Skip to main content

The Microbiome: Past, Present, and Future

  • Chapter
  • First Online:
The Microbiome in Rheumatic Diseases and Infection
  • 1021 Accesses

Abstract

It has been over 300 years since bacteria were initially identified, close to 150 years since their role in infectious diseases was demonstrated, and 100 years since a role in health and noncommunicable disease for our commensal intestinal bacteria was initially postulated. The role of the intestinal microbiota in autoimmune diseases such as inflammatory bowel disease and rheumatoid arthritis has sparked interest since the 1950s. However, it was not until the technological breakthroughs that tremendously expanded the capacity of sequencing and computing power that took place in the early twenty-first century was it possible to explore these associations in depth. Associations between multiple microbial agents and specific autoimmune diseases are being recognized, with some microorganisms emerging as associated with autoimmune diseases and others as even being protective. How this information will be used to prevent or treat autoimmune diseases remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AS:

Ankylosing spondylitis

EEN:

Exclusive enteral nutrition

IBD:

Inflammatory bowel disease

JIA:

Juvenile idiopathic arthritis

RA:

Rheumatoid arthritis

References

  1. Kendall AI. Certain fundamental principles relating to the activity of Bacteria in the intestinal tract. Their relation to therapeutics. J Med Res. 1911;25(1):117–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Smith KA. Louis pasteur, the father of immunology? Front Immunol. 2012;3:68.

    PubMed  PubMed Central  Google Scholar 

  3. Podolsky SH. Metchnikoff and the microbiome. Lancet. 2012;380(9856):1810–1.

    Article  PubMed  Google Scholar 

  4. Smith JL. Sir Arbuthnot lane, chronic intestinal stasis, and autointoxication. Ann Intern Med. 1982;96(3):365–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kendall AI. The Bacteria of the intestinal tract of man. Science. 1915;42(1076):209–12.

    Article  CAS  PubMed  Google Scholar 

  6. Ford WW. Classification of intestinal bacteria: (preliminary note). J Med Res. 1901;6(1):211–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Heinritz SN, Weiss E, Eklund M, Aumiller T, Louis S, Rings A, et al. Intestinal microbiota and microbial metabolites are changed in a pig model fed a high-fat/low-fiber or a low-fat/high-fiber diet. PLoS One. 2016;11(4):e0154329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jimenez Diaz C, Ales JM, Vivanco F. Symbiotic action of intestinal microbial flora; studies on nicotinic acid, pyridoxine, folic acid, and vitamin B12 synthesis by microbial flora in the enteric tract. Bull Inst Med Res Univ Madr. 1953;6(2–3):105–28.

    PubMed  CAS  Google Scholar 

  9. Abdel-Salaam A, Leong PC. Synthesis of vitamin B(1) by intestinal bacteria of the rat. Biochem J. 1938;32(6):958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellinger P, Abdel Kader MM. The nicotinamide-saving action of tryptophan and the biosynthesis of nicotinamide by the intestinal flora of the rat. Biochem J. 1949;44(3):285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Esselen WB, Fuller JE. The oxidation of ascorbic acid as influenced by intestinal bacteria. J Bacteriol. 1939;37(5):501–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Wainfan E, Henkin G, Rittenberg SC, Marx W. Metabolism of cholesterol by intestinal bacteria in vitro. J Biol Chem. 1954;207(2):843–9.

    PubMed  CAS  Google Scholar 

  13. Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2015;123(6):983–93.

    Article  CAS  PubMed  Google Scholar 

  14. Torrey JC. The regulation of the intestinal flora of dogs through diet. J Med Res. 1919;39(3):415–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Dalton HW. Implantation of B. coli into the human intestine. Ir J Med Sci. 1951;308:384–6.

    Article  Google Scholar 

  16. Winkelstein A. Lactobacillus acidophilus tablets in the therapy of various intestinal disorders: a preliminary report. Am Pract Dig Treat. 1955;6(7):1022–5.

    PubMed  CAS  Google Scholar 

  17. Campos JV, Hoenen W, Costa A, Trabulsi L, Pontes JF. Changes in intestinal flora under tetracycline. Gastroenterology. 1958;34(4):625–35.

    PubMed  CAS  Google Scholar 

  18. Anderson GW, Cunningham JD, Slinger SJ. Effect of terramycin and certain phenylarsonic acid derivatives on the growth and intestinal flora of Turkey poults. J Nutr. 1952;48(4):539–52.

    Article  CAS  PubMed  Google Scholar 

  19. Lipman MO, Coss JA Jr, Boots RH. Changes in the bacterial flora of the throat and intestinal tract during prolonged oral administration of penicillin. Am J Med. 1948;4(5):702–9.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas AR, Levine M. Some effects of penicillin on intestinal bacteria. J Bacteriol. 1945;49(6):623–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Goldberg HS, Goodman RN, Lanning B. Low-level, long-term feeding of chlortetracycline and the emergence of antibiotic-resistant enteric bacteria. Antibiot Annu. 1958;6:930–4.

    PubMed  Google Scholar 

  22. Stern JR, Mc GJ. Antibiotics and early growth of rats fed a soybean oil meal diet. Arch Biochem. 1950;28(3):364–70.

    PubMed  CAS  Google Scholar 

  23. Berg LR, Bearse GE, Mc GJ, Miller VL. The effect of removing supplemental aureomycin from the ration on the subsequent growth of chicks. Arch Biochem. 1950;29(2):404–7.

    PubMed  CAS  Google Scholar 

  24. Sieburth JM, Gutierrez J, Mc GJ, Stern JR, Schneider BH. Effect of antibiotics on intestinal microflora and on growth of turkeys and pigs. Proc Soc Exp Biol Med. 1951;76(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  25. Forbes M, Park JT. Growth of germ-free and conventional chicks: effect of diet, dietary penicillin and bacterial environment. J Nutr. 1959;67(1):69–84.

    Article  CAS  PubMed  Google Scholar 

  26. Eyssen H, de Somer P. The mode of action of antibiotics in stimulating growth of chicks. J Exp Med. 1963;117(1):127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics. 2015;135(4):617–26.

    Article  PubMed  Google Scholar 

  28. Seneca H, Henderson E. Normal intestinal bacteria in ulcerative colitis. Gastroenterology. 1950;​15(1):34–9.

    PubMed  CAS  Google Scholar 

  29. Anderson CM, Langford RF. Bacterial content of small intestine of children in health, in coeliac disease, and in fibrocystic disease of pancreas. Br Med J. 1958;1(5074):803–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loveman DE, Noojin RO, Winkler CH Jr. Comparative studies of enteric bacterial flora in acne vulgaris. J Invest Dermatol. 1955;25(3):135–7.

    Article  CAS  PubMed  Google Scholar 

  31. Drasar BS, Shiner M. Studies on the intestinal flora. II. Bacterial flora of the small intestine in patients with gastrointestinal disorders. Gut. 1969;10(10):812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mansson I, Olhagen B. Intestinal Clostridium perfringens in rheumatoid arthritis and other connective tissue disorders. Studies of fecal flora, serum antitoxin levels and skin hypersensitivity. Acta Rheumatol Scand. 1966;12(3):167–74.

    Article  CAS  PubMed  Google Scholar 

  33. Ebringer RW, Cawdell DR, Cowling P, Ebringer A. Sequential studies in ankylosing spondylitis. Association of Klebsiella pneumoniae with active disease. Ann Rheum Dis. 1978;37(2):146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci U S A. 2011;108(15):6252–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977;74(11):5088–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Woese CR. Bacterial evolution. Microbiol Rev. 1987;51(2):221–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P. Fecal microbiota in early rheumatoid arthritis. J Rheumatol. 2008;35(8):1500–5.

    PubMed  CAS  Google Scholar 

  39. Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford). 2002;41(12):1395–401.

    Article  CAS  Google Scholar 

  40. Gordon JI. Honor thy gut symbionts redux. Science. 2012;336(6086):1251–3.

    Article  CAS  PubMed  Google Scholar 

  41. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Article  CAS  Google Scholar 

  42. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schloss PD, Girard RA, Martin T, Edwards J, Thrash JC. Status of the archaeal and bacterial census: an update. MBio. 2016;7(3):e00201–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131(1):33–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos. 2015;43(10):1522–35.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article  PubMed  Google Scholar 

  48. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180(6):2359–64.

    Article  CAS  PubMed  Google Scholar 

  49. Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, et al. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut. 2003;52(3):370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lahoti TS, John K, Hughes JM, Kusnadi A, Murray IA, Krishnegowda G, et al. Aryl hydrocarbon receptor antagonism mitigates cytokine-mediated inflammatory signalling in primary human fibroblast-like synoviocytes. Ann Rheum Dis. 2013;72(10):1708–16.

    Article  CAS  PubMed  Google Scholar 

  51. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson L, Arabshahi A, Simons B, Prasain JK, Barnes S. Improved high sensitivity analysis of polyphenols and their metabolites by nano-liquid chromatography-mass spectrometry. Arch Biochem Biophys. 2014;559:3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li S, Pozhitkov A, Ryan RA, Manning CS, Brown-Peterson N, Brouwer M. Constructing a fish metabolic network model. Genome Biol. 2010;11(11):R115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Castagnini C, Luceri C, Toti S, Bigagli E, Caderni G, Femia AP, et al. Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Menard apples, rich in polyphenols. Br J Nutr. 2009;102(11):1620–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sigall-Boneh R, Pfeffer-Gik T, Segal I, Zangen T, Boaz M, Levine A. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease. Inflamm Bowel Dis. 2014;20(8):1353–60.

    Article  PubMed  Google Scholar 

  56. Soo J, Malik BA, Turner JM, Persad R, Wine E, Siminoski K, et al. Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn’s disease. Dig Dis Sci. 2013;58(12):3584–91.

    Article  CAS  PubMed  Google Scholar 

  57. Berntson L, Hedlund-Treutiger I, Alving K. Anti-inflammatory effect of exclusive enteral nutrition in patients with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2016;34(5):941–5.

    PubMed  Google Scholar 

  58. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abramowicz S, Susarla HK, Kim S, Kaban LB. Physical findings associated with active temporomandibular joint inflammation in children with juvenile idiopathic arthritis. J Oral Maxillofac Surg. 2013;71(10):1683–7.

    Article  PubMed  Google Scholar 

  60. Saleh M, Elson CO. Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity. 2011;34(3):293–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Targan SR, Landers CJ, Yang H, Lodes MJ, Cong Y, Papadakis KA, et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology. 2005;128(7):2020–8.

    Article  CAS  PubMed  Google Scholar 

  62. Mundwiler ML, Mei L, Landers CJ, Reveille JD, Targan S, Weisman MH. Inflammatory bowel disease serologies in ankylosing spondylitis patients: a pilot study. Arthritis Res Ther. 2009;11(6):R177.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pianta A, Arvikar S, Strle K, Drouin EE, Wang Q, Costello CE, et al. Evidence for immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2016;69(5):964–75.

    Article  CAS  Google Scholar 

  64. Wu Z, Wang L, Tang Y, Sun X. Parasite-derived proteins for the treatment of allergies and autoimmune diseases. Front Microbiol. 2017;8:2164.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Feary J, Britton J, Leonardi-Bee J. Atopy and current intestinal parasite infection: a systematic review and meta-analysis. Allergy. 2011;66(4):569–78.

    Article  CAS  PubMed  Google Scholar 

  66. Fleming JO, Cook TD. Multiple sclerosis and the hygiene hypothesis. Neurology. 2006;67(11):2085–6.

    Article  PubMed  Google Scholar 

  67. Panda AK, Ravindran B, Das BK. Rheumatoid arthritis patients are free of filarial infection in an area where filariasis is endemic: comment on the article by Pineda et al. Arthritis Rheum. 2013;65(5):1402–3.

    Article  PubMed  Google Scholar 

  68. Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol. 2007;61(2):97–108.

    Article  CAS  PubMed  Google Scholar 

  69. Cooper PJ, Chico ME, Platts-Mills TA, Rodrigues LC, Strachan DP, Barreto ML. Cohort profile: the Ecuador life (ECUAVIDA) study in Esmeraldas Province, Ecuador. Int J Epidemiol. 2015;44(5):1517–27.

    Article  PubMed  Google Scholar 

  70. Lynch NR, Palenque M, Hagel I, DiPrisco MC. Clinical improvement of asthma after anthelminthic treatment in a tropical situation. Am J Respir Crit Care Med. 1997;156(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  71. Webb EL, Nampijja M, Kaweesa J, Kizindo R, Namutebi M, Nakazibwe E, et al. Helminths are positively associated with atopy and wheeze in Ugandan fishing communities: results from a cross-sectional survey. Allergy. 2016;71(8):1156–69.

    Article  CAS  PubMed  Google Scholar 

  72. Briggs N, Weatherhead J, Sastry KJ, Hotez PJ. The hygiene hypothesis and its inconvenient truths about Helminth infections. PLoS Negl Trop Dis. 2016;10(9):e0004944.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bailey CF. The treatment of chronic rheumatic and rheumatoid arthritis by radiant heat and cataphoresis. Br Med J. 1909;1(2505):13–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mayberry J. The history of 5-ASA compounds and their use in ulcerative colitis – trailblazing discoveries in gastroenterology. J Gastrointest Liver Dis. 2013;22(4):375–7.

    Google Scholar 

  75. O’Dell JR, Elliott JR, Mallek JA, Mikuls TR, Weaver CA, Glickstein S, et al. Treatment of early seropositive rheumatoid arthritis: doxycycline plus methotrexate versus methotrexate alone. Arthritis Rheum. 2006;54(2):621–7.

    Article  CAS  PubMed  Google Scholar 

  76. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med. 2003;349(16):1526–33.

    Article  CAS  PubMed  Google Scholar 

  77. Uusitalo U, Liu X, Yang J, Aronsson CA, Hummel S, Butterworth M, et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 2016;170(1):20–8.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhang GQ, Hu HJ, Liu CY, Zhang Q, Shakya S, Li ZY. Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016;95(8):e2562.

    Article  Google Scholar 

  79. Bager P, Arnved J, Ronborg S, Wohlfahrt J, Poulsen LK, Westergaard T, et al. Trichuris suis ova therapy for allergic rhinitis: a randomized, double-blind, placebo-controlled clinical trial. J Allergy Clin Immunol. 2010;125(1):123–30 e1–3.

    Article  PubMed  Google Scholar 

  80. Bourke CD, Mutapi F, Nausch N, Photiou DM, Poulsen LK, Kristensen B, et al. Trichuris suis ova therapy for allergic rhinitis does not affect allergen-specific cytokine responses despite a parasite-specific cytokine response. Clin Exp Allergy. 2012;42(11):1582–95.

    Article  CAS  PubMed  Google Scholar 

  81. Feary J, Venn A, Brown A, Hooi D, Falcone FH, Mortimer K, et al. Safety of hookworm infection in individuals with measurable airway responsiveness: a randomized placebo-controlled feasibility study. Clin Exp Allergy. 2009;39(7):1060–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feary JR, Venn AJ, Mortimer K, Brown AP, Hooi D, Falcone FH, et al. Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin Exp Allergy. 2010;40(2):299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Summers RW, Elliott DE, Qadir K, Urban JF Jr, Thompson R, Weinstock JV. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol. 2003;98(9):2034–41.

    Article  PubMed  Google Scholar 

  84. Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV. Trichuris suis therapy in Crohn’s disease. Gut. 2005;54(1):87–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 2005;128(4):825–32.

    Article  PubMed  Google Scholar 

  86. Sandborn WJ, Elliott DE, Weinstock J, Summers RW, Landry-Wheeler A, Silver N, et al. Randomised clinical trial: the safety and tolerability of Trichuris suis ova in patients with Crohn’s disease. Aliment Pharmacol Ther. 2013;38(3):255–63.

    Article  CAS  PubMed  Google Scholar 

  87. Fleming JO, Isaak A, Lee JE, Luzzio CC, Carrithers MD, Cook TD, et al. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler. 2011;17(6):743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Voldsgaard A, Bager P, Garde E, Akeson P, Leffers AM, Madsen CG, et al. Trichuris suis ova therapy in relapsing multiple sclerosis is safe but without signals of beneficial effect. Mult Scler. 2015;21(13):1723–9.

    Article  CAS  PubMed  Google Scholar 

  89. Fleming J, Hernandez G, Hartman L, Maksimovic J, Nace S, Lawler B, et al. Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: results of the HINT 2 clinical trial. Mult Scler. 2017. https://doi.org/10.1177/1352458517736377.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Stoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoll, M.L. (2018). The Microbiome: Past, Present, and Future. In: Ragab, G., Atkinson, T., Stoll, M. (eds) The Microbiome in Rheumatic Diseases and Infection. Springer, Cham. https://doi.org/10.1007/978-3-319-79026-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-79026-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-79025-1

  • Online ISBN: 978-3-319-79026-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics