Skip to main content

Medical Systems Biology

  • Chapter
  • First Online:
Modeling Methods for Medical Systems Biology

Abstract

The aim of this volume is to encourage the use of systems-level methodologies to contribute to the improvement of human-health . We intend to motivate biomedical researchers to complement their current theoretical and empirical practice with up-to-date systems biology conceptual approaches. Our perspective is based on the deep understanding of the key biomolecular regulatory mechanisms that underlie health, as well as the emergence and progression of human-disease . We strongly believe that the contemporary systems biology perspective opens the door to the effective development of novel methodologies to the improvement of prevention . This requires a deeper and integrative understanding of the involved underlying systems-level mechanisms. In order to explain our proposal in a simple way, in this chapter we privilege the conceptual exposition of our chosen framework over formal considerations. The formal exposition of our proposal will be expanded and discussed later in the next chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, A. C., Tewari, M., Poon, C. S., & Phillips, R. S. (2006). The limits of reductionism in medicine: Could systems biology offer an alternative?. PLoS Medicine, 3(6), e208.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alberch, P. (1991). From genes to phenotype: Dynamical systems and evolvability. Genetica, 84, 5–11.

    Article  PubMed  CAS  Google Scholar 

  3. Albert, R., & Othmer, H. G. (2003). The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. Journal of Theoretical Biology, 223(1), 1–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Aldana, M., Balleza, E., Kauffman, S., & Resendiz, O. (2007). Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology, 245(3), 433–448.

    Article  PubMed  Google Scholar 

  5. Allam, M. F., & Arjona, M. O. (2013). Health promotion or pharmacological treatment for chronic diseases? Journal of Preventive Medicine and Hygiene, 54(1), 11.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Álvarez-Buylla, E. R., Azpeitia, E., Barrio, R., Benítez, M., & Padilla-Longoria, P. (2010). From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: Making biological sense of theoretical approaches. Seminars in Cell & Developmental Biology, 21(1), 108–117.

    Article  CAS  Google Scholar 

  7. Álvarez-Buylla, E. R., Benítez, M., Davila, E. B., Chaos, A., Espinosa-Soto, C., & Padilla-Longoria, P. (2007). Gene regulatory network models for plant development. Current Opinion in Plant Biology, 10(1), 83–91.

    Article  PubMed  CAS  Google Scholar 

  8. Álvarez-Buylla, E. R., Chaos, Á., Aldana, M., Benítez, M., Cortes-Poza, Y., Espinosa-Soto, C., et al. (2008). Floral morphogenesis: Stochastic explorations of a gene network epigenetic landscape. PLoS One, 3(11), e3626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Álvarez-Buylla, E. R., Dávila-Velderrain, J., & Martínez-García, J. C. (2016). Systems biology approaches to development beyond bioinformatics: Nonlinear mechanistic models using plant systems. BioScience, 66(5), 371–383.

    Article  Google Scholar 

  10. Anderson, D. F., & Kurtz, T. G. (2015). Stochastic analysis of biochemical systems (Vol. 1). Berlin: Springer.

    Book  Google Scholar 

  11. Arendt, D., Musser, J. M., Baker, C. V., Bergman, A., Cepko, C., Erwin, D. H., et al. (2016). The origin and evolution of cell types. Nature Reviews Genetics, 17(12), 744–757.

    Article  PubMed  CAS  Google Scholar 

  12. Arroyo, A. G., & Iruela-Arispe, M. L. (2010). Extracellular matrix, inflammation, and the angiogenic response. Cardiovascular Research, 86(2), 226–235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Azpeitia, E., Benítez, M., Padilla-Longoria, P., Espinosa-Soto, C., & Álvarez-Buylla, E. R. (2011). Dynamic network-based epistasis analysis: Boolean examples. Frontiers in Plant Science, 2, 92.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Azpeitia, E., Benítez, M., Vega, I., Villarreal, C., & Álvarez-buylla, E. R. (2010). Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Systems Biology, 4, 134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Azpeitia, E., Muñoz, S., González-Tokman, D., Martínez-Sánchez, M. E., Weinstein, N., Naldi, A., et al. (2017). The combination of the functionalities of feedback circuits is determinant for the attractors’ number and size in pathway-like Boolean networks. Scientific Reports, 7, 42023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Azpeitia, E., Weinstein, N., Benítez, M., Mendoza, L., & Álvarez-Buylla, E. R. (2013). Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network. Frontiers in Plant Science, 4, 110.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barrio, R. A. (2008). Turing systems: A general model for complex patterns in nature. In Physics of emergence and organization (pp. 267–296). Singapore: World Scientific. ISBN: 13 978-981-277-994-6, ISBN: 10 981-277-994-9.

    Google Scholar 

  18. Barrio, R. A., Hernandez-Machado, A., Varea, C., Romero-Arias, J. R., & Álvarez-Buylla, E. (2010). Flower development as an interplay between dynamical physical fields and genetic networks. PLoS One, 5(10), e13523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Barrio, R. A., Romero-Arias, J. R., Noguez, M. A., Azpeitia, E., Ortiz-Gutiérrez, E., Hernández-Hernández, V., et al. (2013). Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: The Arabidopsis thaliana root as a study system. PLoS Computational Biology, 9(5), e1003026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ben-Haim, N., Lu, C., Guzman-Ayala, M., Pescatore, L., Mesnard, D., Bischofberger, M., et al. (2006). The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Developmental Cell, 11(3), 313–323.

    Article  PubMed  CAS  Google Scholar 

  21. Bevilacqua, C., & Ducos, B. (2017). Laser microdissection: A powerful tool for genomics at cell level. Molecular Aspects of Medicine, 59, 5–27.

    Article  PubMed  CAS  Google Scholar 

  22. Blaser, M. J. (2017). The theory of disappearing microbiota and the epidemics of chronic diseases. Nature Reviews Immunology, 17(8), 461–463.

    Article  PubMed  CAS  Google Scholar 

  23. Bousquet, J., Anto, J. M., Sterk, P. J., Adcock, I. M., Chung, K. F., Roca, J., et al. (2011). Systems medicine and integrated care to combat chronic noncommunicable diseases. Genome Medicine, 3(7), 43.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brady, T., Roth, S. L., Malani, N., Wang, G. P., Berry, C. C., Leboulch, P., et al. (2011). A method to sequence and quantify DNA integration for monitoring outcome in gene therapy. Nucleic Acids Research, 39(11), e72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bressloff, P. C. (2014). Stochastic processes in cell biology (Vol. 41). New York: Springer.

    Google Scholar 

  26. Bruggeman, F. J., & Westerhoff, H. V. (2007). The nature of systems biology. Trends in Microbiology, 15(1), 45–50.

    Article  PubMed  CAS  Google Scholar 

  27. Çaǧatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J., & Süel, G. M. (2009). Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell, 139(3), 512–522.

    Google Scholar 

  28. Campbell, C., & Albert, R. (2014). Stabilization of perturbed Boolean network attractors through compensatory interactions. BMC Systems Biology, 8(1), 53.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chaldakov, G. N., Fiore, M., Ghenev, P. I., Beltowski, J., Ranćić, G., Tunçel, N., & Aloe, L. (2014). Triactome: Neuro-immune-adipose interactions. Implication in vascular biology. Frontiers in Immunology, 5, 130.

    Google Scholar 

  30. Chen, L., Liu, R., Liu, Z. P., Li, M., & Aihara, K. (2012). Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Scientific Reports, 2, 342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Christodoulides, P., Hirata, Y., Domínguez-Hüttinger, E., Danby, S. G., Cork, M. J., Williams, H. C., et al. (2017). Computational design of treatment strategies for proactive therapy on atopic dermatitis using optimal control theory. Philosophical Transactions of the Royal Society A, 375(2096), 20160285.

    Article  CAS  Google Scholar 

  32. Conley, S. J., Gheordunescu, E., Kakarala, P., Newman, B., Korkaya, H., Heath, A. N., et al. (2012). Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2784–2789.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davila-Velderrain, J., & Álvarez-Buylla, E. R. (2014). Bridging genotype and phenotype. In Frontiers in ecology, evolution and complexity (pp. 144–154). Mexico: EditoraC3 CopIt-arXives, UNAM.

    Google Scholar 

  34. Davila-Velderrain, J., Villarreal, C., & Álvarez-Buylla, E. R. (2015). Reshaping the epigenetic landscape during early flower development: Induction of attractor transitions by relative differences in gene decay rates. BMC Systems Biology, 9(1), 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dolinoy, D. C., Weidman, J. R., & Jirtle, R. L. (2007). Epigenetic gene regulation: Linking early developmental environment to adult disease. Reproductive Toxicology, 23(3), 297–307.

    Article  PubMed  CAS  Google Scholar 

  36. Dominguez-Hüttinger, E., Boon, N. J., Clarke, T. B., & Tanaka, R. J. (2017). Mathematical modelling of colonization, invasive infection and treatment of Streptococcus pneumoniae. Frontiers in Physiology, 8, 115.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Domínguez-Hüttinger, E., Christodoulides, P., Miyauchi, K., Irvine, A. D., Okada-Hatakeyama, M., Kubo, M., et al. (2017). Mathematical modeling of atopic dermatitis reveals “double-switch” mechanisms underlying 4 common disease phenotypes. Journal of Allergy and Clinical Immunology, 139(6), 1861–1872.

    Article  PubMed  Google Scholar 

  38. Domínguez-Hüttinger, E., Ono, M., Barahona, M., & Tanaka, R. J. (2013). Risk factor-dependent dynamics of atopic dermatitis: Modelling multi-scale regulation of epithelium homeostasis. Interface Focus, 3(2), 20120090.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Elias, P. M., Hatano, Y., & Williams, M. L. (2008). Basis for the barrier abnormality in atopic dermatitis: Outside-inside-outside pathogenic mechanisms. Journal of Allergy and Clinical Immunology, 121(6), 1337–1343.

    Article  PubMed  CAS  Google Scholar 

  40. Elinav, E., Nowarski, R., Thaiss, C. A., Hu, B., Jin, C., & Flavell, R. A. (2013). Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nature Reviews Cancer, 13(11), 759–771.

    Article  PubMed  CAS  Google Scholar 

  41. Ellner, S. P., & Guckenheimer, J. (2011). Dynamic models in biology. Princeton: Princeton University Press.

    Google Scholar 

  42. Espinosa-Soto, C., Padilla-Longoria, P., & Álvarez-Buylla, E. R. (2004). A gene regulatory network model for cell–fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell, 16, 2923–2939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Fey, D., Halasz, M., Dreidax, D., Kennedy, S. P., Hastings, J. F., Rauch, N., et al. (2015). Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Science Signaling, 8(408), 1–16.

    Article  CAS  Google Scholar 

  44. Flintoft, L. (2005). From genotype to phenotype: A shortcut through the library. Nature Reviews Genetics, 6. Article ID 520.

    Google Scholar 

  45. Franks, P. W., Pearson, E., & Florez, J. C. (2013). Gene-environment and gene-treatment interactions in type 2 diabetes. Diabetes Care, 36(5), 1413–1421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gallagher, K. L., Sozzani, R., & Lee, C. M. (2014). Intercellular protein movement: Deciphering the language of development. Annual Review of Cell and Developmental Biology, 30, 207–233.

    Article  PubMed  CAS  Google Scholar 

  47. Gao, J., Barzel, B., & Barabási, A. L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307–312.

    Article  PubMed  CAS  Google Scholar 

  48. Goldberg, M. (2008). A systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Reviews on Environmental Health, 23(4), 243–298.

    Article  PubMed  Google Scholar 

  49. Goodwin, B. C. (1994). How the leopard changed its spots. In The evolution of complexity. Princeton: Princeton University Press.

    Google Scholar 

  50. Gordillo, M., Evans, T., & Gouon-Evans, V. (2015). Orchestrating liver development. Development, 142(12), 2094–2108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Grarup, N., Sandholt, C. H., Hansen, T., & Pedersen, O. (2014). Genetic susceptibility to type 2 diabetes and obesity: From genome-wide association studies to rare variants and beyond. Diabetologia, 57(8), 1528–1541.

    Article  PubMed  CAS  Google Scholar 

  52. Groß-Hardt, R., & Laux, T. (2003). Stem cell regulation in the shoot meristem. Journal of Cell Science, 116(9), 1659–1666.

    Article  PubMed  CAS  Google Scholar 

  53. Hamant, O., Traas, J., & Boudaoud, A. (2010). Regulation of shape and patterning in plant development. Current Opinion in Genetics & Development, 20(4), 454–459.

    Article  CAS  Google Scholar 

  54. Hinz, B. (2009). Tissue stiffness, latent TGF-β1 activation, and mechanical signal transduction: Implications for the pathogenesis and treatment of fibrosis. Current Rheumatology Reports, 11(2), 120–126.

    Article  PubMed  CAS  Google Scholar 

  55. Hirata, Y., Bruchovsky, N., & Aihara, K. (2010). Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. Journal of Theoretical Biology, 264(2), 517–527.

    Article  PubMed  CAS  Google Scholar 

  56. Hirata, Y., di Bernardo, M., Bruchovsky, N., & Aihara, K. (2010). Hybrid optimal scheduling for intermittent androgen suppression of prostate cancer. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4), 045125.

    Article  CAS  Google Scholar 

  57. Hirata, Y., Morino, K., Akakura, K., Higano, C. S., Bruchovsky, N., Gambol, T., et al. (2015). Intermittent androgen suppression: Estimating parameters for individual patients based on initial PSA data in response to androgen deprivation therapy. PloS One, 10(6), e0130372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Huang, S. (2011). Systems biology of stem cells: Three useful perspectives to help overcome the paradigm of linear pathways. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1575), 2247–2259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Huang, S. (2013). Genetic and non-genetic instability in tumor progression: Link between the fitness landscape and the epigenetic landscape of cancer cells. Cancer and Metastasis Reviews, 32(3–4), 423–448.

    Article  PubMed  CAS  Google Scholar 

  60. Huang, S., Eichler, G., Bar-Yam, Y., & Ingber, D. E. (2005). Cell fates as high-dimensional attractor states of a complex gene regulatory network. Physical Review Letters, 94(12), 128701.

    Article  PubMed  CAS  Google Scholar 

  61. Huang, S., Ernberg, I., & Kauffman, S. (2009). Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell & Developmental Biology, 20(7), 869–876.

    Article  CAS  Google Scholar 

  62. Huang, S., & Kauffman, S. A. (2009). Complex GRN regulatory networks: From structure to biological observables: Cell fate determination. In Encyclopedia of complexity and systems science (pp. 1180–1213). New York: Springer.

    Chapter  Google Scholar 

  63. Jensen, K. J., Moyer, C. B., & Janes, K. A. (2016). Network architecture predisposes an enzyme to either pharmacologic or genetic targeting. Cell Systems, 2(2), 112–121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jeong, H., Mason, S. P., Barabási, A. L., & Oltvai, Z. N. (2001). Lethality and centrality in protein networks. Nature, 411(6833), 41–42.

    Article  PubMed  CAS  Google Scholar 

  65. Kalluri, R. (2009). EMT: When epithelial cells decide to become mesenchymal-like cells. The Journal of Clinical Investigation, 119(6), 1417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kaneko, K. (2006). Life: An introduction to complex systems biology. Berlin: Springer.

    Book  Google Scholar 

  67. Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3), 437–467.

    Article  PubMed  CAS  Google Scholar 

  68. Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. Oxford: Oxford University Press.

    Google Scholar 

  69. Kennedy, M. A., Gonzalez-Sarmiento, R., Kees, U. R., Lampert, F., Dear, N., Boehm, T., et al. (1991). HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proceedings of the National Academy of Sciences, 88(20), 8900–8904.

    Article  CAS  Google Scholar 

  70. Kim, Y. A., & Przytycka, T. M. (2013). Bridging the gap between genotype and phenotype via network approaches. Frontiers in Genetics, 3, 227.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Latham, A. M., Molina-París, C., Homer-Vanniasinkam, S., & Ponnambalam, S. (2010). An integrative model for vascular endothelial growth factor A as a tumour biomarker. Integrative Biology, 2(9), 397–407.

    Article  PubMed  CAS  Google Scholar 

  72. Laubenbacher, R., Hower, V., Jarrah, A., Torti, S. V., Shulaev, V., Mendes, P., et al. (2009). A systems biology view of cancer. Biochimica et Biophysica Acta—Reviews on Cancer, 1796(2), 129–139.

    Article  CAS  Google Scholar 

  73. Laurent, M., & Kellershohn, N. (1999). Multistability: A major means of differentiation and evolution in biological systems. Trends in Biochemical Sciences, 24(11), 418–422.

    Article  PubMed  CAS  Google Scholar 

  74. Lewontin, R. (1974). The genetic basis of evolutionary change. Columbia biological series. Columbia: Columbia University Press.

    Google Scholar 

  75. Li, E., Materna, S. C., & Davidson, E. H. (2013). New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN. Developmental Biology, 382(1), 268–279.

    Article  PubMed  CAS  Google Scholar 

  76. Liberman, L. M., Sozzani, R., & Benfey, P. N. (2012). Integrative systems biology: An attempt to describe a simple weed. Current Opinion in Plant Biology, 15(2), 162–167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lindberg, M. J., Popko-Scibor, A. E., Hansson, M. L., & Wallberg, A. E. (2010). SUMO modification regulates the transcriptional activity of MAML1. The FASEB Journal, 24(7), 2396–2404.

    Article  PubMed  CAS  Google Scholar 

  78. Liu, E. T., & Lauffenburger, D. A. (Eds.). (2009). Systems biomedicine: Concepts and perspectives. New York: Academic.

    Google Scholar 

  79. Liu, L., You, Z., Yu, H., Zhou, L., Zhao, H., Yan, X., et al. (2017). Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nature Materials, 16, 1252. nmat5024.

    Google Scholar 

  80. Loktionov, A. (2003). Common gene polymorphisms and nutrition: Emerging links with pathogenesis of multifactorial chronic diseases. The Journal of Nutritional Biochemistry, 14(8), 426–451.

    Article  PubMed  CAS  Google Scholar 

  81. Lynch, J., & Smith, G. D. (2005). A life course approach to chronic disease epidemiology. Annual Review of Public Health, 26, 1–35.

    Article  PubMed  Google Scholar 

  82. Mammoto, T., & Ingber, D. E. (2010). Mechanical control of tissue and organ development. Development, 137(9), 1407–1420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Marchiando, A. M., Graham, W. V., & Turner, J. R. (2010). Epithelial barriers in homeostasis and disease. Annual Review of Pathological Mechanical Disease, 5, 119–144.

    Article  CAS  Google Scholar 

  84. Marioni, J. C., & Arendt, D. (2017). How single-cell genomics is changing evolutionary and developmental biology. Annual Review of Cell and Developmental Biology, 33(1), 537–553.

    Article  PubMed  CAS  Google Scholar 

  85. Mayburd, A. L. (2009). Expression variation: Its relevance to emergence of chronic disease and to therapy. PLoS One, 4(6), e5921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. McDonnell, M. D., & Abbott, D. (2009). What is stochastic resonance?. Definitions, misconceptions, debates, and its relevance to biology. PLoS Computational Biology, 5(5), e1000348.

    Google Scholar 

  87. McGeer, P. L., & Mcgeer, E. G. (2004). Inflammation and the degenerative diseases of aging. Annals of the New York Academy of Sciences, 1035(1), 104–116.

    Article  PubMed  CAS  Google Scholar 

  88. Meaburn, K. J., Burman, B., & Misteli, T. (2016). Spatial genome organization and disease. In The functional nucleus (pp. 101–125). Berlin: Springer International Publishing.

    Chapter  Google Scholar 

  89. Meinhardt, H. (1982). Models of biological pattern formation. London: Academic.

    Google Scholar 

  90. Méndez-López, L. F., Davila-Velderrain, J., Domínguez-Hüttinger, E., Enríquez-Olguín, C., Martínez-García, J. C., & Álvarez-Buylla, E. R. (2017). Gene regulatory network underlying the immortalization of epithelial cells. BMC Systems Biology, 11(1), 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mendoza, L., & Álvarez-Buylla, E. R. (1998). Dynamics of the genetic regulatory network for arabidopsis thaliana flower morphogenesis. Journal of Theoretical Biology, 193(2), 307–319.

    Article  PubMed  CAS  Google Scholar 

  92. Mendoza, L., Thieffry, D., & Álvarez-Buylla, E. R. (1999). Genetic control of flower morphogenesis in Arabidopsis thaliana: A logical analysis. Bioinformatics, 15, 593–606.

    Article  PubMed  CAS  Google Scholar 

  93. Meng, L., Maskarinec, G., Lee, J., & Kolonel, L. N. (1999). Lifestyle factors and chronic diseases: Application of a composite risk index. Preventive Medicine, 29(4), 296–304.

    Article  PubMed  CAS  Google Scholar 

  94. Mirabet, V., Das, P., Boudaoud, A., & Hamant, O. (2011). The role of mechanical forces in plant morphogenesis. Annual Review of Plant Biology, 62, 365–385.

    Article  PubMed  CAS  Google Scholar 

  95. Molina, D. M., Jafari, R., Ignatushchenko, M., Seki, T., Larsson, E. A., Dan, C., et al. (2013). Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science, 341(6141), 84–87.

    Article  CAS  Google Scholar 

  96. Nieto, M. A., Huang, R. Y. J., Jackson, R. A., & Thiery, J. P. (2016). EMT: 2016. Cell, 166(1), 21–45.

    Article  PubMed  CAS  Google Scholar 

  97. Oates, A. C. (2011). What’s all the noise about developmental stochasticity?. Development, 138(4), 601–607.

    Article  PubMed  CAS  Google Scholar 

  98. Park, S., & Lehner, B. (2015). Cancer type-dependent genetic interactions between cancer driver alterations indicate plasticity of epistasis across cell types. Molecular Systems Biology, 11(7), 824.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pawankar, R. (2014). Allergic diseases and asthma: A global public health concern and a call to action. World Allergy Organization Journal, 7(1), 12.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Perkins, T. J., & Swain, P. S. (2009). Strategies for cellular decision-making. Molecular Systems Biology, 5(1), 326.

    PubMed  PubMed Central  Google Scholar 

  101. Pfeuty, B., & Kaneko, K. (2014). Reliable binary cell-fate decisions based on oscillations. Physical Review E, 89(2), 022707.

    Article  CAS  Google Scholar 

  102. Pisco, A. O., & Huang, S. (2015). Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘What does not kill me strengthens me’. British Journal of Cancer, 112(11), 1725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Poplawski, N. J., Swat, M., Gens, J. S., & Glazier, J. A. (2007). Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb. Physica A: Statistical Mechanics and Its Applications, 373, 521–532.

    Article  PubMed  Google Scholar 

  104. Prina, E., Ranzani, O. T., & Torres, A. (2015). Community-acquired pneumonia. The Lancet, 386(9998), 1097–1108.

    Article  Google Scholar 

  105. Prochiantz, A., & Joliot, A. (2003). Can transcription factors function as cell–cell signalling molecules?. Nature Reviews Molecular Cell Biology, 4(10), 814–819.

    Article  PubMed  CAS  Google Scholar 

  106. Raviv, S., Bharti, K., Rencus-Lazar, S., Cohen-Tayar, Y., Schyr, R., Evantal, N., et al. (2014). PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genetics, 10(5), e1004360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Richard, M., & Yvert, G. (2014). How does evolution tune biological noise?. Frontiers in Genetics, 5, 374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Rogers, E. D., Jackson, T., Moussaieff, A., Aharoni, A., & Benfey, P. N. (2012). Cell type-specific transcriptional profiling: Implications for metabolite profiling. The Plant Journal, 70(1), 5–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Romero, I. G., Ruvinsky, I., & Gilad, Y. (2012). Comparative studies of gene expression and the evolution of gene regulation. Nature Reviews Genetics, 13(7), 505–516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Rybinski, B., Franco-Barraza, J., & Cukierman, E. (2014). The wound healing, chronic fibrosis, and cancer progression triad. Physiological Genomics, 46(7), 223–244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sandmann, T., Girardot, C., Brehme, M., Tongprasit, W., Stolc, V., & Furlong, E. E. (2007). A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes & Development, 21(4), 436–449.

    Article  CAS  Google Scholar 

  112. Sawyer, J. M., Harrell, J. R., Shemer, G., Sullivan-Brown, J., Roh-Johnson, M., & Goldstein, B. (2010). Apical constriction: A cell shape change that can drive morphogenesis. Developmental Biology, 341(1), 5–19.

    Article  PubMed  CAS  Google Scholar 

  113. Schoepe, S., Schäcke, H., May, E., & Asadullah, K. (2006). Glucocorticoid therapy-induced skin atrophy. Experimental Dermatology, 15(6), 406–420.

    Article  PubMed  CAS  Google Scholar 

  114. Schwabe, R. F., & Jobin, C. (2013). The microbiome and cancer. Nature Reviews Cancer, 13(11), 800–812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Sewell, G. W., Marks, D. J., & Segal, A. W. (2009). The immunopathogenesis of Crohn’s disease: A three-stage model. Current Opinion in Immunology, 21(5), 506–513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Simões-Costa, M., & Bronner, M. E. (2015). Establishing neural crest identity: A gene regulatory recipe. Development, 142(2), 242–257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Solé, R. V., & Goodwin, B. C. (2000). Signs of life: How complexity pervades biology. London: Basic Books.

    Google Scholar 

  118. Steinway, S. N., Zañudo, J. G. T., Michel, P. J., Feith, D. J., Loughran, T. P., & Albert, R. (2015). Combinatorial interventions inhibit TGF β-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes. NPJ Systems Biology and Applications, 1, 15014.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., & Doyle, J. (2004). Robustness of cellular functions. Cell, 118(6), 675–685.

    Article  PubMed  CAS  Google Scholar 

  120. Tanay, A., & Regev, A. (2017). Scaling single-cell genomics from phenomenology to mechanism. Nature, 541(7637), 331–338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Tawfik, D. S. (2010). Messy biology and the origins of evolutionary innovations. Nature Chemical Biology, 6(10), 692.

    Article  PubMed  CAS  Google Scholar 

  122. Theodorakis, C. W. (2001). Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment. Ecotoxicology, 10(4), 245–256.

    Article  PubMed  CAS  Google Scholar 

  123. Thom, R. (1983). Paraboles et catastrophes. Paris: Flammarion.

    Google Scholar 

  124. Tiemann, C. A., Vanlier, J., Hilbers, P. A., & van Riel, N. A. (2011). Parameter adaptations during phenotype transitions in progressive diseases. BMC Systems Biology, 5(1), 174.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tiemann, C. A., Vanlier, J., Oosterveer, M. H., Groen, A. K., Hilbers, P. A., & van Riel, N. A. (2013). Parameter trajectory analysis to identify treatment effects of pharmacological interventions. PLoS Computational Biology, 9(8), e1003166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Tomlin, C. J., & Axelrod, J. D. (2007). Biology by numbers: Mathematical modelling in developmental biology. Nature Reviews Genetics, 8(5), 331.

    Article  PubMed  CAS  Google Scholar 

  127. Tsai, C. C., Chen, Y. J., Yew, T. L., Chen, L. L., Wang, J. Y., Chiu, C. H., & Hung, S. C. (2011). Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood, 117(2), 459–469.

    Article  PubMed  CAS  Google Scholar 

  128. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B, 237(641), 37–72.

    Article  Google Scholar 

  129. Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 9(11), 799–809.

    Article  PubMed  CAS  Google Scholar 

  130. USDA-NRCS PLANTS Database/Britton, N. L., & Brown, A. (1913). An illustrated flora of the Northern United States, Canada and the British Possessions (3 vols., Vol. 2, p. 176). New York: Charles Scribner’s Sons.

    Google Scholar 

  131. Villarreal, C., Padilla-Longoria, P., & Álvarez-Buylla, E. R. (2012). General theory of genotype to phenotype mapping: Derivation of epigenetic landscapes from N-node complex gene regulatory networks. Physical Review Letters, 109(11), 118102.

    Article  PubMed  CAS  Google Scholar 

  132. Von Dassow, G., Meir, E., Munro, E. M., & Odell, G. M. (2000). The segment polarity network is a robust developmental module. Nature, 406(6792), 188.

    Article  Google Scholar 

  133. Waddington, C. H. (1957). The strategy of the genes. A discussion of some aspects of theoretical biology; with an appendix by H. Kacser. London: George Allen & Unwin.

    Google Scholar 

  134. Weidinger, S., Baurecht, H., Wagenpfeil, S., Henderson, J., Novak, N., Sandilands, A., et al. (2008). Analysis of the individual and aggregate genetic contributions of previously identified serine peptidase inhibitor Kazal type 5 (SPINK5), kallikrein-related peptidase 7 (KLK7), and filaggrin (FLG) polymorphisms to eczema risk. Journal of Allergy and Clinical Immunology, 122(3), 560–568.

    Article  PubMed  CAS  Google Scholar 

  135. Weisburger, J. H. (2002). Lifestyle, health and disease prevention: The underlying mechanisms. European Journal of Cancer Prevention: The Official Journal of the European Cancer Prevention Organization (ECP), 11, S1-7.

    Article  Google Scholar 

  136. Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. Journal of Theoretical Biology, 25(1), 1–47.

    Article  PubMed  CAS  Google Scholar 

  137. Wood, T., Burke, J., & Rieseberg, L. (2005). Parallel genotypic adaptation: When evolution repeats itself. In Genetics of adaptation (pp. 157–170). Dordrecht: Springer.

    Chapter  Google Scholar 

  138. Xing, F., Saidou, J., & Watabe, K. (2010). Cancer associated fibroblasts (CAFs) in tumor microenvironment. Frontiers in Bioscience: A Journal and Virtual Library, 15, 166.

    Article  CAS  Google Scholar 

  139. Yu, C., Wang, F., Jin, C., Wu, X., Chan, W. K., & McKeehan, W. L. (2002). Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice. The American Journal of Pathology, 161(6), 2003–2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Yu, R., Liu, Q., Liu, J., Wang, Q., & Wang, Y. (2016). Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control, 60, 353–360.

    Article  CAS  Google Scholar 

  141. Zernicka-Goetz, M., & Huang, S. (2010). Stochasticity versus determinism in development: A false dichotomy?. Nature Reviews Genetics, 11(11), 743.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez-Buylla Roces, M.E., Martínez-García, J.C., Dávila-Velderrain, J., Domínguez-Hüttinger, E., Martínez-Sánchez, M.E. (2018). Medical Systems Biology. In: Modeling Methods for Medical Systems Biology. Advances in Experimental Medicine and Biology, vol 1069. Springer, Cham. https://doi.org/10.1007/978-3-319-89354-9_1

Download citation

Publish with us

Policies and ethics