Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 84))

  • 573 Accesses

Abstract

Eucalyptus globulus has a great economic importance as its wood shows an excellent quality for cellulose and paper manufacture. Somatic embryogenesis (SE) provides many advantages including clonal mass propagation, cryopreservation of valuable germoplasm and genetic transformation. Here, protocols for SE induction from both immature zygotic embryos and shoot apex and leaf explants derived from mature E. globulus trees are described. The importance of the auxin type used to induce somatic embryos has been highlighted. Whereas naphthaleneacetic acid (NAA) is currently used on induction of SE from zygotic embryos, picloram was significantly more efficient in leaves and shoot apex explants than NAA. Protocols for embryo maintenance and plantlet conversion are also described the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal D, Sudhakara Reddy M, Kumar A (2016) Biotechnological approaches for the improvement of eucalypts. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 219–244

    Chapter  Google Scholar 

  • Assis TF, Fett-Neto AG, Couto A (2004) Current techniques and prospects for the clonal propagation of hardwoods with emphasis on Eucalyptus. In: Walter Ch, Carson M (eds) Plantation of forest biotechnology for the 21st century. Research Signpost, Kerala, India, pp 330–333

    Google Scholar 

  • Ballester A, Corredoira E, Vieitez AM (2016) Limitations of somatic embryogenesis in hardwood trees. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of trees. National Institute of Forest Sciences, Korea, pp 75–96

    Google Scholar 

  • Blakeway FC, Herman B, Watt MP (1993) Establishment of cell suspension cultures of E. grandis and E. grandis × camaldulensis. S Afr J Bot 166:17–26

    Google Scholar 

  • Bonga JM (2017) Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees 31:781–789

    Article  CAS  Google Scholar 

  • Bonga JM, Klimazewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular in conifers. Plant Cell, Tissue Organ Cult 100:241–254

    Article  Google Scholar 

  • Chauhan RD, Veale A, Cathleen M, Strauss SH, Myburg AA (2014) Genetic transformation of Eucalyptus—challenges and future prospects. In: Ramawat KG, Mérillon J-M, Ahuja MR (eds) Tree biotechnology. CRC Press, NY, pp 392–445

    Google Scholar 

  • Corredoira E, Ballester A, Ibarra M, Vieitez AM (2015) Induction of somatic embryogenesis in leaf and shoot apex explants of shoot cultures derived from adult Eucalyptus globulus and E. saligna × E. maidenii trees. Tree Physiol 35:678–690

    Article  CAS  PubMed  Google Scholar 

  • Correia S, Lopes ML, Canhoto JM (2011) Somatic embryogenesis induction system for cloning an adult Cyphomandra betacea (Cav.) Sendt. (tamarillo). Trees 25:1009–1020

    Article  Google Scholar 

  • Dobrowolska I, Andrade GM, Clapham D, Egertsdotter U (2016) Histological analysis reveals the formation of shoots rather than embryos in regenerating cultures of E. globulus. Plant Cell, Tissue Organ Cult 128:311–326. https://doi.org/10.1007/s11240-016-1111-5

    Article  CAS  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–147

    Article  Google Scholar 

  • Gion JM, Chaumeil P, Plomion C (2015) EucaMaps: linking genetic maps and associated QTLs to the E. grandis genome. Tree Genet Genomes 11:795. https://doi.org/10.1007/s11295-014-0795-0

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Mamani EMC, Silva-Junior OB, Faria D (2015) A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence. Mol Ecol Resour 15:437–448. https://doi.org/10.1111/1755-0998.12317

    Article  PubMed  CAS  Google Scholar 

  • Iglesias-Trabad G, Carbaeira-Tenreiro R, Folgueiia-Lozano J (2009) Eucalyptus universalis. Global cultivated eucalypt forest map. Version 1.2 In: GIT Forestry Consulting’s EUCALYPTOLOGICS: information resources on Eucalyptus cultivation worldwide

    Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. WH Freeman and Co., San Francisco

    Google Scholar 

  • Marcon HS, Domingues DS, Silva JC, Borges RJ, Matioli FF, de MattosFontes MR et al (2015) Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic. BMC Plant Biol 15:198. https://doi.org/10.1186/s12870-015-0550-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mankessi F, Saya AR, Toto M, Monteuuis O (2010) Propagation of E. urophylla × E. grandis clones by rooted cuttings: influence of genotype and cutting type on rooting ability. Propag Ornam Plants 10:42–49

    Google Scholar 

  • Martínez MT, Vieitez AM, Corredoira E (2015) Improved secondary embryo production in Quercus alba and Quercus rubra by activated charcoal, silver thiosulphate and sucrose: influence of embryogenic explant used for subculture. Plant Cell, Tissue Organ Cult 212:531–546

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J (2014) The genome of E. grandis. Nature 509:356–362. https://doi.org/10.1038/nature13308

    Article  CAS  Google Scholar 

  • Park YS, Beaulieu J, Bousquet J (2016) Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of trees. National Institute of Forest Sciences, Korea, pp 302–322

    Google Scholar 

  • Park YS, Bonga JM (2010) Application of somatic embryogenesis in forest management and research. In: Park YS, Bonga JM, Park SY, Moon HK (eds). In: Proceedings of the IUFRO Working Party 2.09.02: Somatic embryogenesis of trees. Advances in somatic embryogenesis in trees and its application for the future forests and plantations. 19–21 Aug 2010, pp 3–8. Suwon, Republic of Korea

    Google Scholar 

  • Pinto G, Santos C, Neves L, Araújo C (2002) Somatic embryogenesis and plant regeneration in E. globulus Labill. Plant Cell Rep 21:208–213

    Article  CAS  Google Scholar 

  • Pinto G, Silva S, Park YS, Neves L, Araújo C, Santos C (2008) Factors influencing somatic embryogenesis induction in E. globulus Labill.: basal medium and anti-browning agents. Plant Cell, Tissue Organ Cult 95:79–88

    Article  CAS  Google Scholar 

  • Pinto G, Silva S, Loureiro J, Costa A, Dias MC, Araújo C, Neves L, Santos C (2011) Acclimatization of secondary somatic embryos derived plants of E. globulus Labill.: an ultrastructural approach. Trees 25:383–392

    Article  Google Scholar 

  • Pinto G, Araújo C, Santos C, Neves L (2013) Plant regeneration by somatic embryogenesis in Eucalyptus spp.: current status and future perspectives. Southern For 75:59–69

    Google Scholar 

  • Pinto G, Correia S, Corredoira E, Ballester A, Correia B, Neves L, Canhoto J (2016) In vitro culture of Eucalyptus: where do we stand? In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of trees. National Institute of Forest Sciences, Korea, pp 441–462

    Google Scholar 

  • Qin Ch-L, Kirby EG (1990) Induction of shoots and embryo-like structures in cultures derived from juvenile and adult explants of Eucalyptus spp. Abstracts, In: VII international congress on plant tissue and cell culture, 24–29 June 1990, p 21. Amsterdam, The Netherlands, Abstract no. A 1–74

    Google Scholar 

  • Ribeiro T, Barrela R, Bergès H, Marques C, Loureiro J, Morais-Cecílio L, Paiva JAP (2016) Advancing Eucalyptus genomics: cytogenomics reveals conservation of Eucalyptus genomes. Front Plant Sci 7:510. https://doi.org/10.3389/fpls.2016.00510

    Article  PubMed  PubMed Central  Google Scholar 

  • Termignoni RR, Jobin CP, Morais L (1998) Somatic embryogenesis in Eucalyptus spp.: regeneration systems from elite clones. In: IX international congress on plant tissue and cell culture, book of abstracts, 14–19 June 1998, p 114. Jerusalem, Israel

    Google Scholar 

  • Thompson D (2015) Challenges for the large-scale propagation of forest trees by somatic embryogenesis—a review. In: Park YS Bonga JM (eds) Proceedings of the 3rd international conference of the IUFRO unit 2.09.02 on Woody plant production integrating genetic and vegetative propagation technologies, 8–12 Sept 2015, pp 81–91. Vitoria-Gasteiz, Spain

    Google Scholar 

  • Watt MP, Blakeway FC, Cresswell CF, Herman B (1991) Somatic embryogenesis in E. grandis. S Afr For J 157:59–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Corredoira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corredoira, E., Vieitez, A.M., Ballester, A. (2018). Eucalypts (Eucalyptus globulus Labill.). In: Jain, S., Gupta, P. (eds) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-89483-6_20

Download citation

Publish with us

Policies and ethics