Skip to main content

Application of Thermochronology to Geologic Problems: Bedrock and Detrital Approaches

  • Chapter
  • First Online:
Fission-Track Thermochronology and its Application to Geology

Abstract

Low-temperature thermochronology can be applied to a wide range of geologic problems. In this chapter, we provide an overview of different approaches, underlying assumptions and suitable sampling strategies for bedrock and detrital thermochronologic analyses, with particular emphasis on the fission-track (FT) method. Approaches to bedrock thermochronology are dependent on the goals of the project and the regional geologic setting, and include application of: (i) multiple methods (e.g., FT, (U–Th)/He and U–Pb) on various mineral phases (e.g., apatite and zircon) from the same sample, (ii) single methods on multiple samples collected over significant relief or across a geographic region (regional approach) or (iii) multiple methods on multiple samples. The cooling history of rock samples can be used to constrain exhumation paths and provides thermochronologic markers to determine fault offset, timing of deformation and virtual tectonic configurations above the present-day topography. Detrital samples can be used to constrain erosion patterns of sediment source regions on both short-term (103–105 yr) and long-term (106–108 yr) timescales, and their evolution through time. The full potential of the detrital thermochronology approach is best exploited by the integrated analysis of samples collected from a stratigraphic succession, samples of modern sediment and independent mineral fertility determinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asti R, Malusà MG, Faccenna C (2018) Supradetachment basin evolution unraveled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Res 30:502-521

    Article  Google Scholar 

  • Baldwin SL, Harrison TM, Burke K (1986) Fission track evidence for the source of Scotland District sediments, Barbados and implications for post-Eocene tectonics of the southern Caribbean. Tectonics 5:457–468

    Article  Google Scholar 

  • Baldwin SL, Fitzgerald PG, Malusà MG (2018) Chapter 13. Crustal exhumation of plutonic and metamorphic rocks: constraints from fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Balestrieri ML, Bonini M, Corti G, Sani F, Philippon M (2016) A refinement of the chronology of rift-related faulting in the broadly rifted zone, southern Ethiopia, through apatite fission-track analysis. Tectonophysics 671:42–55

    Article  Google Scholar 

  • Bernet M (2018) Chapter 15. Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58(1):205–237

    Article  Google Scholar 

  • Bernet M, Zattin M, Garver JI, Brandon MT, Vance JA (2001) Steady-state exhumation of the European Alps. Geology 29:35–38

    Article  Google Scholar 

  • Bernet M, Brandon MT, Garver JI, Molitor B (2004a) Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. Geol Soc Am Spec Pap 378:25–36

    Google Scholar 

  • Bernet M, Brandon MT, Garver JI, Molitor B (2004b) Downstream changes of Alpine zircon fission-track ages in the Rhône and Rhine Rivers. J Sediment Res 74:82–94

    Article  Google Scholar 

  • Bernoulli D, Bertotti G, Zingg A (1989) Northward thrusting of the Gonfolite Lombarda (South-Alpine Molasse) onto the Mesozoic sequence of the Lombardian Alps: implications for the deformation history of the Southern Alps. Eclogae Geol Helv 82:841–856

    Google Scholar 

  • Bigot-Cormier F, Poupeau G, Sosson M (2000) Differential denudations of the Argentera Alpine external crystalline massif (SE France) revealed by fission track thermochronology (zircons, apatites). C R Acad Sci 5:363–370

    Google Scholar 

  • Brandon MT (1996) Probability density plot for fission-track grain-age samples. Radiat Meas 26:663–676

    Article  Google Scholar 

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110:985–1009

    Article  Google Scholar 

  • Braun J (2002) Quantifying the effect of recent relief changes on age–elevation relationships. Earth Planet Sci Lett 200(3):331–343

    Article  Google Scholar 

  • Braun J (2016) Strong imprint of past orogenic events on the thermochronological record. Tectonophysics 683:325–332

    Article  Google Scholar 

  • Braun J, Gemignani L, van der Beek P (2018) Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands. Earth Surf Dynam 6:257–270

    Article  Google Scholar 

  • Braun J, van der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T (2012) Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 524–525:1–28

    Article  Google Scholar 

  • Brewer ID, Burbank DW, Hodges KV (2003) Modelling detrital cooling-age populations: insights from two Himalayan catchments. Basin Res 15:305–320

    Article  Google Scholar 

  • Brown RW (1991) Backstacking apatite fission-track “stratigraphy”: a method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology 19(1):74–77

    Article  Google Scholar 

  • Brown RW, Summerfield MA, Gleadow AJW (1994) Apatite fission track analysis: its potential for the estimation of denudation rates and implications of long-term landscape development. In: Kirkby MJ (ed) Process models and theoretical geomorphology. Wiley, Hoboken, pp 23–53

    Google Scholar 

  • Carrapa B, Wijbrans J, Bertotti G (2003) Episodic exhumation in the Western Alps. Geology 31(7):601–604

    Article  Google Scholar 

  • Carter A (2018) Chapter 14. Thermochronology on sand and sandstones for stratigraphic and provenance studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Carter A, Bristow CS, Hurford AJ (1995) The application of fission track analysis to the dating of barren sequences: examples from red beds in Scotland and Thailand. Geol Soc Spec Publ 89:57–68

    Article  Google Scholar 

  • Cerveny PF, Naeser ND, Zeitler PK, Naeser CW, Johnson NM (1988) History of uplift and relief of the Himalaya during the past 18 million years: evidence from fission-track ages of detrital zircons from sandstones of the Siwalik Group. New perspectives in basin analysis. Springer, New York, pp 43–61

    Chapter  Google Scholar 

  • Chen WP, Yu CQ, Tseng TL, Yang Z, Wang CY, Ning J, Leonard T (2013) Moho, seismogenesis, and rheology of the lithosphere. Tectonophysics 609:491–503

    Article  Google Scholar 

  • Chirouze F, Bernet M, Huyghe P, Erens V, Dupont-Nivet G, Senebier F (2012) Detrital thermochronology and sediment petrology of the middle Siwaliks along the Muksar Khola section in eastern Nepal. J Asian Earth Sci 44:94–106

    Article  Google Scholar 

  • D’Adda P, Zanchi A, Bergomi M, Berra F, Malusà MG, Tunesi A, Zanchetta S (2011) Polyphase thrusting and dyke emplacement in the central Southern Alps (northern Italy). Int J Earth Sci 100:1095–1113

    Article  Google Scholar 

  • Danišík M (2018) Chapter 5. Integration of fission-track thermochronology with other geochronologic methods on single crystals. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Dickinson WR (2008) Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet Sci Lett 275:80–92

    Article  Google Scholar 

  • Dunkl I, Székely B (2002) Component analysis with visualization of fitting—PopShare, a windows program for data analysis. Goldschmidt conference abstracts 2002. Geochim Cosmochim Ac 66/A:201

    Google Scholar 

  • Ehlers TA (2005) Crustal thermal processes and the interpretation of thermochronometer data. Rev Mineral Geochem 58:315–350

    Article  Google Scholar 

  • Ehlers TA, Chaudhri T, Kumar S, Fuller CW, Willett SD, Ketcham RA, Brandon MT, Belton DX, Kohn BP, Gleadow AJW, Dunai TJ, Fu FQ (2005) Computational tools for low-temperature thermochronometer interpretation. Rev Mineral Geochem 58(1):589–622

    Article  Google Scholar 

  • Eyal Y, Reches Z (1983) Tectonic analysis of the Dead Sea Rift region since the Late-Cretaceous based on mesostructures. Tectonics 2:167–185

    Article  Google Scholar 

  • Feinstein S, Kohn B, Osadetz K, Price RA (2007) Thermochronometric reconstruction of the prethrust paleogeothermal gradient and initial thickness of the Lewis thrust sheet, southeastern Canadian Cordillera foreland belt. Geol Soc Am Spec Pap 433:167–182

    Google Scholar 

  • Fitzgerald PG (1992) The Transantarctic Mountains of southern Victoria Land: the application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11(3):634–662

    Article  Google Scholar 

  • Fitzgerald PG (1994) Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics 13:818–836

    Article  Google Scholar 

  • Fitzgerald PG, Gleadow AJ (1988) Fission-track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica. Chem Geol 73(2):169–198

    Google Scholar 

  • Fitzgerald PG, Gleadow AJ (1990) New approaches in fission track geochronology as a tectonic tool: examples from the Transantarctic Mountains. Int J Rad Appl Instr Part D Nucl Tracks Rad Meas 17(3):351–357

    Article  Google Scholar 

  • Fitzgerald PG, Malusà MG (2018) Chapter 9. Concept of the exhumed partial annealing (retention) zone and age-elevation profiles in thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Fitzgerald PG, Sorkhabi RB, Redfield TF, Stump E (1995) Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J Geophys Res Sol Earth 100(B10):20175–20191

    Article  Google Scholar 

  • Fitzgerald PG, Duebendorfer EM, Faulds JE, O’Sullivan PB (2009) South Virgin–White Hills detachment fault system of SE Nevada and NW Arizona: applying apatite fission track thermochronology to constrain the tectonic evolution of a major continental detachment fault. Tectonics 28

    Google Scholar 

  • Fitzgerald PG, Malusà MG, Muñoz JA (2018) Chapter 17. Detrital thermochronology using conglomerates and cobbles. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Foster DA (2018) Chapter 11. Fission-track thermochronology in structural geology and tectonic studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Foster DA, Gleadow AJW (1996) Structural framework and denudation history of the flanks Kenya and Anza rifts, East Africa. Tectonics 15:258–271

    Article  Google Scholar 

  • Foster DA, Gleadow AJ, Reynolds SJ, Fitzgerald PG (1993) Denudation of metamorphic core complexes and the reconstruction of the transition zone, west central Arizona: constraints from apatite fission track thermochronology. J Geophys Res Sol Earth 98(B2):2167–2185

    Article  Google Scholar 

  • Freeman SR, Inger S, Butler RWH, Cliff RA (1997) Dating deformation using Rb–Sr in white mica: greenschist facies deformation ages from the Entrelor shear zone, Italian Alps. Tectonics 16:57–76

    Article  Google Scholar 

  • Gallagher K, Brown RW (1997) The onshore record of passive margin evolution. J Geol Soc Lond 154:451–457

    Article  Google Scholar 

  • Garver JI, Brandon MT, Roden-Tice MK, Kamp PJJ (1999) Exhumation history of orogenic highlands determined by detrital fission track thermochronology. Geol Soc Spec Publ 154:283–304

    Article  Google Scholar 

  • Garzanti E, Malusà MG (2008) The Oligocene Alps: domal unroofing and drainage development during early orogenic growth. Earth Planet Sci Lett 268:487–500

    Article  Google Scholar 

  • Gessner K, Ring U, Johnson C, Hetzel R, Passchier CW, Güngör T (2001) An active bivergent rolling-hinge detachment system: Central Menderes metamorphic core complex in western Turkey. Geology 29:611–614

    Article  Google Scholar 

  • Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82(1):1–14

    Google Scholar 

  • Glotzbach C, Bernet M, van der Beek P (2011) Detrital thermochronology records changing source areas and steady exhumation in the Western European Alps. Geology 39(3):239–242

    Article  Google Scholar 

  • Glotzbach C, van der Beek P, Carcaillet J, Delunel R (2013) Deciphering the driving forces of erosion rates on millennial to million-year timescales in glacially impacted landscapes: an example from the Western Alps. J Geophys Res Earth 118:1491–1515

    Article  Google Scholar 

  • Glotzbach C, Busschers FS, Winsemann J (2017) Detrital thermochronology of Rhine, Elbe and Meuse river sediment (Central Europe): implications for provenance, erosion and mineral fertility. Int J Earth Sci. https://doi.org/10.1007/s00531-017-1502-9

    Article  Google Scholar 

  • Green PF (1986) On the thermo-tectonic evolution of Northern England: evidence from fission track analysis. Geol Mag 153:493–506

    Article  Google Scholar 

  • Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol Isot Geosci Sect 79(2):155–182

    Google Scholar 

  • Hendriks B, Andriessen P, Huigen Y, Leighton C, Redfield T, Murrell G, Gallagher K, Nielsen SB (2007) A fission track data compilation for Fennoscandia. Norw J Geol 87:143–155

    Google Scholar 

  • Herman F, Braun J, Dunlap WJ (2007) Tectonomorphic scenarios in the Southern alps of New Zealand. J Geophys Res Sol Earth 112(B4)

    Google Scholar 

  • Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the insubric fault line. Contrib Miner Petrol 92:413–427

    Article  Google Scholar 

  • Ketcham R (2018) Chapter 3. Fission track annealing: from geologic observations to thermal history modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Miner 100(4):897–908

    Article  Google Scholar 

  • Kounov A, Viola G, De Wit M, Andreoli MAG (2009) Denudation along the Atlantic passive margin: new insights from apatite fission-track analysis on the western coast of South Africa. Geol Soc Spec Publ 324:287–306

    Article  Google Scholar 

  • Ksienzyk AK, Dunkl I, Jacobs J, Fossen H, Kohlmann F (2014) From orogen to passive margin: constraints from fission track and (U–Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geol Soc Spec Publ 390

    Google Scholar 

  • Labaume P, Jolivet M, Souquière F, Chauvet A (2008) Tectonic control on diagenesis in a foreland basin: combined petrologic and thermochronologic approaches in the Grès d’Annot basin (Late Eocene-Early Oligocene, French-Italian external Alps). Terra Nova 20:95–101

    Article  Google Scholar 

  • Lang KA, Huntington KW, Burmester R, Housen B (2016) Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene. Geol Soc Am Bull 128:1403–1422

    Article  Google Scholar 

  • Lupker M, Blard PH, Lavé J, France-Lanord C, Leanni L, Puchol N, Charreau J, Bourlès D (2012) 10Be-derived Himalayan denudation rates and sediment budgets in the Ganga basin. Earth Planet Sci Lett 333:146–156

    Article  Google Scholar 

  • Malusà MG (2018) Chapter 16. A guide for interpreting complex detrital age patterns in stratigraphic sequences. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Balestrieri ML (2012) Burial and exhumation across the Alps-Apennines junction zone constrained by fission-track analysis on modern river sands. Terra Nova 24:221–226

    Article  Google Scholar 

  • Malusà MG, Fitzgerald PG (2018) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Garzanti E (2018) Chapter 7. The sedimentology of detrital thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Malusà MG, Polino R, Zattin M, Bigazzi G, Martin S, Piana F (2005) Miocene to present differential exhumation in the Western Alps: insights from fission track thermochronology. Tectonics 24(3):TC3004:1-23

    Article  Google Scholar 

  • Malusà MG, Philippot P, Zattin M, Martin S (2006) Late stages of exhumation constrained by structural, fluid inclusion and fission track analyses (Sesia–Lanzo unit, Western European Alps). Earth Planet Sci Lett 243(3):565–580

    Article  Google Scholar 

  • Malusà MG, Polino R, Cerrina Feroni A, Ellero A, Ottria G, Baidder L, Musumeci G (2007) Post-Variscan tectonics in eastern Anti-Atlas (Morocco). Terra Nova 19(6):481–489

    Article  Google Scholar 

  • Malusà MG, Polino R, Zattin M (2009a) Strain partitioning in the axial NW Alps since the Oligocene. Tectonics 28(TC002370):1–26

    Google Scholar 

  • Malusà MG, Zattin M, Andò S, Garzanti E, Vezzoli G (2009b) Focused erosion in the Alps constrained by fission-track ages on detrital apatites. Geol Soc Spec Publ 324:141–152

    Article  Google Scholar 

  • Malusà MG, Villa IM, Vezzoli G, Garzanti E (2011) Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth Planet Sci Lett 301:324–336

    Article  Google Scholar 

  • Malusà MG, Carter A, Limoncelli M, Villa IM, Garzanti E (2013) Bias in detrital zircon geochronology and thermochronometry. Chem Geol 359:90–107

    Article  Google Scholar 

  • Malusà MG, Resentini A, Garzanti E (2016) Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res 31:1–19

    Article  Google Scholar 

  • Malusà MG, Wang J, Garzanti E, Liu ZC, Villa IM, Wittmann H (2017) Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: implications for provenance discrimination and the lag-time approach to detrital thermochronology. Lithos 290–291:48–59

    Article  Google Scholar 

  • Mancktelow NS, Grasemann B (1997) Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics 270(3):167–195

    Article  Google Scholar 

  • Marrett R, Allmendinger RW (1990) Kinematic analysis of fault-slip data. J Struct Geol 12:973–986

    Article  Google Scholar 

  • Martinez-Diaz JJ (2002) Stress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain. Tectonophysics 356:291–305

    Article  Google Scholar 

  • Miller SR, Fitzgerald PG, Baldwin SL (2010) Cenozoic range‐front faulting and development of the Transantarctic Mountains near Cape Surprise, Antarctica: thermochronologic and geomorphologic constraints. Tectonics 29(1)

    Article  Google Scholar 

  • Moecher DP, Samson SD (2006) Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth Planet Sci Lett 247:252–266

    Article  Google Scholar 

  • Moore MA, England PC (2001) On the inference of denudation rates from cooling ages of minerals. Earth Planet Sci Lett 185:265–284

    Article  Google Scholar 

  • Murakami M, Tagami T (2004) Dating pseudotachylyte of the Nojima fault using the zircon fission‐track method. Geophys Res Lett 31(12)

    Article  Google Scholar 

  • Naeser CW, Bryant B, Crittenden MD, Sorensen ML (1983) Fission-track ages of apatite in the Wasatch Mountains, Utah: an uplift study. Geol Soc Am Mem 157:29–36

    Google Scholar 

  • Niemi NA, Buscher JT, Spotila JA, House MA, Kelley SA (2013) Insights from low-temperature thermochronometry into transpressional deformation and crustal exhumation along the San Andreas fault in the western Transverse Ranges, California. Tectonics 32:1602–1622

    Article  Google Scholar 

  • Oberli F, Meier M, Berger A, Rosenberg CL, Gieré R (2004) U–Th–Pb and 230Th/238U disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochim Cosmochim Acta 68:2543–2560

    Article  Google Scholar 

  • Pieri M, Groppi G (1981) Subsurface geological structure of the Po Plain, Italy. Progetto Finalizzato Geodinamica 414:1–13

    Google Scholar 

  • Priestley K, Jackson J, McKenzie D (2008) Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophys J Int 172:345–362

    Article  Google Scholar 

  • Raab MJ, Brown RW, Gallagher K, Carter A, Weber K (2002) Late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics 349:75–92

    Article  Google Scholar 

  • Rahl JM, Ehlers TA, van der Pluijm BA (2007) Quantifying transient erosion of orogens with detrital thermochronology from syntectonic basin deposits. Earth Planet Sci Lett 256:147–161

    Article  Google Scholar 

  • Rahn MK, Selbekk R (2007) Absolute dating of the youngest sediments of the Swiss Molasse basin by apatite fission track analysis. Swiss J Geosci 100(3):371–381

    Article  Google Scholar 

  • Raterron P, Wu Y, Weidner DJ, Chen J (2004) Low-temperature olivine rheology at high pressure. Phys Earth Planet Inter 145:149–159

    Article  Google Scholar 

  • Rebai S, Philip H, Taboada A (1992) Modern tectonic stress field in the Mediterranean region: evidence for variations in stress directions at different scales. Geophys J Int 110:106–140

    Article  Google Scholar 

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466

    Article  Google Scholar 

  • Resentini A, Malusà MG (2012) Sediment budgets by detrital apatite fission-track dating (Rivers Dora Baltea and Arc, Western Alps). Geol Soc Am Spec Pap 487:125–140

    Google Scholar 

  • Riccio SJ, Fitzgerald PG, Benowitz JA, Roeske SM (2014) The role of thrust faulting in the formation of the eastern Alaska Range: thermochronological constraints from the Susitna glacier thrust fault region of the intracontinental strike-slip Denali fault system. Tectonics 33(11):2195–2217

    Article  Google Scholar 

  • Richardson NJ, Densmore AL, Seward D et al (2008) Extraordinary denudation in the Sichuan basin: insights from low‐temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. J Geophys Res Solid Earth 113(B4)

    Google Scholar 

  • Ruhl KW, Hodges KV (2005) The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: an example from the central Nepalese Himalaya. Tectonics 24

    Google Scholar 

  • Ruiz G, Seward D (2006) The Punjab foreland basin of Pakistan: a reinterpretation of zircon fission-track data in the light of Miocene hinterland dynamics. Terra Nova 18:248–256

    Article  Google Scholar 

  • Ruiz G, Seward D, Winkler W (2004) Detrital thermochronology—a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador. Basin Res 16:413–430

    Article  Google Scholar 

  • Ruiz G, Carlotto V, Van Heiningen PV, Andriessen PAM (2009) Steady-state exhumation pattern in the Central Andes–SE Peru. Geol Soc Spec Publ 324:307–316

    Article  Google Scholar 

  • Schildgen TF, van der Beek PA (2018) Chapter 19. Application of low-temperature thermochronology to the geomorphology of orogenic systems. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Schmid SM, Handy MR (1991) Towards a genetic classification of fault rocks: geological usage and tectonophysical implications. In: Muller DW et al (eds) Controversies in modern geology. Academic Press, Cambridge, pp 339–361

    Google Scholar 

  • Schneider DA, Issler DR (2018) Chapter 18. Application of low-temperature thermochronology to hydrocarbon exploration. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42

    Article  Google Scholar 

  • Schwartz S, Gautheron C, Audin L, Dumont T, Nomade J, Barbarand J, Pinna-Jamme R, van der Beek P (2017) Foreland exhumation controlled by crustal thickening in the Western Alps. Geology G38561-1

    Google Scholar 

  • Sibson RH (1983) Continental fault structure and the shallow earthquake source. J Geol Soc Lond 140:741–767

    Article  Google Scholar 

  • Snoke AW, Tullis J, Todd VR (1998) Fault-related rocks: a photographic atlas. Princeton University Press, Princeton

    Google Scholar 

  • Spotila JA (2005) Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts. Rev Miner Geochem 58(1):449–466

    Article  Google Scholar 

  • Stock GM, Ehlers TA, Farley KA (2006) Where does sediment come from? Quantifying catchment erosion with detrital apatite (U–Th)/He thermochronometry. Geology 34:725–728

    Article  Google Scholar 

  • Stockli DF, Surpless BE, Dumitru TA, Farley KA (2002) Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada. Tectonics 21

    Google Scholar 

  • Stüwe K, White L, Brown R (1994) The influence of eroding topography on steady-state isotherms. Application to fission-track analysis. Earth Planet Sci Lett 124(1–4):63–74

    Article  Google Scholar 

  • Tagami T. (2018) Chapter 12. Application of fission-track thermochronology to understand fault zones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Tagami T, Hasebe N, Kamohara H, Takemura K (2001) Thermal anomaly around the Nojima Fault as detected by fission-track analysis of Ogura 500 m borehole samples. Isl Arc 10(3–4):457–464

    Article  Google Scholar 

  • Thiede RC, Arrowsmith JR, Bookhagen B, McWilliams M, Sobel ER, Strecker MR (2006) Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India. Geol Soc Am Bull 118:635–650

    Article  Google Scholar 

  • Thomson SN (2002) Late cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42 S and 46 S: an appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone. Geol Soc Am Bull 114:1159–1173

    Google Scholar 

  • van der Beek P, Robert X, Mugnier JL, Bernet M, Huyghe P, Labrin E (2006) Late Miocene–recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission-track thermochronology of Siwalik sediments, Nepal. Basin Res 18:413–434

    Article  Google Scholar 

  • Vermeesch P (2007) Quantitative geomorphology of the White Mountains (California) using detrital apatite fission track thermochronology. J Geophys Res Earth 112(F3)

    Google Scholar 

  • Vermeesch P (2009) RadialPlotter: a Java application for fission track, luminescence and other radial plots. Rad Meas 44:409–410

    Article  Google Scholar 

  • Vermeesch P (2013) Multi-sample comparison of detrital age distributions. Chem Geol 341:140–146

    Article  Google Scholar 

  • Vermeesch P (2018) Chapter 6. Statistics for fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, Berlin

    Google Scholar 

  • Villa IM, von Blanckenburg F (1991) A hornblende 39Ar–40Ar age traverse of the Bregaglia tonalite (southeast Central Alps). Schweiz Mineral Petrogr Mitt 71:73–87

    Google Scholar 

  • Viola G, Mancktelow NS, Seward D (2001) Late Oligocene-Neogene evolution of Europe-Adria collision: new structural and geochronological evidence from the Giudicarie fault system (Italian Eastern Alps). Tectonics 20:999–1020

    Article  Google Scholar 

  • von Eynatten H, Dunkl I (2012) Assessing the sediment factory: the role of single grain analysis. Earth Sci Rev 115:97–120

    Article  Google Scholar 

  • Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14(2):263–268

    Article  Google Scholar 

  • Wagner GA, Reimer GM, Jäger E (1977) Cooling ages derived by apatite fission track, mica Rb–Sr, and K–Ar dating: the uplift and cooling history of the central Alps. Mem Ist Geol Miner Univ Padova 30:1–27

    Google Scholar 

  • Wagner GA, Miller DS, Jäger E (1979) Fission track ages on apatite of Bergell rocks from central Alps and Bergell boulders in Oligocene sediments. Earth Planet Sci Lett 45(2):355–360

    Article  Google Scholar 

  • Warren-Smith E, Lamb S, Seward D, Smith E, Herman F, Stern T (2016) Thermochronological evidence of a low-angle, mid-crustal detachment plane beneath the central South Island, New Zealand. Geochem Geophys Geosyst 17:4212–4235

    Article  Google Scholar 

  • West DP, Roden-Tice MK (2003) Late Cretaceous reactivation of the Norumbega fault zone, Maine: evidence from apatite fission-track ages. Geology 31(7):649–652

    Article  Google Scholar 

  • Willett SD, Fisher D, Fuller C, En-Chao Y, Chia-Yu L (2003) Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31:945–948

    Article  Google Scholar 

  • Wiltschko DV (1998) Analysis of veins in low temperature environments—introduction for structural geologists. Geol Soc Am. Short Course, 96 pp

    Google Scholar 

  • Wittmann H, Von Blanckenburg F, Maurice L, Guyot JL, Kubik PW (2011) Recycling of Amazon floodplain sediment quantified by cosmogenic 26Al and 10Be. Geology 39(5):467–470

    Article  Google Scholar 

  • Wittmann H, Malusà MG, Resentini A, Garzanti E, Niedermann S (2016) The cosmogenic record of mountain erosion transmitted across a foreland basin: source-to-sink analysis of in situ 10Be, 26Al and 21Ne in sediment of the Po river catchment. Earth Planet Sci Lett 452:258–271

    Article  Google Scholar 

  • Zanchetta S, Malusà MG, Zanchi A (2015) Precollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps). Lithosphere 7(6):662–681

    Google Scholar 

  • Zattin M, Picotti V, Zuffa GG (2002) Fission-track reconstruction of the front of the Northern Apennine thrust wedge and overlying Ligurian unit. Am J Sci 302(4):346–379

    Article  Google Scholar 

  • Zattin M, Talarico FM, Sandroni S (2010) Integrated provenance and detrital thermochronology studies on the ANDRILL AND-2A drill core: late Oligocene-early miocene exhumation of the Transantarctic Mountains (southern Victoria Land, Antarctica). Terra Nova 22:361–368

    Article  Google Scholar 

  • Zwingmann H, Mancktelow N (2004) Timing of Alpine fault gouges. Earth Planet Sci Lett 223:415–425

    Article  Google Scholar 

Download references

Acknowledgements

This work benefited from constructive reviews by Maria Laura Balestrieri and Shari Kelley, comments on an early version of the manuscript by an anonymous reviewer, and comments by Suzanne Baldwin and students in her 2016 thermochronology class. PGF thanks the National Science Foundation for funding through the years as well as support from Jarg Pettinga and the Erksine Program at the University of Canterbury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco G. Malusà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malusà, M.G., Fitzgerald, P.G. (2019). Application of Thermochronology to Geologic Problems: Bedrock and Detrital Approaches. In: Malusà, M., Fitzgerald, P. (eds) Fission-Track Thermochronology and its Application to Geology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-89421-8_10

Download citation

Publish with us

Policies and ethics