Skip to main content

Mechanical Conflicts in Growth Heterogeneity

  • Chapter
  • First Online:
Plant Biomechanics
  • 2169 Accesses

Abstract

Morphogenesis involves coordinated cell division and cellular growth. Beyond average growth rate and direction, multicellular growth can also be characterized by its variance, i.e., the level of heterogeneity between individual cells or regions. Because final shapes are usually very reproducible, this raises the question of the contribution of local variability in growth in morphogenesis. Here, we focus on the mechanical conflicts that are associated with differential growth and discuss how mechanical forces, emerging from growth heterogeneity, can serve as cues to channel morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abley K, Locke JCW, Leyser HMO (2016) Developmental mechanisms underlying variable, invariant and plastic phenotypes. Ann Bot 117:733–748

    Article  PubMed  PubMed Central  Google Scholar 

  • Aegerter-Wilmsen T, Aegerter CM, Hafen E, Basler K (2007) Model for the regulation of size in the wing imaginal disc of Drosophila. Mech Dev 124:318–326

    Article  CAS  PubMed  Google Scholar 

  • Aigouy B, Farhadifar R, Staple DB, Sagner A, Röper J-C, Jülicher F, Eaton S (2010) Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142:773–786

    Article  CAS  PubMed  Google Scholar 

  • Aliee M, Röper J-C, Landsberg KP, Pentzold C, Widmann TJ, Jülicher F, Dahmann C (2012) Physical mechanisms shaping the Drosophila dorsoventral compartment boundary. Curr Biol CB 22:967–976

    Article  CAS  PubMed  Google Scholar 

  • Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D, Bassel GW, Schüpbach T, Tauriello G, Bajpai N, Strauss S, Weber A, Kiss A et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. eLife 4:05864

    Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  CAS  PubMed  Google Scholar 

  • Bassel GW, Stamm P, Mosca G, Barbier de Reuille P, Gibbs DJ, Winter R, Janka A, Holdsworth MJ, Smith RS (2014) Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. Proc Natl Acad Sci USA 111:8685–8690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauzamy L, Louveaux M, Hamant O, Boudaoud A (2015) Mechanically, the shoot apical meristem of arabidopsis behaves like a shell inflated by a pressure of about 1 MPa. Front Plant Sci 6:1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Beer FP, Johnston ER (1992) Mechanics of material. McGraw-Hill

    Google Scholar 

  • Besson S, Dumais J (2011) Universal rule for the symmetric division of plant cells. Proc Natl Acad Sci US A 108:6294–6299

    Article  Google Scholar 

  • Boudon F, Chopard J, Ali O, Gilles B, Hamant O, Boudaoud A, Traas J, Godin C (2015) A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput, Biol, p 11

    Google Scholar 

  • Bozorg B, Krupinski P, Jönsson H (2014) Stress and strain provide positional and directional cues in development. PLoS Comput Biol 10:e1003410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bringmann M, Landrein B, Schudoma C, Hamant O, Hauser M-T, Persson S (2012) Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled. Trends Plant Sci 17:666–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet T, Bouclet A, Ahmadi P, Mitrossilis D, Driquez B, Brunet A-C, Henry L, Serman F, Béalle G, Ménager C et al (2013) Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat Commun 4:2821

    Article  CAS  PubMed  Google Scholar 

  • Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O, Kwiatkowska D (2013) A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem. J Exp Bot 64:5753–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschmann H, Lloyd CW (2008) Arabidopsis mutants and the network of microtubule-associated functions. Mol Plant 1:888–898

    Article  CAS  PubMed  Google Scholar 

  • Castle ES (1937) Membrane tension and orientation of structure in the plant cell wall. J Cell Comp Physiol 10:113–121

    Article  Google Scholar 

  • Coen E, Rebocho AB (2016) Resolving conflicts: modeling genetic control of plant morphogenesis. Dev Cell 38:579–583

    Article  CAS  PubMed  Google Scholar 

  • Corson F, Hamant O, Bohn S, Traas J, Boudaoud A, Couder Y (2009) Turning a plant tissue into a living cell froth through isotropic growth. Proc Natl Acad Sci USA 106:8453–8458

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476

    Article  CAS  PubMed  Google Scholar 

  • Creff A, Brocard L, Ingram G (2015) A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat. Nat Commun 6:6382

    Article  CAS  PubMed  Google Scholar 

  • Durand-Smet P, Chastrette N, Guiroy A, Richert A, Berne-Dedieu A, Szecsi J, Boudaoud A, Frachisse J-M, Bendahmane M, Hamant O et al (2014) A comparative mechanical analysis of plant and animal cells reveals convergence across kingdoms. Biophys J 107:2237–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsner J, Michalski M, Kwiatkowska D (2012) Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana wild-type and triple cyclinD3 mutant plants. Ann Bot 109:897–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errera L (1886) Sur une condition fondamentale d’e´ quilibre des cellules vivantes. C R Hebd Seances Acad Sci 822–824

    Google Scholar 

  • Fal K, Landrein B, Hamant O (2015) Interplay between miRNA regulation and mechanical stress for CUC gene expression at the shoot apical meristem. Plant Signal, Behav

    Google Scholar 

  • Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol CB 13:1365–1377

    Article  CAS  PubMed  Google Scholar 

  • Fernandez R, Das P, Mirabet V, Moscardi E, Traas J, Verdeil J-L, Malandain G, Godin C (2010) Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7:547–553

    Article  CAS  PubMed  Google Scholar 

  • Fisher DD, Cyr RJ (2000) Mechanical forces in plant growth and development. Bull Publ Am Soc Gravit Space Biol. 13:67–73

    CAS  Google Scholar 

  • Geitmann A, Hush JM, Overall RL (1997) Inhibition of ethylene biosynthesis does not block microtubule re-orientation in wounded pea roots. Protoplasma 198:135–142

    Article  CAS  Google Scholar 

  • Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138:1404–1405

    Article  CAS  PubMed  Google Scholar 

  • Green P, King A (1966) A mechanism for the origin of specifically oriented textures in development with special reference to Nitella wall texture. Aust J Biol Sci 421–437

    Article  Google Scholar 

  • Hamant O, Moulia B (2016) How do plants read their own shapes? New Phytol 212:333–337

    Article  CAS  PubMed  Google Scholar 

  • Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    Article  PubMed  CAS  Google Scholar 

  • Hamant O, Traas J, Boudaoud A (2010) Regulation of shape and patterning in plant development. Curr Opin Genet Dev 20:454–459

    Article  CAS  PubMed  Google Scholar 

  • Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48:445–449

    Article  CAS  PubMed  Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol CB 15:1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jonsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8

    Google Scholar 

  • Hejnowicz Z, Rusin A, Rusin T (2000) Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl. J Plant Growth Regul 19:31–44

    Article  CAS  PubMed  Google Scholar 

  • Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska A-L, Kierzkowski D, Roeder AHK, Smith RS, Boudaoud A, Hamant O (2016) A mechanical feedback restricts sepal growth and shape in arabidopsis. Curr Biol CB

    Article  CAS  Google Scholar 

  • Hervieux N, Tsugawa S, Fruleux A, Dumond M, Routier-Kierzkowska AL, Komatsuzaki T, Boudaoud A, Larkin JC, Smith RS, Li CB, Hamant O (2017) Mechanical shielding of rapidly growing cells buffers growth heterogeneity and contributes to organ shape reproducibility. Curr Biol 27(22):3468–3479.e4

    Article  CAS  PubMed  Google Scholar 

  • Himmelspach R, Williamson RE, Wasteneys GO (2003) Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. Plant J Cell Mol Biol 36:565–575

    Article  CAS  Google Scholar 

  • Hofmeister W (1859) Über die Beugungen saftreicher Pflanzenteile nach Erschütterung. Ber Verh Ges Wiss Leipz 175–204

    Google Scholar 

  • Hong L, Dumond M, Tsugawa S, Sapala A, Routier-Kierzkowska A-L, Zhou Y, Chen C, Kiss A, Zhu M, Hamant O et al (2016) Variable cell growth yields reproducible organdevelopment through spatiotemporal averaging. Dev Cell 38:15–32

    Article  CAS  PubMed  Google Scholar 

  • Hong L, Dumond M, Zhu M, Tsugawa S, Li CB, Boudaoud A, Hamant O, Roeder AHK (2018) Heterogeneity and robustness in plant morphogenesis: from cells to organs. Annu Rev Plant Biol. https://doi.org/10.1146/annurev-arplant-042817-040517

  • Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A, Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409

    Article  CAS  PubMed  Google Scholar 

  • Landrein B, Kiss A, Sassi M, Chauvet A, Das P, Cortizo M, Laufs P, Takeda S, Aida M, Traas J et al (2015) Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. eLife 4:e07811

    Google Scholar 

  • Landsberg KP, Farhadifar R, Ranft J, Umetsu D, Widmann TJ, Bittig T, Said A, Jülicher F, Dahmann C (2009) Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr Biol CB 19:1950–1955

    Article  CAS  PubMed  Google Scholar 

  • Laufs P, Grandjean O, Jonak C, Kiêu K, Traas J (1998) Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10:1375–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legoff L, Rouault H, Lecuit T (2013) A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc. Dev Camb Engl. 140:4051–4059

    CAS  Google Scholar 

  • Lintilhac PM, Vesecky TB (1984) Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307:363–364

    Article  Google Scholar 

  • Louveaux M, Julien J-D, Mirabet V, Boudaoud A, Hamant O (2016) Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 113:E4294–E4303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EHK (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J Cell Mol Biol 68:377–385

    Article  CAS  Google Scholar 

  • Martin AC, Kaschube M, Wieschaus EF (2009) Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–499

    Article  CAS  PubMed  Google Scholar 

  • Milani P, Gholamirad M, Traas J, Arneodo A, Boudaoud A, Argoul F, Hamant O (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J Cell Mol Biol 67:1116–1123

    Article  CAS  Google Scholar 

  • Milani P, Mirabet V, Cellier C, Rozier F, Hamant O, Das P, Boudaoud A (2014) Matching patterns of gene expression to mechanical stiffness at cell resolution through quantitative tandem epifluorescence and nanoindentation. Plant Physiol 165

    Google Scholar 

  • Nakayama N, Smith RS, Mandel T, Robinson S, Kimura S, Boudaoud A, Kuhlemeier C (2012) Mechanical regulation of auxin-mediated growth. Curr Biol CB 22:1468–1476

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Heemskerk I, Ibar C, Shraiman BI, Irvine KD (2016) Differential growth triggers mechanical feedback that elevates Hippo signaling. Proc Natl Acad Sci USA

    Article  CAS  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A (2014) AFM-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions. J Vis Exp JoVE

    Google Scholar 

  • Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol CB 21:1720–1726

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Wightman R, Höfte H (2015) The control of growth symmetry breaking in the Arabidopsis Hypocotyl. Curr Biol CB 25:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Péret B, Li G, Zhao J, Band LR, Voß U, Postaire O, Luu D-T, Da Ines O, Casimiro I, Lucas M et al (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14:991–998

    Article  CAS  PubMed  Google Scholar 

  • Peters WS, Tomos AD (1996) The history of tissue tension. Ann Bot 77:657–665

    Article  CAS  PubMed  Google Scholar 

  • Pouille PA et al (2009) Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci Signal 2:ra16

    Article  CAS  PubMed  Google Scholar 

  • Roeder AHK, Chickarmane V, Cunha A, Obara B, Manjunath BS, Meyerowitz EM (2010) Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biol 8:e1000367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routier-Kierzkowska A-L, Weber A, Kochova P, Felekis D, Nelson BJ, Kuhlemeier C, Smith RS (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs J (1878) Über die Anordnung der Zellen in jüngsten Pflanzentheilen. Arb Bot Inst 46–104

    Google Scholar 

  • Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jonsson H, Meyerowitz EM (2014) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3

    Google Scholar 

  • Sassi M, Ali O, Boudon F, Cloarec G, Abad U, Cellier C, Chen X, Gilles B, Milani P, Friml J et al (2014) An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr Biol CB 24:2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci USA 102:3318–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306

    Article  CAS  Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, UK

    Book  Google Scholar 

  • Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykret D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A et al (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–451

    Article  CAS  PubMed  Google Scholar 

  • Vermeer JEM, von Wangenheim D, Barberon M, Lee Y, Stelzer EHK, Maizel A, Geldner N (2014) A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178–183

    Article  CAS  PubMed  Google Scholar 

  • Vlad D, Kierzkowski D, Rast MI, Vuolo F, Dello Ioio R, Galinha C, Gan X, Hajheidari M, Hay A, Smith RS et al (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343:780–783

    Article  CAS  PubMed  Google Scholar 

  • Williamson R (1990) Alignment of cortical microtubules by anisotropic wall stresses. Aust J Plant Physiol 601–613

    Article  Google Scholar 

  • Wymer CL, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeoman PM, Brown R (1971) Effects of mechanical stress on the plane of cell division in developing callus cultures. Ann Bot 1102–1112

    Article  Google Scholar 

  • Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Hamant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hervieux, N., Hamant, O. (2018). Mechanical Conflicts in Growth Heterogeneity. In: Geitmann, A., Gril, J. (eds) Plant Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-79099-2_9

Download citation

Publish with us

Policies and ethics