Skip to main content

Fission-Track Thermochronology in Structural Geology and Tectonic Studies

  • Chapter
  • First Online:

Abstract

Apatite fission-track (AFT) and zircon fission-track (ZFT) data along with other low-temperature thermochronologic data are widely used in the fields of structural geology and tectonics to determine the timing/duration of events, the amount of exhumation in mountain belts, rates of slip on faults, and the geometries of fault networks. In this chapter, I review applications of AFT and ZFT data in extensional tectonic settings. Examples of data sets and interpretations are summarized from the Cenozoic-Recent North American Basin and Range Province. These data constrain displacements of normal faults, rates of slip on faults, paleogeothermal gradients, and the original dip of low-angle normal faults.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bernet M (2009) A field-based estimate of the zircon fission-track closure temperature. Chem Geol 259:181–189

    Article  Google Scholar 

  • Brichau S, Ring U, Ketcham RA, Carter A, Stockli D, Brunel M (2006) Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology. Earth Planet Sci Lett 241:293–306

    Article  Google Scholar 

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, NW Washington State. Geol Soc Amer Bull 110:985–1009

    Article  Google Scholar 

  • Brown RW (1991) Backstacking apatite fission-track “stratigraphy”: a method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology 19:74–77

    Article  Google Scholar 

  • Brown RW, Summerfield MA, Gleadow AJW (1994) Apatite fission track analysis: its potential for the estimation of denudation rates and implications for models of long-term landscape development. In: Kirkby MJ (ed) Process models and theoretical geomorphology. Wiley, New York, pp 23–53

    Google Scholar 

  • Campbell-Stone E, John BE, Foster DA, Geissman JW, Livaccari RF (2000) Mechanisms for accommodation of Miocene extension, low-angle normal faulting, magmatism, and secondary breakaway faulting in the southern Sacramento Mountains, southeastern California. Tectonics 19:566–587

    Article  Google Scholar 

  • Carter TJ, Kohn BP, Foster DA, Gleadow AJW (2004) How the Harcuvar Mountains metamorphic core complex became cool: evidence from apatite (U-Th)/He thermochronometry. Geology 32:985–988

    Article  Google Scholar 

  • Carter TJ, Kohn BP, Foster DA, Gleadow AJW, Woodhead JD (2006) Late-stage evolution of the Chemehuevi and Sacramento detachment faults from apatite (U-Th)/He thermochronology—evidence for mid-Miocene accelerated slip. Geol Soc Am Bull 118:689–709

    Article  Google Scholar 

  • Dickinson WR (1991) Tectonic setting of faulted tertiary strata associated with the Catalina core complex in southern Arizona. Geol Soc Am Sp Paper 264

    Google Scholar 

  • Dumitru TA, Gans PB, Foster DA, Miller EL (1991) Refrigeration of the western Cordilleran lithosphere during Laramide shallow-angle subduction. Geology 19:1145–1148

    Article  Google Scholar 

  • Ehlers TA, Armstrong PA, Chapman DS (2001) Normal fault thermal regimes and the interpretation of low-temperature thermochronometers. Phys Earth Planet Int 126:179–194

    Article  Google Scholar 

  • Ehlers TA, Willett SD, Armstrong PA, Chapman DS (2003) Exhumation of the central Wasatch Mountains, Utah: 2. thermokinematic model of exhumation, erosion, and thermochronometer interpretation. J Geophys Res 108(B3):2173

    Article  Google Scholar 

  • Espurt N, Barbarand J, Roddaz M, Brusset S, Baby P, Saillard M, Hermoza W (2011) A scenario for late Neogene Andean shortening transfer in the Camisea Subandean zone (Peru, 12°S): implications for growth of the northern Andean Plateau. Geol Soc Am Bull 123:2050–2068

    Article  Google Scholar 

  • Fitzgerald PG (1992) The Transantarctic Mountains of southern Victoria Land: the application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11:634–662

    Article  Google Scholar 

  • Fitzgerald PG, Malusà MG (2018) Chapter 9. Concept of the exhumed partial annealing (retention) zone and age-elevation profiles in thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Fitzgerald PG, Fryxel JE, Wernicke BP (1991) Miocene crustal extension and uplift in southeastern Nevada: constraints from apatite fission track analysis. Geology 19:1013–1016

    Article  Google Scholar 

  • Fitzgerald PG, Reynolds SJ, Stump E, Foster DA, Gleadow AJW (1993) Thermochronologic evidence for timing of denudation and rate of crustal extension of the South Mountain metamorphic core complex and Sierra Estrella, Arizona. Nucl Tracks 21:555–563

    Google Scholar 

  • Fitzgerald PG, Duebendorfer EM, Faulds JE, O’Sullivan P (2009) South virgin—white hills detachment fault system of SE Nevada and NW Arizona: applying apatite fission track thermochronology to constrain the tectonic evolution of a major continental detachment system. Tectonics 28 TC2001

    Google Scholar 

  • Foster DA, Gleadow AJW (1992) The morphotectonic evolution of rift-margin mountains in central Kenya: constraints from apatite fission-track thermochronology. Earth Planet Sci Lett 113:157–171

    Article  Google Scholar 

  • Foster DA, Gleadow AJW (1993) Episodic denudation in East Africa: a legacy of intracontinental tectonism. Geophys Res Lett 20:2395–2398

    Article  Google Scholar 

  • Foster DA, Gleadow AJW (1996) Structural framework and denudation history of the flanks of the Kenya and Anza rifts, East Africa. Tectonics 15:258–271

    Article  Google Scholar 

  • Foster DA, John BE (1999) Quantifying tectonic exhumation in an extensional orogen with thermochronology: examples from the southern Basin and Range Province. Geol Soc (London) Sp Pub 154:356–378

    Article  Google Scholar 

  • Foster DA, Raza A (2002) Low-temperature thermochronological record of exhumation of the Bitterroot metamorphic core complex, northern Cordilleran Orogen. Tectonophysics 349:23–36

    Article  Google Scholar 

  • Foster DA, Harrison TM, Miller CF, Howard KA (1990) The 40Ar/39Ar thermochronology of the eastern Mojave Desert, California and adjacent western Arizona with implications for the evolution of metamorphic core complexes. J Geophys Res 95:20, 005–20, 024

    Google Scholar 

  • Foster DA, Miller DS, Miller CF (1991) Tertiary extension in the Old Woman Mountains area, California: evidence from apatite fission track analysis. Tectonics 10:875–886

    Article  Google Scholar 

  • Foster DA, Gleadow AJW, Reynolds SJ, Fitzgerald PG (1993) The denudation of metamorphic core complexes and the reconstruction of the Transition Zone, west-central Arizona: constraints from apatite fission-track thermochronology. J Geophys Res 98:2167–2185

    Article  Google Scholar 

  • Foster DA, Grice WC, Kalakay TJ (2010) Extension of the Anaconda metamorphic core complex: 40Ar/39Ar thermochronology with implications for Eocene tectonics of the northern Rocky Mountains and the Boulder batholith. Lithosphere 2:232–246

    Article  Google Scholar 

  • Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Plan Sci Lett 82:1–14

    Article  Google Scholar 

  • Howard KA (1991) Intrusion of horizontal dikes: tectonic significance of Middle Proterozoic diabase sheets widespread in the upper crust throughout the southwestern US. J Geophys Res 96:12461–12478

    Article  Google Scholar 

  • Howard KA, Foster DA (1996) Thermal and unroofing history of a thick, tilted Basin and Range crustal section, Tortilla Mountains, Arizona. J Geophys Res 101:511–522

    Article  Google Scholar 

  • John BE, Foster DA (1993) Structural and thermal constraints on the initiation angle of detachment faulting in the southern Basin and Range: the Chemehuevi Mountains case study. Geol Soc Am Bull 105:1091–1108

    Article  Google Scholar 

  • Karlstrom KE, Heizler M, Quigley MC (2010) Structure and 40Ar/39Ar K-feldspar thermal history of the Gold Butte block: reevaluation of the tilted crustal section model. Geol Soc Am Special Paper 463:331–352

    Article  Google Scholar 

  • Ketcham RA (1996) Thermal models of core-complex evolution in Arizona and New Guinea: implications for ancient cooling paths and present-day heat flow. Tectonics 15:933–951

    Article  Google Scholar 

  • Lee J (1995) Rapid uplift and rotation of mylonitic rocks from beneath a detachment fault: insights from potassium feldspar 40Ar/39Ar thermochronology, northern Snake Range, Nevada. Tectonics 14:54–77

    Article  Google Scholar 

  • Lister GS, Davis GA (1989) The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the Colorado River region, U.S.A. J Struct Geol 11:65–93

    Article  Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer

    Google Scholar 

  • McQuarrie N, Barns JB, Ehlers TA (2008) Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15–17˚S). Tectonics 27 TC3007

    Google Scholar 

  • Metcalf JR, Fitzgerald PG, Baldwin SL, Muñoz J-A (2009) Thermochronology of a convergent orogen: constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth Plan Sci Lett 287:488–503

    Article  Google Scholar 

  • Mora A, Ketcham RA, Higuera-Diaz IC, Bookhagen B, Jimenez L, Rubiano J (2014) Formation of passive-roof duplexes in the Colombian Subandes and Peru. Lithosphere 6:456–472

    Article  Google Scholar 

  • Morrison J, Anderson JL (1998) Footwall refrigeration along a detachment fault: implications for thermal evolution of core complexes. Science 279:63–66

    Article  Google Scholar 

  • Noble W, Foster D, Gleadow A (1997) The post-Pan-African thermal and extensional history of crystalline basement rocks in eastern Tanzania. Tectonophysics 275:331–350

    Article  Google Scholar 

  • O’Sullivan PB, Green PF, Bergman SC, Decker J, Duddy IR, Gleadow AJW, Turner DL (1993) Multiple phases of Tertiary uplift and erosion in the National Wildlife Refuge, Alaska, revealed by apatite fission track analysis. AAPG Bull 77:359–385

    Google Scholar 

  • Pease V, Foster D, O’Sullivan P, Wooden J, Argent J, Fanning C (1999) The Northern Sacramento Mountains, Part II: Exhumation history and detachment faulting. In: Mac Niocaill C, Ryan PD (eds) Continental Tectonics. Geol Soc (London) Sp Pub 164:199–237

    Google Scholar 

  • Reiners PW, Brady R, Farley KA, Fryxell JE, Wernicke B, Lux D (2000) Helium and argon thermochronometry of the gold butte block, south Virgin Mountains, Nevada. Earth Planet Sci Lett 178:315–326

    Article  Google Scholar 

  • Spiegel C, Kohn BP, Belton DX, Gleadow AJW (2007) Morphotectonic evolution of the central Kenya rift flanks: implications for late Cenozoic environmental change in East Africa. Geology 35:427–430

    Article  Google Scholar 

  • Scott RJ, Foster DA, Lister GS (1998) Tectonic implications of rapid cooling of denuded lower plate rocks from the Buckskin-Rawhide metamorphic core complex, west-central Arizona. Geol Soc Am Bull 110:588–614

    Article  Google Scholar 

  • Singleton JS, Stockli DF, Gans PB, Prior MG (2014) Timing, rate, and magnitude of slip on the Buckskin-Rawhide detachment fault, west central Arizona. Tectonics 33:1596–1615

    Article  Google Scholar 

  • Spencer JE, Reynolds SJ (1991) Tectonics of mid-Tertiary extension along a transect through west-central Arizona. Tectonics 10:1204–1221

    Article  Google Scholar 

  • Stockli DF, Dumitru TA, McWilliams MO, Farley KA (2003) Cenozoic tectonic evolution of the White Mountains, California and Nevada. Geol Soc Am Bull 115:788–816

    Article  Google Scholar 

  • Stockli DF (2005) Application of low-temperature thermochronometry to extensional tectonic settings. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications. Rev Min Geochem 58:411–448. Mineralogical Society of America, Chantilly, Virginia

    Article  Google Scholar 

  • Stockli DF, Brichau S, Dewane TJ, Hager C, Schroeder J (2006) Dynamics of large-magnitude extension in the Whipple Mountains metamorphic core complex. Geochim Cosmochim Acta 70:A616

    Article  Google Scholar 

  • Torres Acosta V, Bande A, Sobel ER, Parra M, Schildgen TF, Stuart F, Strecker MR (2015) Cenozoic extension in the Kenya Rift from low-temperature thermochronology: links to diachronous spatiotemporal evolution of rifting in East Africa. Tectonics 34:2367–2386

    Article  Google Scholar 

  • York D (1969) Least-squares fitting of a straight line with correlated errors. Earth Planet Sci Lett 5:320–324

    Article  Google Scholar 

  • Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14:263–268

    Article  Google Scholar 

  • Wells ML, Snee LW, Blythe AE (2000) Dating of major normal fault systems using thermochronology: an example from the Raft River detachment, Basin and Range, western United States. J Geophys Res 105:16, 303–16, 327

    Google Scholar 

  • Wernicke B (1995) Low-angle normal faults and seismicity: a review. J Geophys Res 100:20159–20174

    Article  Google Scholar 

  • Wernicke B, Axen G (1988) On the role of isotasy in the evolution of normal fault systems. Geology 16:848–851

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Stephanie Brichau and Paul Fitzgerald for helpful reviews of the original manuscript and the many collaborators that contributed to the studies summarized in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foster, D.A. (2019). Fission-Track Thermochronology in Structural Geology and Tectonic Studies. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_11

Download citation

Publish with us

Policies and ethics