Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 84))

Abstract

Maritime pine (Pinus pinaster Aiton) is the most abundant conifer in the Mediterranean basin. Currently, maritime pine is considered to be a model conifer species for study of the adaption responses to drought stress from a genomics approach. In this context, the availability of protocols that allow not only mass vegetative propagation of selected families or genotypes, but also facilitate the functional analyses needed to verify and further to study the effects of candidate genes are necessary. Here we describe an improved protocol to generate maritime pine plants through somatic embryogenesis from immature megagametophytes. Accurate procedures for explant preparation, somatic embryo induction, proliferation, cryopreservation, maturation, germination, plant formation, and acclimatization are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alía R, Martín S (2003) EUFORGEN. Technical Guidelines for genetic conservation and use for Maritime pine (Pinus pinaster). International Plant Genetic Resources Institute, Rome, Italy. 6p

    Google Scholar 

  • Alvarez JM, Majada J, Ordás RJ (2009) An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry 82:175–184

    Article  Google Scholar 

  • Arrillaga I, Morcillo M, Cano M, Sales E, Peris JB, Segura J, Orlando L, Alborch A, Cano V, Corredoira E, Martínez MT, Cernadas MJ, Montenegro R, Vieitez FJ, Nisa M, Ramírez N, Hernández I, Ruiz-Galea M, González-Cabrero N, Celestino C, Montalbán I, Alegre J, Ballester A, Moncaleán P, San-José MC, Toribio M (2016) Increasing resilience in forest tree species: a possible additional advantage for somatic embryogenesis technology. In: Proceedings fourth international conference of the IUFRO working party 2.09.02 “somatic embryogenesis and other vegetative propagation technologies”. La Plata (Argentina) September 2016

    Google Scholar 

  • Arrillaga I, Guevara MA, Muñoz-Bertomeu J, Lázaro-Gimeno D, Sáez-Laguna E, Díaz LM, Torralba L, Mendoza-Poudereux I, Segura J, Cervera MT (2014) Selection of haploid cell lines from megagametophyte cultures of maritime pine as a DNA source for massive sequencing of the species. Plant Cell Tiss Organ Cult 118:147–155

    Article  CAS  Google Scholar 

  • Cabezas JA, Morcillo M, Vélez MD, Díaz L, Segura J, Cervera MT, Arrillaga I (2016) Haploids in Conifer Species: Characterization and Chromosomal Integrity of a Maritime Pine Cell Line Forests 7:274. https://doi.org/10.3390/f7110274

    Article  Google Scholar 

  • Calixto F, Pais S (1997) Adventitious shoot formation and plant regeneration from Pinus pinaster Sol. ex Aiton. In vitro Cell Dev Biol-Plant 33:119–124

    Article  Google Scholar 

  • Canales J, Bautista R, Label P, Gómez-Maldonado J, Lesur I, Fernández-Pozo N, Rueda-López M, Guerrero-Fernández D, Castro-Rodríguez V, Benzekri H, Cañas RA, Guevara M-A, Rodrigues A, Seoane P, Teyssier C, Morel A, Ehrenmann F, Le Provost G, Lalanne C, Noirot C, Klopp C, Reymond I, García-Gutiérrez A, Trontin J-F, Lelu-Walter M-A, Miguel C, Cervera MT, Cantón FR, Plomion C, Harvengt L, Avila C, Gonzalo Claros M, Cánovas FM (2014) De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotech J 12:286–299. https://doi.org/10.1111/pbi.12136

    Article  CAS  Google Scholar 

  • David A, David H, Mateille T (1982) In vitro adventitious budding on Pinus pinaster cotyledons and needles. Plant Physiol 56:102–107

    Article  CAS  Google Scholar 

  • de Diego N, Montalbán I, de Larrinoa E, Moncaleán P (2008) In vitro regeneration of Pinus pinaster adult trees. Can J For Res 38:2607–2615

    Article  CAS  Google Scholar 

  • de Miguel M, Cabezas JA, de María N, Sánchez-Gómez D, Guevara MÁ, Vélez MD, Sáez-Laguna E, Díaz LM, Mancha JA, Barbero MC et al (2014) Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: Integration of genome annotation, allele association and QTL detection for candidate gene identification. BMC Genom 15:464. https://doi.org/10.1186/1471-2164-15-464

    Article  CAS  Google Scholar 

  • Grégoire JC, Evans HF (2004) Damage and control of bawbilt organisms an overview. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. pp 19–37

    Google Scholar 

  • Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179

    Article  CAS  PubMed  Google Scholar 

  • Holeski L, Jander G, Agrawal A (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27:618–626

    Article  PubMed  Google Scholar 

  • Humánez A, Blasco M, Brisa MC, Segura J, Arrillaga I (2011) Thidiazuron enhances axillary and adventitious shoot proliferation in juvenile explants of Mediterranean provenances of maritime pine (Pinus pinaster). In Vitro Cell Dev Biol-Plant 47:569–577. https://doi.org/10.1007/s11627-011-9397-9

    Article  CAS  Google Scholar 

  • Humánez A, Blasco M, Brisa MC, Segura J, Arrillaga I (2012) Somatic embryogenesis from different tissues of Spanish populations of maritime pine. Cell Tiss Organ Cult 111:373–383. https://doi.org/10.1007/s11240-012-0203-0

    Article  Google Scholar 

  • Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotech 1:11–25

    Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25:767–776

    Article  CAS  PubMed  Google Scholar 

  • Lelu-Walter MA, Klimaszewska K, Miguel C, Aronen T, Hargreaves C, Teyssier C, Trontin JF (2016) Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: bottlenecks and recent advances. In: Somatic embryogenesis—fundamental aspects and applications. Springer International Publishing, pp 319–365. 10.1007/978-3-319-33705-0-19

    Chapter  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:25–328

    Article  Google Scholar 

  • MacKay J, Dean JFD, Plomion C, Peterson DG, Cánovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MA, Fluch S et al (2012) Towards decoding the conifer giga-genome. Plant Mol Biol 80:555–569

    Article  CAS  PubMed  Google Scholar 

  • Marum L, Estêvão C, Oliveira M, Amâncio S, Rodrigues L, Miguel C (2004) Recovery of cryopreserved embryogenic cultures of maritime pine- effect of cryoprotectant ans suspension density. CryoLett 25:363–374

    CAS  Google Scholar 

  • Miguel C, Gonzalves S, Tereso S, Marum L, Maroco J, Oliveira MM (2004) Somatic embryogenesis from 20 open-pollinated seed families of Portuguese plus trees of maritime pine. Plant Cell Tiss Org Cult 76:121–130

    Article  CAS  Google Scholar 

  • Morcillo A, Blasco M, Lorenzo L, Almazán V, Brisa C, Segura J, Arrillaga I (2012) Somatic embryogenesis from Spanish provenances of maritime pine. In: Park YS, Bonga JM (eds) Proceedings of the IUFRO working party 2.09.02 conference on “Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management” 25–28 June 2012, Brno Czech Republic. Published online: http://www.iufro20902.org/. pp 163–165

  • Morel A, Teyssier C, Trontin JF, Pešek B, Eliášová K, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu-Walter MA (2014) Early molecular events involved in Pinus pinaster Ait somatic embryo development under reduced water availability: transcriptomic and proteomic analysis. Physiol Plant 152:184–201

    Article  CAS  PubMed  Google Scholar 

  • Saez-Laguna E, Guevara MA, Dıaz LM, Sanchez-Gomez D, Collada C, Aranda I, Cervera MT (2014) Epigenetic Variability in the Genetically Uniform Forest Tree Species Pinus pinea L. PLoS ONE 9(8):e103145. https://doi.org/10.1371/journal.pone.0103145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tereso S, Goncalves S, Marum L, Oliveira M, Maroco J, Miguel C (2006) Improved axillary and adventitious bud regeneration from Portuguese genotypes of Pinus pinaster. Prop Orn Plant 6:24–33

    Google Scholar 

  • Trontin JF, Debille S, Canlet F, Harvengt L, Lelu-Walter MA, Label P, Teyssier C, Miguel C, De Vega-Bartol J, Tonelli M, Santos R, Rupps A, Hassani SB, Zoglauer K, Carneros E, Díaz-Sala C, Abarca D, Arrillaga I, Mendoza-Poudereux I, Segura J, Avila C, Saez C, Rueda M, Canales J, Cánovas F (2012) Somatic embryogenesis as an effective regeneration support for reverse genetics in maritime pine: the Sustainpine collaborative project as an illustration. In: Park YS and Bonga JM (eds) 2nd International conference of the IUFRO Working Party 2.09.02 Brno Czech. Proceedings of the IUFRO working party 2.09.02 conference on ‘Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management’. Published online: http://www.iufro20902.org/, pp 184–186

  • Umehara M, Ogita S, Sasamoto H, Eun CH, Matsubayashi Y, Sakagami Y, Kamada H (2005) Two stimulatory effects of the peptidyl growth factor phytosulfokine during somatic embryogenesis in Japanese larch (Larix leptolepis Gordon). Plant Sci 169:901–907

    Article  CAS  Google Scholar 

  • Vivas M, Zas R, Sampedro L, Solla A (2013) Environmental maternal effects mediate the resistance of maritime pine to biotic stress. PLoS ONE 8(7):e70148. https://doi.org/10.1371/journal.pone.0070148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wahid N, Gonzalez-MartinezSC, El Hadrami I, Boulli A (2006) Variation of morphological traits in natural populations of maritime pine (Pinus pinaster Ait.) in Morocco. Ann For Sci 63:83–92; 83

    Article  Google Scholar 

  • www.procogen. Promoting a functional and comparative understanding of the conifer genome implementing applied aspects for more productive and adapted forests (ProCoGen). Available on line http://www.procogen.eu/. Accessed 10 Nov 2016)

  • Ying-Ya L, Jiao F, Xiao-Lu Z et al (2015) Pine bark extracts: nutraceutical, pharmacological, and toxicological evaluation. J Pharmacol Exp Ther 353:9–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is being supported by the research projects cofinanced by the MINECO (Spanish Government) and the EU (AGL2013-47400-C4-04-R; AGL2016-76143-C4-1-R) and by predoctoral contracts to M.C. (University of Valencia) and M.M. (MINECO). Plant material supply by the Generalitat Valenciana (Centro para la Investigación y Experimentacion Forestal) by the Unit of Forest Genetic Resources (MAPAMA), TRAGSA and Servicio de Montes, Xunta de Galicia is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Arrillaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cano, M. et al. (2018). Maritime Pine Pinus Pinaster Aiton. In: Jain, S., Gupta, P. (eds) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-89483-6_13

Download citation

Publish with us

Policies and ethics