Skip to main content

The Metaheuristic Algorithm of the Social-Spider

  • Chapter
  • First Online:
Advances in Metaheuristics Algorithms: Methods and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 775))

  • 482 Accesses

Abstract

Metaheuristic is a computer science field which emulates the cooperative behavior of natural systems such as insects or animals. Many methods resulting from these models have been suggested to solve several complex optimization problems. In this chapter, a metaheuristic approach known as the Social Spider Optimization (SSO) is analyzed for solving optimization problems. The SSO method considers the simulation of the collective operation of social-spiders. In SSO, candidate solutions represent a set of spiders which interacts among them based on the natural laws of the colony. The algorithm examines two different kinds of search agents (spiders): males and females. According to the gender, each element is conducted by a set of different operations which imitate different behaviors that are commonly observed in the colony.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press Inc, New York (1999)

    MATH  Google Scholar 

  2. Kassabalidis, I., El-Sharkawi, M.A., Marks II, R.J., Arabshahi, P., Gray, A.A.: Swarm intelligence for routing in communication networks. In: Global Telecommunications Conference, GLOBECOM ’01, IEEE, vol. 6, pp. 3613–3617 (2001)

    Google Scholar 

  3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

    Google Scholar 

  4. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University (2005)

    Google Scholar 

  5. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)

    Article  Google Scholar 

  6. Hossein, A., Hossein-Alavi, A.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

    Article  MathSciNet  Google Scholar 

  7. Yang, X.S: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, USA (2010)

    Book  Google Scholar 

  8. Rajabioun, R.: Cuckoo Optimization Algorithm. Appl. Soft Comput. 11, 5508–5518 (2011)

    Article  Google Scholar 

  9. Bonabeau, E.: Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443 (1998)

    Article  Google Scholar 

  10. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)

    Article  MathSciNet  Google Scholar 

  11. Wan-li, X., Mei-qing, A.: An efficient and robust artificial bee colony algorithm for numerical optimization. Comput. Oper. Res. 40, 1256–1265 (2013)

    Article  MathSciNet  Google Scholar 

  12. Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle swarm optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)

    Article  MathSciNet  Google Scholar 

  13. Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee colony algorithm. Appl. Soft Comput. 11, 2888–2901 (2011)

    Article  Google Scholar 

  14. Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2003)

    Article  MathSciNet  Google Scholar 

  15. Lubin, T.B.: The evolution of sociality in spiders. In Brockmann, H.J. (ed.) Advances in the Study of Behavior, vol. 37, pp. 83–145 (2007)

    Google Scholar 

  16. Uetz, G.W.: Colonial web-building spiders: balancing the costs and benefits of group-living. In: Choe, E.J., Crespi, B. (eds.) The Evolution of Social Behavior in Insects and Arachnids, pp. 458–475. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  17. Aviles, L.: Sex-ratio bias and possible group selection in the social spider anelosimus eximius. Am. Nat. 128(1), 1–12 (1986)

    Article  Google Scholar 

  18. Burgess, J.W.: Social spacing strategies in spiders. In: Rovner, P.N. (ed.) Spider Communication: Mechanisms and Ecological Significance, pp. 317–351. Princeton University Press, Princeton (1982)

    Google Scholar 

  19. Maxence, S.: Social organization of the colonial spider Leucauge sp. in the neotropics: vertical stratification within colonies. J Arachnology 38, 446–451 (2010)

    Article  Google Scholar 

  20. Yip, E.C., Powers, K.S., Avilés, L.: Cooperative capture of large prey solves scaling challenge faced by spider societies. Proc. Nat. Acad. Sci. U.S.A. 105(33), 11818–11822 (2008)

    Article  Google Scholar 

  21. Oster, G., Wilson, E.: Caste and Ecology in the Social Insects. Princeton University Press, Princeton (1978)

    Google Scholar 

  22. Hölldobler, B., Wilson, E.O.: Journey to the Ants: A Story of Scientific Exploration. ISBN 0-674-48525-4 (1994)

    Google Scholar 

  23. Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press, USA. ISBN 0-674-04075-9 (1990)

    Google Scholar 

  24. Avilés, L.: Causes and consequences of cooperation and permanent-sociality in spiders. In: Choe, B.C. (ed.) The Evolution of Social Behavior in Insects and Arachnids, pp. 476–498. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  25. Rayor, E.C.: Do social spiders cooperate in predator defense and foraging without a web? Behav. Ecol. Sociobiol. 65(10), 1935–1945 (2011)

    Article  Google Scholar 

  26. Gove, R., Hayworth, M., Chhetri, M., Rueppell, O.: Division of labour and social insect colony performance in relation to task and mating number under two alternative response threshold models. Insect. Soc. 56(3), 19–331 (2009)

    Article  Google Scholar 

  27. Rypstra, A.L., Prey Size, R.S.: Prey perishability and group foraging in a social spider. Oecologia 86(1), 25–30 (1991)

    Article  Google Scholar 

  28. Pasquet, A.: Cooperation and prey capture efficiency in a social spider, Anelosimus eximius (Araneae, Theridiidae). Ethology 90, 121–133 (1991)

    Article  Google Scholar 

  29. Ulbrich, K., Henschel, J.: Intraspecific competition in a social spider. Ecol. Model. 115(2–3), 243–251 (1999)

    Article  Google Scholar 

  30. Jones, T., Riechert, S.: Patterns of reproductive success associated with social structure and microclimate in a spider system. Anim. Behav. 76(6), 2011–2019 (2008)

    Article  Google Scholar 

  31. Damian, O., Andrade, M., Kasumovic, M.: Dynamic population structure and the evolution of spider mating systems. Adv. Insect Physiol. 41, 65–114 (2011)

    Article  Google Scholar 

  32. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington (2008)

    Google Scholar 

  33. Chen, D.B., Zhao, C.X.: Particle swarm optimization with adaptive population size and its application. Appl. Soft Comput. 9(1), 39–48 (2009)

    Article  Google Scholar 

  34. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1995)

    Article  MathSciNet  Google Scholar 

  35. Yang, E., Barton, N.H., Arslan, T., Erdogan, A.T.: A novel shifting balance theory-based approach to optimization of an energy-constrained modulation scheme for wireless sensor networks. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008, Hong Kong, China, IEEE, pp. 2749–2756, 1–6 June 2008

    Google Scholar 

  36. Duan, X., Wang, G.G., Kang, X., Niu, Q., Naterer, G., Peng, Q.: Performance study of mode-pursuing sampling method. Eng. Optim. 41(1), 1–21 (2009)

    Article  Google Scholar 

  37. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Congress on Evolutionary Computation, 2004, CEC 2004, vol. 2, pp. 1980–1987, 19–23 June 2004

    Google Scholar 

  38. Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO ’06), ACM, New York, USA, pp. 485–492 (2006)

    Google Scholar 

  39. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. App. Math. Comput. 214(1), 108–132 (2009). ISSN 0096-3003

    Article  MathSciNet  Google Scholar 

  40. Krishnanand, K.R., Nayak, S.K., Panigrahi, B.K., Rout, P.K.: Comparative study of five bio-inspired evolutionary optimization techniques. In: World Congress on Nature & Biologically Inspired Computing, NaBIC, pp. 1231–1236 (2009)

    Google Scholar 

  41. Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm. Appl. Math. Comput. 185(1), 382–387 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

    Article  Google Scholar 

  43. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  MathSciNet  Google Scholar 

  44. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005 Special session on real parameter optimization. J Heurist (2008). https://doi.org/10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Appendix: List of Benchmark Functions

Appendix: List of Benchmark Functions

See Table 2.4.

Table 2.4 Test functions used in the experimental study

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Zaldívar, D., Pérez-Cisneros, M. (2018). The Metaheuristic Algorithm of the Social-Spider. In: Advances in Metaheuristics Algorithms: Methods and Applications. Studies in Computational Intelligence, vol 775. Springer, Cham. https://doi.org/10.1007/978-3-319-89309-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89309-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89308-2

  • Online ISBN: 978-3-319-89309-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics