Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 85))

Abstract

Neem is considered as a treasured tree species worldwide for its innumerous benefits to the mankind including exclusive therapeutic properties other than its use in medicine, forestry, agriculture and industry. The auspicious attributes of the plant corresponds to its secondary metabolites and the most active constituent is azadirachtin. However, the plant poses limitations to the conventional breeding methods due to its cross pollinating and heterozygous nature resulting into high genetic variability. The heterozygosity in neem causes variations in secondary metabolites production, consequently, it affects the commercial market in the field of medicine and agriculture. These challenges are overcome by the implementation of Plant tissue culture techniques. The technique offers substantial methodologies for genetic improvement, production of homozygous lines and large-scale propagation of neem. The somatic embryogenesis is one of the prominent tool of plant tissue culture technology. The chapter describes the methodology and key factors involved in sequential development of somatic embryogenesis in neem. Ontogenic analysis is rewarding at this level for proper differentiation of the observed structures and their conversion into complete plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan E, Eeswara J, Jarvis A, Mordue A, Morgan E, Stuchbury T (2002) Induction of hairy root cultures of Azadirachta indica A. Juss. and their production of azadirachtin and other important insect bioactive metabolites. Plant Cell Rep 21:374–379

    Article  CAS  Google Scholar 

  • Akula C, Akula A, Drew R (2003) Somatic embryogenesis in clonal neem, Azadirachta indica A. Juss. and analysis for in vitro azadirachtin production. In Vitro Cell Dev Biol-Plant 39:304–310

    Article  CAS  Google Scholar 

  • Biahoua A, Bonneau L (1999) Control of in vitro somatic embryogenesis of the spindle tree (Euonymus europaeus L.) by the sugar type and the osmotic potential of the culture medium. Plant Cell Rep 19:185–190

    Article  CAS  Google Scholar 

  • Chaturvedi R, Razdan MK, Bhojwani SS (2004) In vitro morphogenesis in zygotic embryo cultures of neem (Azadirachta indica A. Juss.). Plant Cell Rep 22:801–809

    Article  CAS  PubMed  Google Scholar 

  • Cutler DF, Botha CEJ, Stevenson DW (2007) Plant Anatomy, an applied approach. Practical Microtechnique. Blackwell Publishing Ltd, USA, pp 170–194

    Google Scholar 

  • Deshwal RS, Singh R, Malik K, Randhawa GJ (2005) Assessment of genetic diversity and genetic relationships among 29 populations of Azadirachta indica A. Juss. using RAPD markers. Genet Resour Crop Evol 52:285–292

    Article  CAS  Google Scholar 

  • Etienne-Barry D, Bertrand B, Vasquez N, Etienne H (1999) Direct sowing of Coffea arabica somatic embryos mass-produced in a bioreactor and regeneration of plants. Plant Cell Rep 19:111–117

    Article  CAS  Google Scholar 

  • Gairi A, Rashid A (2004) TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using a short treatment with 2, 4-D. Plant Cell Tiss Organ Cult 76:29–33

    Article  CAS  Google Scholar 

  • Gairi A, Rashid A (2005) Direct differentiation of somatic embryos on cotyledons of Azadirachta indica. Biol Plantarum 49:169–173

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Giri CC, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18:115–135

    Article  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis Somatic Embryogenesis Receptor Kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Kong DM, Preece JE, Shen HL (2012) Somatic embryogenesis in immature cotyledons of Manchurian ash (Fraxinus mandshurica Rupr.). Plant Cell Tiss Organ Cult 108:485–492

    Article  Google Scholar 

  • Koul O, Wahab S (2004) (eds) Neem: today and in the new millennium. Kluwer Academic Publishers, Dordrecht, USA

    Google Scholar 

  • Loyola-Vargas VM (2016) The history of somatic embryogenesis. In: Victor M, Loyola-Vargas, Neftali Ochoa-Aljo (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing AG, Switzerland, pp 11–22

    Google Scholar 

  • Miettinen JK, Waris H (1958) A chemical study of the neomorphosis induced by glycine in Oenanthe aqnatica. Physiol Plant 11:193–199

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BN, Saxena PK (1998) Somatic embryogenesis and plant regeneration of neem (Azadirachta indica A. Juss.). Plant Cell Rep 17:469–475

    Article  CAS  Google Scholar 

  • Parveen S, Shahzad A (2014) Somatic embryogenesis and plantlet regeneration of Cassia angustifolia from immature cotyledon-derived callus. Biol Plant 58:411–418

    Article  Google Scholar 

  • Pérez-Alonso N, Capote A, Gerth A, Jiménez E (2012) Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tiss Organ Cult 110:153–162

    Article  CAS  Google Scholar 

  • Phukan H, Kumar R, Mitra PK (2017) Plant Regeneration by Somatic Embryogenesis in Azadirachta indica A. Juss. (Neem). Int Res J Eng Technol 4:3212–3217

    Google Scholar 

  • Prakash G, Srivastava AK (2007) Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture. Process Biochem 42:93–97

    Article  CAS  Google Scholar 

  • Puri HS (2003) Neem: the divine tree Azadirachta indica. Harwood Academic Publishers, The Netherlands

    Google Scholar 

  • Rathore JS, Rai MK, Shekhawat NS (2012) Induction of somatic embryogenesis in gum arabic tree [Acacia senegal (L.) Willd.]. Physiol Molecular Biology Plants 18:387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rout GR (2005) In vitro somatic embryogenesis in callus cultures of Azadirachta indica A. Juss—a multipurpose tree. J For Res 10:263–267

    Article  CAS  Google Scholar 

  • Saiprasad GV (2001) Artificial seeds and their applications. Resonance 6:39–47

    Article  Google Scholar 

  • Sekhar MC, Mamilla VR, Mallikarjun MV, Reddy KV (2009) Production of biodiesel from neem oil. Int J Eng Stud 1:295–302

    Google Scholar 

  • Sezgin M, DumanoÄŸlu H (2014) Somatic embryogenesis and plant regeneration from immature cotyledons of European chestnut (Castanea sativa Mill.). In Vitro Cell Dev Biol-Plant 50:58–68

    Article  CAS  Google Scholar 

  • Shekhawat GS, Mathur S, Batra A (2009) Role of phytohormones and nitrogen in somatic embryogenesis induction in cell culture derived from leaflets of Azadirachta indica. Biol Plant 53:707

    Article  CAS  Google Scholar 

  • Singh A, Negi MS, Rajagopal J, Bhatia S, Tomar UK, Srivastava PS, Lakshmikumaran M (1999) Assessment of genetic diversity in Azadirachta indica using AFLP markers. Theor Appl Genet 99:272–279

    Article  CAS  Google Scholar 

  • Singh M, Chaturvedi R (2009) An efficient protocol for cyclic somatic embryogenesis in neem (Azadirachta indica A Juss.). Int J Environ Sci Eng 1:49–51

    Google Scholar 

  • Singh M, Chaturvedi R (2012) Statistical optimization of media for enhanced azadirachtin production from redifferentiated zygotic embryo cultures of neem (Azadirachta indica A. Juss.). In Vitro Cell Dev Biol-Plant 48:92–98

    Article  CAS  Google Scholar 

  • Singh M, Chaturvedi R (2013) Somatic embryogenesis in Neem (Azadirachta indica A. Juss.): current status and biotechnological perspectives, In: Junaid Aslam P, Srivastava S, Sharma MP (eds) Somatic embryogenesis and Gene expression. Narosa Publishing House, New Delhi, pp 35–55

    Google Scholar 

  • Srivastava P, Chaturvedi R (2011) Increased production of azadirachtin from an improved method of androgenic cultures of a medicinal tree Azadirachta indica A. Juss Plant Signaling Behav 6:974–981

    Google Scholar 

  • Steinmacher DA, Guerra MP, Saare-Surminski K, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108:1463–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su WW, Hwang WI, Kim SY, Sagawa Y (1997) Induction of somatic embryogenesis in Azadirachta indica. Plant Cell Tiss Organ Cult 50:91–95

    Article  Google Scholar 

  • Tuominen H, Sitbon F, Jacobsson C, Sandberg G, Olsson O, Sundberg B (1995) Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic genes. Physiol Plant 109:1179–1189

    Article  CAS  Google Scholar 

  • Victor JM, Murch SJ, KrishnaRaj S, Saxena PK (1999) Somatic embryogenesis and organogenesis in peanut: the role of thidiazuron and N6-benzylaminopurine in the induction of plant morphogenesis. Plant Growth Regul 28:9–15

    Article  CAS  Google Scholar 

  • Waris H (1959) Neomorphosis in seed plants induced by amino acids I: oenanthe aquatica. Physiol Plant 12:753–766

    Article  Google Scholar 

  • Weathersbee AA III, McKenzie CL (2005) Effect of a neem biopesticide on repellency, mortality, oviposition, and development of Diaphorina citri (Homoptera: Psyllidae). Fla Entomol 88:401–407

    Article  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhi Chaturvedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, V., Chaturvedi, R. (2018). Somatic Embryogenesis in Neem. In: Jain, S., Gupta, P. (eds) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-319-79087-9_27

Download citation

Publish with us

Policies and ethics