rat: Molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Molecular Endocrinology, 6(10), 1559–1570.

    PubMed  CAS  Google Scholar 

  • Seidah, N. G., Chrétien, M., & Day, R. (1994). The family of subtilisin/kexin like pro-protein and pro-hormone convertases: Divergent or shared functions. Biochimie, 76(3–4), 197–209.

    Article  PubMed  CAS  Google Scholar 

  • Seidah, N. G., Hamelin, J., Mamarbachi, M., Dong, W., Tardos, H., Mbikay, M., Chretien, M., & Day, R. (1996). cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3388–3393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seimon, R. V., Hostland, N., Silveira, S. L., Gibson, A. A., & Sainsbury, A. (2013). Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: Implications for diet-induced changes in body composition. |Hormone Molecular Biology and Clinical Investigation, 15(2), 71–80.

    PubMed  CAS  Google Scholar 

  • Seto, E., & Yoshida, M. (2014). Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harbor Perspectives in Biology, 6(4), a018713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah, Z. H., Ahmed, S. U., Ford, J. R., Allison, S. J., Knight, J. R. P., & Milner, J. (2012). A deacetylase-deficient SIRT1 variant opposes full-length SIRT1 in regulating tumor suppressor p53 and governs expression of cancer-related genes. Molecular and Cellular Biology, 32(3), 704–716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimizu, H., Arima, H., Ozawa, Y., Watanabe, M., Banno, R., Sugimura, Y., Ozaki, N., Nagasaki, H., & Oiso, Y. (2010). Glucocorticoids increase NPY gene expression in the arcuate nucleus by inhibiting mTOR signaling in rat hypothalamic organotypic cultures. Peptides, 31(1), 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, D. A., & Guarente, L. (2014). Small-molecule allosteric activators of sirtuins. Annual Review of Pharmacology and Toxicology, 54, 363–380.

    Article  PubMed  CAS  Google Scholar 

  • Smeekens, S. P., & Steiner, D. F. (1990). Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. The Journal of Biological Chemistry, 265(6), 2997–3000.

    PubMed  CAS  Google Scholar 

  • Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J., & Steiner, D. F. (1991). Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proceedings of the National Academy of Sciences of the United States of America, 88(2), 340–344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smeekens, S. P., Montag, A. G., Thomas, G., Albiges-Rizo, C., Carroll, R., Benig, M., Phillips, L. A., Martin, S., Ohagi, S., & Gardner, P. (1992). Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proceedings of the National Academy of Sciences of the United States of America, 89(18), 8822–8826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith, T. L., & Rutter, J. (2007). Regulation of glucose partitioning by PAS kinase and Ugp1 phosphorylation. Molecular Cell, 26(4), 491–499.

    Article  PubMed  CAS  Google Scholar 

  • Sohn, J.-W., Oh, Y., Kim, K. W., Lee, S., Williams, K. W., & Elmquist, J. K. (2016). Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Molecular Metabolism, 5(8), 669–679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solomon, S. (1999). POMC-derived peptides and their biological action. Annals of the New York Academy of Sciences, 885, 22–40.

    Article  PubMed  CAS  Google Scholar 

  • Sominsky, L., & Spencer, S. J. (2014). Eating behavior and stress: A pathway to obesity. Frontiers in Psychology, 5, 434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer, S. J., & Tilbrook, A. (2011). The glucocorticoid contribution to obesity. Stress, 14(3), 233–246.

    Article  PubMed  CAS  Google Scholar 

  • Starheim, K. K., Gevaert, K., & Arnesen, T. (2012). Protein N-terminal acetyltransferases: When the start matters. Trends in Biochemical Sciences, 37(4), 152–161.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, G. R., Watt, M. J., Fam, B. C., Proietto, J., Andrikopoulos, S., Allen, A. M., Febbraio, M. A., & Kemp, B. E. (2006). Ciliary neurotrophic factor suppresses hypothalamic AMP-kinase signaling in leptin-resistant obese mice. Endocrinology, 147(8), 3906–3914.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, D. F. (1998). The proprotein convertases. Current Opinion in Chemical Biology, 2(1), 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, D. F., Smeekens, S. P., Ohagi, S., & Chan, S. J. (1992). The new enzymology of precursor processing endoproteases. The Journal of Biological Chemistry, 267(33), 23435–23438.

    PubMed  CAS  Google Scholar 

  • Stevanovic, D., Trajkovic, V., Müller-Lühlhoff, S., Brandt, E., Abplanalp, W., Bumke-Vogt, C., Liehl, B., Wiedmer, P., Janjetovic, K., Starcevic, V., Pfeiffer, A. F. H., Al-Hasani, H., Tschöp, M. H., & Castañeda, T. R. (2013). Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Molecular and Cellular Endocrinology, 381(1–2), 280–290.

    Article  PubMed  CAS  Google Scholar 

  • Stoppa, G. R., Cesquini, M., Roman, E. A., Prada, P. O., Torsoni, A. S., Romanatto, T., Saad, M. J., Velloso, L. A., & Torsoni, M. A. (2008). Intracerebroventricular injection of citrate inhibits hypothalamic AMPK and modulates feeding behavior and peripheral insulin signaling. The Journal of Endocrinology, 198(1), 157–168.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, J. E., Brocklehurst, K. J., Marley, A. E., Carey, F., Carling, D., & Beri, R. K. (1994). Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Letters, 353(1), 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Susanti, V. Y., Sasaki, T., Yokota-Hashimoto, H., Matsui, S., Lee, Y.-S., Kikuchi, O., Shimpuku, M., Kim, H.-J., Kobayashi, M., & Kitamura, T. (2014). Sirt1 rescues the obesity induced by insulin-resistant constitutively-nuclear FoxO1 in POMC neurons of male mice. Obesity, 22(10), 2115–2119.

    Article  PubMed  CAS  Google Scholar 

  • Suter, M., Riek, U., Tuerk, R., Schlattner, U., Wallimann, T., & Neumann, D. (2006). Dissecting the role of 5’-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. The Journal of Biological Chemistry, 281(43), 32207–32216.

    Article  PubMed  CAS  Google Scholar 

  • Taleux, N., De Potter, I., Deransart, C., Lacraz, G., Favier, R., Leverve, X. M., Hue, L., & Guigas, B. (2008). Lack of starvation-induced activation of AMP-activated protein kinase in the hypothalamus of the Lou/C rats resistant to obesity. International Journal of Obesity, 32(4), 639–647.

    Article  PubMed  CAS  Google Scholar 

  • Tan, M., Peng, C., Anderson, K. A., Chhoy, P., Xie, Z., Dai, L., Park, J., Chen, Y., Huang, H., Zhang, Y., Ro, J., Wagner, G. R., Green, M. F., Madsen, A. S., Schmiesing, J., Peterson, B. S., Xu, G., Ilkayeva, O. R., Muehlbauer, M. J., Braulke, T., Mühlhausen, C., Backos, D. S., Olsen, C. A., McGuire, P. J., Pletcher, S. D., Lombard, D. B., Hirschey, M. D., & Zhao, Y. (2014). Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metabolism, 19(4), 605–617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanida, M., Yamamoto, N., Shibamoto, T., & Rahmouni, K. (2013). Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One, 8(2), e56660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanida, M., Yamamoto, N., Morgan, D. A., Kurata, Y., Shibamoto, T., & Rahmouni, K. (2015). Leptin receptor signaling in the hypothalamus regulates hepatic autonomic nerve activity via phosphatidylinositol 3-kinase and AMP-activated protein kinase. The Journal of Neuroscience, 35(2), 474–484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., & Horio, Y. (2007). Nucleocytoplasmic shuttling of the NAD+−dependent histone deacetylase SIRT1. The Journal of Biological Chemistry, 282(9), 6823–6832.

    Article  PubMed  CAS  Google Scholar 

  • Tataranni, P. A., Larson, D. E., Snitker, S., Young, J. B., Flatt, J. P., & Ravussin, E. (1996). Effects of glucocorticoids on energy metabolism and food intake in humans. The American Journal of Physiology, 271(2 Pt 1), E317–E325.

    PubMed  CAS  Google Scholar 

  • Thomas, L., Leduc, R., & Thorne - Proceedings of the … BA. (1991). Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: evidence for a common core of neuroendocrine processing …. National Acad Sciences 1991. Available at: http://www.pnas.org/content/88/12/5297.short.

  • Tong, L., & Denu, J. M. (2010). Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochimica et Biophysica Acta, 1804(8), 1617–1625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toorie, A. M., & Nillni, E. A. (2014). Minireview: Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways. Molecular Endocrinology, 28(9), 1423–1434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toorie, A. M., Cyr, N. E., Steger, J. S., Beckman, R., Farah, G., & Nillni, E. A. (2016). The nutrient and energy sensor Sirt1 regulates the hypothalamic-pituitary-adrenal (HPA) Axis by altering the production of the prohormone convertase 2 (PC2) essential in the maturation of Corticotropin-releasing hormone (CRH) from its prohormone in male rats. The Journal of Biological Chemistry, 291(11), 5844–5859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toriya, M., Maekawa, F., Maejima, Y., Onaka, T., Fujiwara, K., Nakagawa, T., Nakata, M., & Yada, T. (2010). Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus. Journal of Neuroendocrinology, 22(9), 987–995.

    Article  PubMed  CAS  Google Scholar 

  • Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981a). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213(4514), 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  • Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981b). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of Corticotropin and β-endorphin. Science, 213(4514), 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  • Vander Haar, E., Lee, S.-I., Bandhakavi, S., Griffin, T. J., & Kim, D.-H. (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biology, 9(3), 316–323.

    Article  PubMed  CAS  Google Scholar 

  • Varela, L., Martínez-Sánchez, N., Gallego, R., Vázquez, M. J., Roa, J., Gándara, M., Schoenmakers, E., Nogueiras, R., Chatterjee, K., Tena-Sempere, M., Diéguez, C., & López, M. (2012). Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. The Journal of Pathology, 227(2), 209–222.

    Article  PubMed  CAS  Google Scholar 

  • Velásquez, D. A., Martínez, G., Romero, A., Vázquez, M. J., Boit, K. D., Dopeso-Reyes, I. G., López, M., Vidal, A., Nogueiras, R., & Diéguez, C. (2011). The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes, 60(4), 1177–1185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veo, K., Reinick, C., Liang, L., Moser, E., Angleson, J. K., & Dores, R. M. (2011). Observations on the ligand selectivity of the melanocortin 2 receptor. General and Comparative Endocrinology, 172(1), 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Villanueva, E. C., Münzberg, H., Cota, D., Leshan, R. L., Kopp, K., Ishida-Takahashi, R., Jones, J. C., Fingar, D. C., Seeley, R. J., & Myers, M. G., Jr. (2009). Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status. Endocrinology, 150(10), 4541–4551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villeneuve, P., Seidah, N. G., & Beaudet, A. (2000). Immunohistochemical evidence for the implication of PCI in the processing of proneurotensin in rat brain. Neuroreport, 11(16), 3443.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., Cherukuri, P., & Luo, J. (2005). Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. The Journal of Biological Chemistry, 280(12), 11528–11534.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Harris, T. E., Roth, R. A., & Lawrence, J. C., Jr. (2007). PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. The Journal of Biological Chemistry, 282(27), 20036–20044.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Tsun, Z.-Y., Wolfson, R. L., Shen, K., Wyant, G. A., Plovanich, M. E., Yuan, E. D., Jones, T. D., Chantranupong, L., Comb, W., Wang, T., Bar-Peled, L., Zoncu, R., Straub, C., Kim, C., Park, J., Sabatini, B. L., & Sabatini, D. M. (2015). Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 347(6218), 188–194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wardlaw, S. L. (2011). Hypothalamic proopiomelanocortin processing and the regulation of energy balance. European Journal of Pharmacology, 660(1), 213–219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wellen, K. E., Hatzivassiliou, G., Sachdeva, U. M., Bui, T. V., Cross, J. R., & Thompson, C. B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 324(5930), 1076–1080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westphal, C. H., Muller, L., Zhou, A., Zhu, X., Bonner-Weir, S., Schambelan, M., Steiner, D. F., Lindberg, I., & Leder, P. (1999). The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing’s disease. Cell, 96(5), 689–700.

    Article  PubMed  CAS  Google Scholar 

  • Williams, G., Bing, C., Cai, X. J., Harrold, J. A., King, P. J., & Liu, X. H. (2001). The hypothalamus and the control of energy homeostasis: Different circuits, different purposes. Physiology & Behavior, 74(4–5), 683–701.

    Article  CAS  Google Scholar 

  • Williams, K. W., Sohn, J.-W., Donato, J., Jr., Lee, C. E., Zhao, J. J., Elmquist, J. K., & Elias, C. F. (2011). The acute effects of leptin require PI3K signaling in the hypothalamic ventral premammillary nucleus. The Journal of Neuroscience, 31(37), 13147–13156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winder, W. W., & Hardie, D. G. (1996). Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. The American Journal of Physiology, 270(2 Pt 1), E299–E304.

    PubMed  CAS  Google Scholar 

  • Winsky-Sommerer, R., Benjannet, S., Rovère, C., Barbero, P., Seidah, N. G., Epelbaum, J., & Dournaud, P. (2000). Regional and cellular localization of the neuroendocrine prohormone convertases PC1 and PC2 in the rat central nervous system. The Journal of Comparative Neurology, 424(3), 439–460.

    Article  PubMed  CAS  Google Scholar 

  • Witters, L. A., Nordlund, A. C., & Marshall, L. (1991). Regulation of intracellular acetyl-CoA carboxylase by ATP depletors mimics the action of the 5’-AMP-activated protein kinase. Biochemical and Biophysical Research Communications, 181(3), 1486–1492.

    Article  PubMed  CAS  Google Scholar 

  • Wittmann, G., Lechan, R. M., Liposits, Z., & Fekete, C. (2005). Glutamatergic innervation of corticotropin-releasing hormone- and thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Brain Research, 1039(1–2), 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A., Dickerson, K., Heath, R., Hong, S.-P., Momcilovic, M., Johnstone, S. R., Carlson, M., & Carling, D. (2005). Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabolism, 2(1), 21–33.

    Article  PubMed  CAS  Google Scholar 

  • Wu, D., Qiu, Y., Gao, X., Yuan, X.-B., & Zhai, Q. (2011). Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function. PLoS One, 6(6), e21759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, N., Zheng, B., Shaywitz, A., Dagon, Y., Tower, C., Bellinger, G., Shen, C.-H., Wen, J., Asara, J., McGraw, T. E., Kahn, B. B., & Cantley, L. C. (2013a). AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Molecular Cell, 49(6), 1167–1175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, W.-N., Wu, P.-F., Zhou, J., Guan, X.-L., Zhang, Z., Yang, Y.-J., Long, L.-H., Xie, N., Chen, J.-G., & Wang, F. (2013b). Orexin-a activates hypothalamic AMP-activated protein kinase signaling through a Ca2+−dependent mechanism involving voltage-gated L-type calcium channel. Molecular Pharmacology, 84(6), 876–887.

    Article  PubMed  CAS  Google Scholar 

  • Xia, N., Strand, S., Schlufter, F., Siuda, D., Reifenberg, G., Kleinert, H., Förstermann, U., & Li, H. (2013). Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide, 32, 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, B., Sanders, M. J., Underwood, E., Heath, R., Mayer, F. V., Carmena, D., Jing, C., Walker, P. A., Eccleston, J. F., Haire, L. F., Saiu, P., Howell, S. A., Aasland, R., Martin, S. R., Carling, D., & Gamblin, S. J. (2011). Structure of mammalian AMPK and its regulation by ADP. Nature, 472(7342), 230–233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xin, X., Varlamov, O., Day, R., Dong, W., Bridgett, M. M., Leiter, E. H., & Fricker, L. D. (1997). Cloning and sequence analysis of cDNA encoding rat carboxypeptidase D. DNA and Cell Biology, 16(7), 897–909.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, S., Salazar, G., Patrushev, N., & Alexander, R. W. (2011). FoxO1 mediates an autofeedback loop regulating SIRT1 expression. The Journal of Biological Chemistry, 286(7), 5289–5299.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Elmquist, J. K., & Fukuda, M. (2011). Central nervous control of energy and glucose balance: Focus on the central melanocortin system. Annals of the New York Academy of Sciences, 1243, 1–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada, E., Pessin, J. E., Kurland, I. J., Schwartz, G. J., & Bastie, C. C. (2010). Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1. Cell Metabolism, 11(2), 113–124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada, E., Okada, S., Bastie, C. C., Vatish, M., Nakajima, Y., Shibusawa, R., Ozawa, A., Pessin, J. E., & Yamada, M. (2016). Fyn phosphorylates AMPK to inhibit AMPK activity and AMP-dependent activation of autophagy. Oncotarget, 7(46), 74612–74629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, X., & Qian, K. (2017). Protein O-GlcNAcylation: Emerging mechanisms and functions. Nature Reviews. Molecular Cell Biology, 18(7), 452–465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, G., Lim, C.-Y., Li, C., Xiao, X., Radda, G. K., Li, C., Cao, X., & Han, W. (2009). FoxO1 inhibits leptin regulation of pro-opiomelanocortin promoter activity by blocking STAT3 interaction with specificity protein 1. The Journal of Biological Chemistry, 284(6), 3719–3727.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C. S., Lam, C. K. L., Chari, M., Cheung, G. W. C., Kokorovic, A., Gao, S., Leclerc, I., Rutter, G. A., & Lam, T. K. T. (2010). Hypothalamic AMP-activated protein kinase regulates glucose production. Diabetes, 59(10), 2435–2443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, S.-B., Tien, A.-C., Boddupalli, G., Xu, A. W., Jan, Y. N., & Jan, L. Y. (2012). Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron, 75(3), 425–436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, Z.-L., Guan, Y.-J., Chatterjee, D., & Chin, Y. E. (2005). Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science, 307(5707), 269–273.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, M., Pino, E., Wu, L., Kacergis, M., & Soukas, A. A. (2012). Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. The Journal of Biological Chemistry, 287(35), 29579–29588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zakhary, S. M., Ayubcha, D., Dileo, J. N., Jose, R., Leheste, J. R., Horowitz, J. M., & Torres, G. (2010). Distribution analysis of deacetylase SIRT1 in rodent and human nervous systems. The Anatomical Record, 293(6), 1024–1032.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, T., Berrocal, J. G., Frizzell, K. M., Gamble, M. J., DuMond, M. E., Krishnakumar, R., Yang, T., Sauve, A. A., & Kraus, W. L. (2009). Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. The Journal of Biological Chemistry, 284(30), 20408–20417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, M., & Klionsky, D. J. (2011). AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metabolism, 13(2), 119–120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, X., Zhou, A., Dey, A., Norrbom, C., Carroll, R., Zhang, C., Laurent, V., Lindberg, I., Ugleholdt, R., Holst, J. J., & Steiner, D. F. (2002). Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10293–10298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziegler, C. G., Krug, A. W., Zouboulis, C. C., & Bornstein, S. R. (2007). Corticotropin releasing hormone and its function in the skin. Hormone and Metabolic Research, 39(2), 106–109.

    Article  PubMed  CAS  Google Scholar 

  • Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., & Sabatini, D. M. (2011). mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 334(6056), 678–683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. Nillni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cakir, I., Nillni, E.A. (2018). Nutrient Sensors Regulating Peptides. In: Nillni, E. (eds) Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function. Springer, Cham. https://doi.org/10.1007/978-3-319-89506-2_6

Download citation

Publish with us

Policies and ethics