Skip to main content

Systemic Lupus Erythematosus

  • Chapter
  • First Online:
The Microbiome in Rheumatic Diseases and Infection
  • 1034 Accesses

Abstract

Systemic lupus erythematosus (SLE) is a debilitating and life-threatening autoimmune disease affecting major organ systems including the kidneys, brain, joints, and skin. The etiology is unknown but microorganisms, both pathogenic and commensal, are implicated in the pathogenesis of SLE. An overview of the microbiome in human lupus and animal models is given with a summary of the most recent human microbiome association studies. Next, infectious agents with a pathogenic or protective role in the pathogenesis of SLE are summarized. The majority of the chapter reviews the contribution of infectious agents to the morbidity and mortality of SLE patients with a systematic overview organized by organ system. Invasive fungal infections and other serious infections are covered separately. Biomarkers such as C-reactive protein and procalcitonin are discussed in the context of an infectious episode versus a lupus flare. The chapter closes with a brief overview of the prevention of infections in SLE patients. In summary, this chapter encompasses the role of the microbiota and infectious agents in the pathogenesis of SLE, the infectious complications in SLE patients, and its detection and differentiation from lupus flares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AZA:

Azathioprine

CCR6:

Chemokine receptor 6

CMV:

Cytomegalovirus

CRP:

C-reactive protein

CSF:

Cerebrospinal fluid

cSLE:

Childhood systemic lupus erythematosus

CW:

Cutaneous warts

ESRD:

End stage renal disease

HAI:

Hospital-acquired infection

HBV:

Hepatitis B virus

HLA:

Human leukocyte antigen

HPV:

Human papillomavirus

HR:

Hazard ratio

HZI:

Herpes zoster infection

IBLs:

Infected brain lesions

IFI:

Invasive fungal infection

IFN:

Interferon

JCV:

John Cunningham virus

LMP1:

Latent membrane protein

LN:

Lupus nephritis

LPS:

Lipopolysaccharides

MMF:

Mycophenolate mofetil

NETs:

Neutrophil extracellular traps

NKs:

Natural killer cells

PCT:

Procalcitonin

PDC:

Plasmacytoid dendritic cells

PMNs:

Polymorphonuclear cells

PRRs:

Pattern recognition receptors

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

SBE:

Subacute bacterial endocarditis

SFB:

Segmented filamentous bacteria

SLE:

Systemic lupus erythematosus

SLEDAI:

Systemic lupus erythematosus disease activity index

SMR:

Standardized mortality ratio

SMRs:

Standardized mortality ratios

TB:

Tuberculosis

Tfh:

Follicular helper T cells

TLR:

Toll-like receptors

Tregs:

Regulatory T cells

UTI:

Urinary tract infections

References

  1. Mackay IR. Science, medicine, and the future: tolerance and autoimmunity. BMJ. 2000;321(7253):93–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis—insights into pathogenesis. Nat Rev Rheumatol. 2016;12(2):81–91.

    Article  PubMed  CAS  Google Scholar 

  3. van Drongelen V, Holoshitz J. Human leukocyte antigen-disease associations in rheumatoid arthritis. Rheum Dis Clin N Am. 2017;43(3):363–76.

    Article  Google Scholar 

  4. Gollwitzer ES, Marsland BJ. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends Immunol. 2015;36(11):684–96.

    Article  PubMed  CAS  Google Scholar 

  5. Arrieta MC, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 2014;23(6):518–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Stadhouders R, Lubberts E, Hendriks RW. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun. 2017;87:1–15.

    Article  PubMed  CAS  Google Scholar 

  8. Veldhoen M, Hocking RJ, Flavell RA, et al. Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol. 2006;7(11):1151–6.

    Article  PubMed  CAS  Google Scholar 

  9. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, et al. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9.

    Article  PubMed  CAS  Google Scholar 

  10. Voo KS, Wang YH, Santori FR, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A. 2009;106(12):4793–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee YK, Mukasa R, Hatton RD, et al. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009;21(3):274–80.

    Article  PubMed  CAS  Google Scholar 

  12. Koenen HJ, Smeets RL, Vink PM, et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112(6):2340–52.

    Article  PubMed  CAS  Google Scholar 

  13. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Johnson BM, Gaudreau MC, Al-Gadban MM, et al. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin Exp Immunol. 2015;181(2):323–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Scher JU, Ubeda C, Artacho A, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang NS, McHeyzer-Williams LJ, Okitsu SL, et al. Divergent transcriptional programming of class-specific B cell memory by T-bet and RORalpha. Nat Immunol. 2012;13(6):604–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hirota K, Turner JE, Villa M, et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol. 2013;14(4):372–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kubinak JL, Petersen C, Stephens WZ, et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe. 2015;17(2):153–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Choi JY, Ho JH, Pasoto SG, et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: association with disease activity. Arthritis Rheumatol. 2015;67(4):988–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hevia A, Milani C, Lopez P, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio. 2014;5(5):e01548–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Rojo D, Hevia A, Bargiela R, et al. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci Rep. 2015;5:8310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lopez P, de Paz B, Rodriguez-Carrio J, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6:24072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Conti F, Ceccarelli F, Iaiani G, et al. Association between Staphylococcus aureus nasal carriage and disease phenotype in patients affected by systemic lupus erythematosus. Arthritis Res Ther. 2016;18:177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ruff WE, Kriegel MA. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol Med. 2015;21(4):233–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Greiling TM, Dehner C, Chen X, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Science Translational Medicine. 2018;10(434):eaan2306.

    Google Scholar 

  27. Kahlenberg JM, Kaplan MJ. The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis? Curr Opin Rheumatol. 2014;26(5):475–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Horton CG, Farris AD. Toll-like receptors in systemic lupus erythematosus: potential targets for therapeutic intervention. Curr Allergy Asthma Rep. 2012;12(1):1–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hsieh AH, Jhou YJ, Liang CT, et al. Fragment of tegument protein pp65 of human cytomegalovirus induces autoantibodies in BALB/c mice. Arthritis Res Ther. 2011;13(5):R162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hod T, Zandman-Goddard G, Langevitz P, et al. Does parvovirus infection have a role in systemic lupus erythematosus? Immunol Res. 2017;65(2):447–53.

    Article  PubMed  CAS  Google Scholar 

  31. Doaty S, Agrawal H, Bauer E, et al. Infection and lupus: which causes which? Curr Rheumatol Rep. 2016;18(3):13.

    Article  PubMed  CAS  Google Scholar 

  32. Rigante D, Esposito S. Infections and systemic lupus Erythematosus: binding or sparring partners? Int J Mol Sci. 2015;16(8):17331–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nelson P, Rylance P, Roden D, et al. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus. 2014;23(6):596–605.

    Article  PubMed  CAS  Google Scholar 

  34. Sane P, Amritkar V, Pooja G. Dengue viral infection triggering abnormal immune response in a case of Kikuchi disease which later evolved into SLE. J Assoc Physicians India. 2016;64(1):147.

    Google Scholar 

  35. Soldevilla HF, Briones SF, Navarra SV. Systemic lupus erythematosus following HPV immunization or infection? Lupus. 2012;21(2):158–61.

    Article  PubMed  CAS  Google Scholar 

  36. Levy M, Bourrat E, Baudouin V, et al. Toxocara canis infection: unusual trigger of systemic lupus erythematosus. Pediatr Int. 2015;57(4):785–8.

    Article  PubMed  Google Scholar 

  37. Fattal I, Shental N, Molad Y, et al. Epstein-Barr virus antibodies mark systemic lupus erythematosus and scleroderma patients negative for anti-DNA. Immunology. 2014;141(2):276–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ding Y, He X, Liao W, et al. The expression of EBV-encoded LMP1 in young patients with lupus nephritis. Int J Clin Exp Med. 2015;8(4):6073–8.

    PubMed  PubMed Central  Google Scholar 

  39. Rasmussen NS, Nielsen CT, Houen G, et al. Humoral markers of active Epstein-Barr virus infection associate with anti-extractable nuclear antigen autoantibodies and plasma galectin-3 binding protein in systemic lupus erythematosus. Lupus. 2016;25(14):1567–76.

    Article  PubMed  CAS  Google Scholar 

  40. Draborg AH, Sandhu N, Larsen N, et al. Impaired cytokine responses to Epstein-Barr virus antigens in systemic lupus Erythematosus patients. J Immunol Res. 2016;2016:6473204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gürtler C, Bowie AG. Innate immune detection of microbial nucleic acids. Trends Microbiol. 2013;21(8):413–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fitzgerald-Bocarsly P, Feng D. The role of type I interferon production by dendritic cells in host defense. Biochimie. 2007;89(6–7):843–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bengtsson AA, Ronnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol. 2017;31(3):415–28.

    Article  PubMed  Google Scholar 

  44. Mavragani CP, Sagalovskiy I, Guo Q, et al. Expression of long interspersed nuclear element 1 Retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 2016;68(11):2686–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, Costa FRC, Tiniakou E, Greiling T, Ruff W, Barbieri A, Kriegel C, Mehta SS, Knight JR, Jain D, Goodman AL, Kriegel MA. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science. 2018;359:1156–61.

    Article  PubMed  CAS  Google Scholar 

  46. Liu X, Jiao Y, Cui B, et al. The potential protective role of hepatitis B virus infection in pristane-induced lupus in mice. Lupus. 2016;25(11):1180–9.

    Article  PubMed  CAS  Google Scholar 

  47. Abdel-Maksoud MA, Abdel-Ghaffar FA, El-Amir A, et al. Infection with Plasmodium chabaudi diminishes plasma immune complexes and ameliorates the histopathological alterations in different organs of female BWF1 lupus mice. Eur Rev Med Pharmacol Sci. 2016;20(4):733–44.

    PubMed  CAS  Google Scholar 

  48. Badr G, Sayed A, Abdel-Maksoud MA, et al. Infection of female BWF1 lupus mice with malaria parasite attenuates B cell Autoreactivity by modulating the CXCL12/CXCR4 Axis and its downstream signals PI3K/AKT, NFkappaB and ERK. PLoS One. 2015;10(4):e0125340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chen M, Aosai F, Norose K, et al. Toxoplasma gondii infection inhibits the development of lupus-like syndrome in autoimmune (New Zealand black × New Zealand white) F1 mice. Int Immunol. 2004;16(7):937–46.

    Article  PubMed  CAS  Google Scholar 

  50. Fischer S, Agmon-Levin N, Shapira Y, et al. Toxoplasma gondii: bystander or cofactor in rheumatoid arthritis. Immunol Res. 2013;56(2–3):287–92.

    Article  PubMed  Google Scholar 

  51. Sawalha AH, Schmid WR, Binder SR, et al. Association between systemic lupus erythematosus and helicobacter pylori seronegativity. J Rheumatol. 2004;31(8):1546.

    PubMed  Google Scholar 

  52. Panda AK, Das BK. Diminished IL-17A levels may protect filarial-infected individuals from development of rheumatoid arthritis and systemic lupus erythematosus. Lupus. 2017;26(4):348–54.

    Article  PubMed  CAS  Google Scholar 

  53. Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell. 2006;124(4):767–82.

    Article  PubMed  CAS  Google Scholar 

  54. Bach JF. Infections and autoimmune diseases. J Autoimmun. 2005;25:74–80.

    Article  PubMed  CAS  Google Scholar 

  55. Murdaca G, Orsi A, Spano F, et al. Vaccine-preventable infections in systemic lupus Erythematosus. Hum Vaccin Immunother. 2016;12(3):632–43.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Robak E, Niewiadomska H, Robak T, et al. Lymphocytes Tgammadelta in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity. Mediat Inflamm. 2001;10(4):179–89.

    Article  CAS  Google Scholar 

  57. Volc-Platzer B, Anegg B, Milota S, et al. Accumulation of gamma delta T cells in chronic cutaneous lupus erythematosus. J Investig Dermatol. 1993;100(1):84s–91s.

    Article  PubMed  CAS  Google Scholar 

  58. Tsai CY, Wu TH, Yu CL, et al. Decreased IL-12 production by polymorphonuclear leukocytes in patients with active systemic lupus erythematosus. Immunol Investig. 2002;31(3–4):177–89.

    Article  CAS  Google Scholar 

  59. Truedsson L. Classical pathway deficiencies – a short analytical review. Mol Immunol. 2015;68(1):14–9.

    Article  PubMed  CAS  Google Scholar 

  60. Rupert KL, Moulds JM, Yang Y, et al. The molecular basis of complete complement C4A and C4B deficiencies in a systemic lupus Erythematosus patient with homozygous C4A and C4B mutant genes. J Immunol. 2002;169(3):1570.

    Article  PubMed  CAS  Google Scholar 

  61. Pickering MC, Botto M, Taylor PR, et al. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol. 2000;76:227–324.

    Article  PubMed  CAS  Google Scholar 

  62. Garred P, Voss A, Madsen HO, et al. Association of mannose-binding lectin gene variation with disease severity and infections in a population-based cohort of systemic lupus erythematosus patients. Genes Immun. 2001;2(8):442–50.

    Article  PubMed  CAS  Google Scholar 

  63. Sebastiani GD, Galeazzi M. Infection—genetics relationship in systemic lupus erythematosus. Lupus. 2009;18(13):1169–75.

    Article  PubMed  CAS  Google Scholar 

  64. Marquart HV, Svendsen A, Rasmussen JM, et al. Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. 1995;101(1):60–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Park YW, Kee SJ, Cho YN, et al. Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. Arthritis Rheum. 2009;60(6):1753–63.

    Article  PubMed  CAS  Google Scholar 

  66. Tanaka T, Saiki O, Negoro S, et al. Decreased expression of interleukin-2 binding molecules (p70/75) in T cells from patients with systemic lupus erythematosus. Arthritis Rheum. 1989;32(5):552–9.

    Article  PubMed  CAS  Google Scholar 

  67. Jin O, Kavikondala S, Sun L, et al. Systemic lupus erythematosus patients have increased number of circulating plasmacytoid dendritic cells, but decreased myeloid dendritic cells with deficient CD83 expression. Lupus. 2008;17(7):654–62.

    Article  PubMed  CAS  Google Scholar 

  68. Wu SA, Yeh KW, Lee WI, et al. Impaired phagocytosis and susceptibility to infection in pediatric-onset systemic lupus erythematosus. Lupus. 2013;22(3):279–88.

    Article  PubMed  Google Scholar 

  69. Bengtsson AA, Pettersson A, Wichert S, et al. Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res Ther. 2014;16(3):R120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Magnani A, Brosselin P, Beaute J, et al. Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J Allergy Clin Immunol. 2014;134(3):655–662.e8.

    Article  PubMed  Google Scholar 

  71. De Ravin SS, Naumann N, Cowen EW, et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol. 2008;122(6):1097–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Villanueva E, Yalavarthi S, Berthier CC, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187(1):538–52.

    Article  PubMed  CAS  Google Scholar 

  73. Smith CK, Kaplan MJ. The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Curr Opin Rheumatol. 2015;27(5):448–53.

    Article  PubMed  CAS  Google Scholar 

  74. Lertchaisataporn K, Kasitanon N, Wangkaew S, et al. An evaluation of the association of leukopenia and severe infection in patients with systemic lupus erythematosus. J Clin Rheumatol. 2013;19(3):115–20.

    Article  PubMed  Google Scholar 

  75. Alarcon GS. Infections in systemic connective tissue diseases: systemic lupus erythematosus, scleroderma, and polymyositis/dermatomyositis. Infect Dis Clin N Am. 2006;20(4):849–75.

    Article  Google Scholar 

  76. Goldstein MF, Goldstein AL, Dunsky EH, et al. Selective IgM immunodeficiency: retrospective analysis of 36 adult patients with review of the literature. Ann Allergy Asthma Immunol. 2006;97(6):717–30.

    Article  PubMed  CAS  Google Scholar 

  77. Cassidy JT, Kitson RK, Selby CL. Selective IgA deficiency in children and adults with systemic lupus erythematosus. Lupus. 2007;16(8):647–50.

    Article  PubMed  CAS  Google Scholar 

  78. Lim E, Tao Y, White AJ, et al. Hypogammaglobulinemia in pediatric systemic lupus erythematosus. Lupus. 2013;22(13):1382–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Chen L, Morris DL, Vyse TJ. Genetic advances in systemic lupus erythematosus: an update. Curr Opin Rheumatol. 2017;29(5):423–33.

    Article  PubMed  Google Scholar 

  80. Deng Y, Tsao BP. Advances in lupus genetics and epigenetics. Curr Opin Rheumatol. 2014;26(5):482–92.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cui Y, Sheng Y, Zhang X. Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun. 2013;41:25–33.

    Article  PubMed  CAS  Google Scholar 

  82. Bentham J, Morris DL, Cunninghame Graham DS, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet. 2015;47:1457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bronson PG, Chaivorapol C, Ortmann W, et al. The genetics of type I interferon in systemic lupus erythematosus. Curr Opin Immunol. 2012;24(5):530–7.

    Article  PubMed  CAS  Google Scholar 

  84. Abelson AK, Delgado-Vega AM, Kozyrev SV, et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis. 2009;68(11):1746–53.

    Article  PubMed  CAS  Google Scholar 

  85. Zhao J, Ma J, Deng Y, et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet. 2017;49:433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Olsson LM, Johansson ÅC, Gullstrand B, et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann Rheum Dis. 2017;76(9):1607–13.

    Article  PubMed  Google Scholar 

  87. Jacob CO, Eisenstein M, Dinauer MC, et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc Natl Acad Sci U S A. 2012;109(2):E59–67.

    Article  PubMed  Google Scholar 

  88. Danza A, Ruiz-Irastorza G. Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus. 2013;22(12):1286–94.

    Article  PubMed  CAS  Google Scholar 

  89. Urowitz MB, Bookman AA, Koehler BE, et al. The bimodal mortality pattern of systemic lupus erythematosus. Am J Med. 1976;60(2):221–5.

    Article  PubMed  CAS  Google Scholar 

  90. Mok CC. Con: cyclophosphamide for the treatment of lupus nephritis. Nephrol Dial Transplant. 2016;31(7):1053–7.

    Article  PubMed  CAS  Google Scholar 

  91. Mills JA. Systemic lupus erythematosus. N Engl J Med. 1994;330(26):1871–9.

    Article  PubMed  CAS  Google Scholar 

  92. Feldman CH, Hiraki LT, Winkelmayer WC, et al. Serious infections among adult Medicaid beneficiaries with systemic lupus erythematosus and lupus nephritis. Arthritis Rheumatol. 2015;67(6):1577–85.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Momtaz M, Fayed A, Wadie M, et al. Retrospective analysis of nephritis response and renal outcome in a cohort of 928 Egyptian lupus nephritis patients: a university hospital experience. Lupus. 2017;26(14):1564–70.

    Article  PubMed  CAS  Google Scholar 

  94. Cervera R, Khamashta MA, Font J, et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore). 2003;82(5):299–308.

    Article  Google Scholar 

  95. Mok CC, Lau CS, Chan TM, et al. Clinical characteristics and outcome of southern Chinese males with systemic lupus erythematosus. Lupus. 1999;8(3):188–96.

    Article  PubMed  CAS  Google Scholar 

  96. Srivastava P, Abujam B, Misra R, et al. Outcome of lupus nephritis in childhood onset SLE in north and Central India: single-centre experience over 25 years. Lupus. 2016;25(5):547–57.

    Article  PubMed  CAS  Google Scholar 

  97. Lin CH, Hung PH, Hu HY, et al. Infection-related hospitalization and risk of end-stage renal disease in patients with systemic lupus erythematosus: a nationwide population-based study. Nephrol Dial Transplant. 2017;32(10):1683–90.

    PubMed  Google Scholar 

  98. Zhan Z, Lao M, Su F, et al. Hospital-acquired infection in patients with systemic lupus erythematosus: a case-control study in a southern Chinese population. Clin Rheumatol. 2017;37(3):709–17.

    Article  PubMed  Google Scholar 

  99. Murray SG, Schmajuk G, Trupin L, et al. National lupus hospitalization trends reveal rising rates of herpes zoster and declines in pneumocystis pneumonia. PLoS One. 2016;11(1):e0144918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Chakravarty EF, Michaud K, Katz R, et al. Increased incidence of herpes zoster among patients with systemic lupus erythematosus. Lupus. 2013;22(3):238–44.

    Article  PubMed  CAS  Google Scholar 

  101. Borba EF, Ribeiro AC, Martin P, et al. Incidence, risk factors, and outcome of herpes zoster in systemic lupus erythematosus. J Clin Rheumatol. 2010;16(3):119–22.

    Article  PubMed  Google Scholar 

  102. Pope JE, Krizova A, Ouimet JM, et al. Close association of herpes zoster reactivation and systemic lupus erythematosus (SLE) diagnosis: case-control study of patients with SLE or noninflammatory nusculoskeletal disorders. J Rheumatol. 2004;31(2):274–9.

    PubMed  Google Scholar 

  103. Manzi S, Kuller LH, Kutzer J, et al. Herpes zoster in systemic lupus erythematosus. J Rheumatol. 1995;22(7):1254–8.

    PubMed  CAS  Google Scholar 

  104. Rondaan C, de Haan A, Horst G, et al. Altered cellular and humoral immunity to varicella-zoster virus in patients with autoimmune diseases. Arthritis Rheumatol. 2014;66(11):3122–8.

    Article  PubMed  CAS  Google Scholar 

  105. Houssiau FA, Vasconcelos C, D'Cruz D, et al. Immunosuppressive therapy in lupus nephritis: the euro-lupus nephritis trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 2002;46(8):2121–31.

    Article  PubMed  CAS  Google Scholar 

  106. Rhee C, Gohil S, Klompas M. Regulatory mandates for sepsis care--reasons for caution. N Engl J Med. 2014;370(18):1673–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Hahn BH, McMahon MA, Wilkinson A, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res (Hoboken). 2012;64(6):797–808.

    Article  Google Scholar 

  108. Husain S, Singh N. The impact of novel immunosuppressive agents on infections in organ transplant recipients and the interactions of these agents with antimicrobials. Clin Infect Dis. 2002;35(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  109. Oz HS, Hughes WT. Novel anti-pneumocystis carinii effects of the immunosuppressant mycophenolate mofetil in contrast to provocative effects of tacrolimus, sirolimus, and dexamethasone. J Infect Dis. 1997;175(4):901–4.

    Article  PubMed  CAS  Google Scholar 

  110. Herrinton LJ, Liu L, Goldfien R, et al. Risk of serious infection for patients with systemic lupus Erythematosus starting glucocorticoids with or without Antimalarials. J Rheumatol. 2016;43(8):1503–9.

    Article  PubMed  Google Scholar 

  111. Dubula T, Mody GM. Spectrum of infections and outcome among hospitalized South Africans with systemic lupus erythematosus. Clin Rheumatol. 2015;34(3):479–88.

    Article  PubMed  Google Scholar 

  112. Rees F, Doherty M, Grainge M, et al. Burden of comorbidity in systemic lupus Erythematosus in the UK, 1999–2012. Arthritis Care Res (Hoboken). 2016;68(6):819–27.

    Article  Google Scholar 

  113. Souza DC, Santo AH, Sato EI. Mortality profile related to systemic lupus erythematosus: a multiple cause-of-death analysis. J Rheumatol. 2012;39(3):496–503.

    Article  PubMed  Google Scholar 

  114. Fei Y, Shi X, Gan F, et al. Death causes and pathogens analysis of systemic lupus erythematosus during the past 26 years. Clin Rheumatol. 2014;33(1):57–63.

    Article  PubMed  Google Scholar 

  115. Ritchie J, Smyth A, Tower C, et al. Maternal deaths in women with lupus nephritis: a review of published evidence. Lupus. 2012;21(5):534–41.

    Article  PubMed  CAS  Google Scholar 

  116. Lee YH, Choi SJ, Ji JD, et al. Overall and cause-specific mortality in systemic lupus erythematosus: an updated meta-analysis. Lupus. 2016;25(7):727–34.

    Article  PubMed  CAS  Google Scholar 

  117. Chen D, Xie J, Chen H, et al. Infection in southern Chinese patients with systemic lupus erythematosus: spectrum, drug resistance, outcomes, and risk factors. J Rheumatol. 2016;43(9):1650–6.

    Article  PubMed  CAS  Google Scholar 

  118. Dixon WG, Watson K, Lunt M, et al. Rates of serious infection, including site-specific and bacterial intracellular infection, in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: results from the British Society for Rheumatology biologics register. Arthritis Rheum. 2006;54(8):2368–76.

    Article  PubMed  CAS  Google Scholar 

  119. Shen HN, Yang HH, Lu CL. Temporal trends in characteristics and outcome of intensive care unit patients with systemic lupus erythematosus in Taiwan: a national population-based study. Lupus. 2013;22(6):644–52.

    Article  PubMed  Google Scholar 

  120. Han BK, Bhatia R, Traisak P, et al. Clinical presentations and outcomes of systemic lupus erythematosus patients with infection admitted to the intensive care unit. Lupus. 2013;22(7):690–6.

    Article  PubMed  CAS  Google Scholar 

  121. Pronk SM, van Ommen CH, Prince FH, et al. Venous thrombosis as a first sign of SLE. Ned Tijdschr Geneeskd. 2014;158:A7179.

    PubMed  Google Scholar 

  122. Imamura H, Iwamoto T, Momohara S. Unusual case of an elbow mass caused by Candida arthritis in a patient with systemic lupus erythematosus. Hand Surg. 2014;19(3):409–11.

    Article  PubMed  Google Scholar 

  123. Meesiri S. Pyomyositis in a patient with systemic lupus erythematosus and a review of the literature. BMJ Case Rep. 2016. https://doi.org/10.1136/bcr-2016-214809.

  124. Kim SS, Perino G, Boettner F, et al. Salmonella septic arthritis of the knees in a patient with systemic lupus erythematosus. Lupus. 2013;22(7):740–3.

    Article  PubMed  CAS  Google Scholar 

  125. Khammassi N, Kort Y. Osteonecrosis of the femoral condyles revealed by septic arthritis in systemic lupus erythematosus. Pan Afr Med J. 2015;22:94.

    PubMed  PubMed Central  Google Scholar 

  126. Ferreira JC, Marques HH, Ferriani MP, et al. Herpes zoster infection in childhood-onset systemic lupus erythematosus patients: a large multicenter study. Lupus. 2016;25(7):754–9.

    Article  PubMed  CAS  Google Scholar 

  127. Silva LM, Santos WG, Santiago MB. Prevalence of cutaneous warts in patients with systemic lupus erythematosus: a systematic review. J Infect Dev Ctries. 2016;10(9):902–6.

    Article  PubMed  Google Scholar 

  128. Lyrio LD, Grassi MF, Santana IU, et al. Prevalence of cervical human papillomavirus infection in women with systemic lupus erythematosus. Rheumatol Int. 2013;33(2):335–40.

    Article  PubMed  CAS  Google Scholar 

  129. Amaral JL, Araujo MV, Dias GA, et al. Clinical and epidemiological study of human papillomavirus infection in women with systemic lupus erythematosus in eastern Brazilian amazon. Acta Reumatol Port. 2017;42(1):47–54.

    PubMed  Google Scholar 

  130. Hidalgo-Tenorio C, Jiménez-Alonso J, de Dios Luna J, et al. Urinary tract infections and lupus erythematosus. Ann Rheum Dis. 2004;63(4):431–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Mohamed DF, Habeeb RA, Hosny SM, et al. Incidence and risk of infection in Egyptian patients with systemic lupus erythematosus. Clin Med Insights Arthritis Musculoskelet Disord. 2014;7:41–8.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Marcos M, Fernandez C, Soriano A, et al. Epidemiology and clinical outcomes of bloodstream infections among lupus patients. Lupus. 2011;20(9):965–71.

    Article  PubMed  CAS  Google Scholar 

  133. Baronaite Hansen R, Jacobsen S. Infections increase risk of arterial and venous thromboses in Danish patients with systemic lupus erythematosus: 5102 patient-years of followup. J Rheumatol. 2014;41(9):1817–22.

    Article  PubMed  Google Scholar 

  134. Catoggio C, Alvarez-Uria A, Fernandez PL, et al. Catastrophic antiphospholipid syndrome triggered by fulminant disseminated herpes simplex infection in a patient with systemic lupus erythematosus. Lupus. 2012;21(12):1359–61.

    Article  PubMed  CAS  Google Scholar 

  135. Luijten RK, Cuppen BV, Bijlsma JW, et al. Serious infections in systemic lupus erythematosus with a focus on pneumococcal infections. Lupus. 2014;23(14):1512–6.

    Article  PubMed  CAS  Google Scholar 

  136. Xiao P, Dong C, Yue Y, et al. Dynamic expression of microRNAs in M2b polarized macrophages associated with systemic lupus erythematosus. Gene. 2014;547(2):300–9.

    Article  PubMed  CAS  Google Scholar 

  137. Pamuk ON, Pamuk GE, Barutcu E, et al. The development of pulmonary aspergillosis and pneumothorax in a patient with neutropenic systemic lupus erythematosus and successful treatment of the first case. BMJ Case Rep. 2014;2014:bcr2013200818. https://doi.org/10.1136/bcr-2013-200818.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Martinez-Martinez MU, Sturbaum AK, Alcocer-Varela J, et al. Factors associated with mortality and infections in patients with systemic lupus erythematosus with diffuse alveolar hemorrhage. J Rheumatol. 2014;41(8):1656–61.

    Article  PubMed  Google Scholar 

  139. Fangtham M, Magder LS, Petri MA. Oral candidiasis in systemic lupus erythematosus. Lupus. 2014;23(7):684–90.

    Article  PubMed  CAS  Google Scholar 

  140. Fawzy M, Edrees A, Okasha H, et al. Gastrointestinal manifestations in systemic lupus erythematosus. Lupus. 2016;25(13):1456–62.

    Article  PubMed  CAS  Google Scholar 

  141. Wang Q, Shen M, Leng X, et al. Prevalence, severity, and clinical features of acute and chronic pancreatitis in patients with systemic lupus erythematosus. Rheumatol Int. 2016;36(10):1413–9.

    Article  PubMed  CAS  Google Scholar 

  142. Strasser C, Wolf EM, Kornprat P, et al. Opportunistic cytomegalovirus infection causing colonic perforation in a patient with systemic lupus erythematosus. Lupus. 2012;21(4):449–51.

    Article  PubMed  CAS  Google Scholar 

  143. Tachikawa Y, Nozawa H, Tanaka J, et al. Colonic perforation in a patient with systemic lupus erythematosus accompanied by cytomegalovirus infection: a case report. Int J Surg Case Rep. 2016;23:70–3.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Mahroum N, Hejly A, Tiosano S, et al. Chronic hepatitis C viral infection among SLE patients: the significance of coexistence. Immunol Res. 2017;65(2):477–81.

    Article  PubMed  CAS  Google Scholar 

  145. Xu Y, Xu D, Zhang T, et al. The prevalence and clinical characteristics of systemic lupus erythematosus with infectious brain lesions in China. Scand J Rheumatol. 2012;41(6):466–71.

    Article  PubMed  CAS  Google Scholar 

  146. Berntsson SG, Katsarogiannis E, Lourenco F, et al. Progressive multifocal leukoencephalopathy and systemic lupus erythematosus: focus on etiology. Case Rep Neurol. 2016;8(1):59–65.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Williamson EML, Berger JR. Diagnosis and treatment of progressive multifocal Leukoencephalopathy associated with multiple sclerosis therapies. Neurotherapeutics. 2017;14(4):961–73.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mekitarian Filho E, Horita SM, Gilio AE, et al. Cerebrospinal fluid lactate level as a diagnostic biomarker for bacterial meningitis in children. Int J Emerg Med. 2014;7(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Huy NT, Thao NT, Diep DT, et al. Cerebrospinal fluid lactate concentration to distinguish bacterial from aseptic meningitis: a systemic review and meta-analysis. Crit Care. 2010;14(6):R240.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zhong Y, Li M, Liu J, et al. Cryptococcal meningitis in Chinese patients with systemic lupus erythematosus. Clin Neurol Neurosurg. 2015;131:59–63.

    Article  PubMed  Google Scholar 

  151. Zheng H, Li M, Wang D, et al. Gender-specific contributing risk factors and outcome of female cryptococcal meningoencephalitis patients. BMC Infect Dis. 2016;16:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. de Araujo DB, Daolio L, Szajubok JC, et al. Epidural abscess due to Salmonella enteritidis in a patient with systemic lupus erythematosus. Lupus. 2012;21(12):1356–8.

    Article  PubMed  Google Scholar 

  153. Freire PS, Montoni JD, Ribeiro AS, et al. Miliary tuberculosis: a severe opportunistic infection in juvenile systemic lupus erythematosus patients. Rev Bras Reumatol Engl Ed. 2016;56(3):274–9.

    Article  PubMed  Google Scholar 

  154. Berman N, Belmont HM. Disseminated cytomegalovirus infection complicating active treatment of systemic lupus erythematosus: an emerging problem. Lupus. 2017;26(4):431–4.

    Article  PubMed  CAS  Google Scholar 

  155. Vinicki JP, Catalan Pellet S, Pappalardo C, et al. Invasive fungal infections in argentine patients with systemic lupus erythematosus. Lupus. 2013;22(9):892–8.

    Article  PubMed  CAS  Google Scholar 

  156. Silva MF, Ferriani MP, Terreri MT, et al. A multicenter study of invasive fungal infections in patients with childhood-onset systemic lupus erythematosus. J Rheumatol. 2015;42(12):2296–303.

    Article  PubMed  CAS  Google Scholar 

  157. Martinez-Martinez MU, Herrera-Van Oostdam D, Roman-Acosta S, et al. Invasive fungal infections in patients with systemic lupus erythematosus. J Rheumatol. 2012;39(9):1814–8.

    Article  PubMed  Google Scholar 

  158. Chen GL, Chen Y, Zhu CQ, et al. Invasive fungal infection in Chinese patients with systemic lupus erythematosus. Clin Rheumatol. 2012;31(7):1087–91.

    Article  PubMed  Google Scholar 

  159. Chung SA, Brown EE, Williams AH, et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J Am Soc Nephrol. 2014;25(12):2859–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Firooz N, Albert DA, Wallace DJ, et al. High-sensitivity C-reactive protein and erythrocyte sedimentation rate in systemic lupus erythematosus. Lupus. 2011;20(6):588–97.

    Article  PubMed  CAS  Google Scholar 

  161. Ospina FE, Echeverri A, Zambrano D, et al. Distinguishing infections vs flares in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2017;56(suppl_1):i46–54.

    Google Scholar 

  162. Song GG, Bae SC, Lee YH. Diagnostic accuracies of procalcitonin and C-reactive protein for bacterial infection in patients with systemic rheumatic diseases: a meta-analysis. Clin Exp Rheumatol. 2015;33(2):166–73.

    PubMed  Google Scholar 

  163. Bador KM, Intan S, Hussin S, et al. Serum procalcitonin has negative predictive value for bacterial infection in active systemic lupus erythematosus. Lupus. 2012;21(11):1172–7.

    Article  PubMed  CAS  Google Scholar 

  164. Serio I, Arnaud L, Mathian A, et al. Can procalcitonin be used to distinguish between disease flare and infection in patients with systemic lupus erythematosus: a systematic literature review. Clin Rheumatol. 2014;33(9):1209–15.

    Article  PubMed  Google Scholar 

  165. Dima A, Opris D, Jurcut C, et al. Is there still a place for erythrocyte sedimentation rate and C-reactive protein in systemic lupus erythematosus? Lupus. 2016;25(11):1173–9.

    Article  PubMed  CAS  Google Scholar 

  166. Pyo JY, Park JS, Park YB, et al. Delta neutrophil index as a marker for differential diagnosis between flare and infection in febrile systemic lupus erythematosus patients. Lupus. 2013;22(11):1102–9.

    Article  PubMed  CAS  Google Scholar 

  167. Liu J, Pan Y, Tang LJ, et al. Low adenosine triphosphate activity in CD4+ cells predicts infection in patients with lupus nephritis. Clin Exp Rheumatol. 2014;32(3):383–9.

    PubMed  CAS  Google Scholar 

  168. Chen CH, Tai SB, Chen HC, et al. Analysis of erythrocyte C4d to complement receptor 1 ratio: use in distinguishing between infection and flare-up in febrile patients with systemic lupus Erythematosus. Biomed Res Int. 2015;2015:939783.

    PubMed  PubMed Central  Google Scholar 

  169. Sciascia S, Cuadrado MJ, Karim MY. Management of infection in systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2013;27(3):377–89.

    Article  PubMed  Google Scholar 

  170. Grein IH, Groot N, Lacerda MI, et al. HPV infection and vaccination in systemic lupus Erythematosus patients: what we really should know. Pediatr Rheumatol Online J. 2016;14(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Mathian A, Arnaud L, Adoue D, et al. Prevention of infections in adults and adolescents with systemic lupus erythematosus: guidelines for the clinical practice based on the literature and expert opinion. Rev Med Interne. 2016;37(5):307–20.

    Article  PubMed  CAS  Google Scholar 

  172. Liao Z, Tang H, Xu X, et al. Immunogenicity and safety of influenza vaccination in systemic lupus Erythematosus patients compared with healthy controls: a meta-analysis. PLoS One. 2016;11(2):e0147856.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Watanabe R, Ishii T, Harigae H. Pretreatment screening for hepatitis B virus infection in patients with systemic lupus erythematosus. Tohoku J Exp Med. 2015;237(1):9–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaafar Ragab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ragab, G., Dehner, C., Hamza, H., Kriegel, M. (2018). Systemic Lupus Erythematosus. In: Ragab, G., Atkinson, T., Stoll, M. (eds) The Microbiome in Rheumatic Diseases and Infection. Springer, Cham. https://doi.org/10.1007/978-3-319-79026-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79026-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79025-1

  • Online ISBN: 978-3-319-79026-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics