Skip to main content

Meta-Analyses of Clinical Trials Versus Diagnostic Test Accuracy Studies

  • Chapter
  • First Online:

Abstract

In the present chapter, we discuss meta-analysis of clinical trials and compare them with meta-analysis of diagnostic accuracy studies. The former is based on the mixed effects model by DerSimonian and Laird (Control Clin Trials 7:177–188, 1986), and the latter is currently based on four main methods, with the most known bivariate model and the hierarchical summary receiver operator curve model. Each type of meta-analysis needs to be investigated for sources of heterogeneity. Specialist software exist to help each type of analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is true in the case of the vertical axis being the standard error. See Sterne and Egger [12] for more options and shapes.

References

  1. Tsagris M, Fragkos KC. Umbrella reviews, overviews of reviews, and meta-epidemiologic studies: similarities and differences. In: Biondi-Zoccai G, editor. Umbrella reviews: evidence synthesis with overviews of reviews and meta-epidemiologic studies. Cham: Springer International Publishing; 2016. p. 43–54.

    Chapter  Google Scholar 

  2. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105–14.

    Article  PubMed  Google Scholar 

  3. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  Google Scholar 

  4. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45:139–45.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cochran WG. Some methods for strengthening the common χ2 tests. Biometrics. 1954;10:417–51.

    Article  Google Scholar 

  6. Mantel N. Chi-Square tests with one degree of freedom; extensions of the mantel- Haenszel procedure. J Am Stat Assoc. 1963;58:690–700.

    Google Scholar 

  7. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    PubMed  CAS  Google Scholar 

  8. Paule RC, Mandel J. Consensus values and weighting factors. J Res Natl Bur Stand. 1982;87:377–85.

    Article  Google Scholar 

  9. Fragkos KC, Tsagris M, Frangos CC. Publication Bias in meta-analysis: confidence intervals for Rosenthal’s fail-safe number. Int Sch Res Notices. 2014;2014:17.

    Google Scholar 

  10. Fragkos KC, Tsagris M, Frangos CC. Exploring the distribution for the estimator of Rosenthal's ‘fail-safe’ number of unpublished studies in meta-analysis. Commun Stat Theory Methods. 2017;46:5672–84.

    Article  Google Scholar 

  11. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rucker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Moher D, Higgins JP. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.

    Article  PubMed  Google Scholar 

  12. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54:1046–55.

    Article  CAS  PubMed  Google Scholar 

  13. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48.

    Article  Google Scholar 

  14. Frangos CC. An updated bibliography on the jackknife method. Commun Stat Theory Methods. 1987;16:1543–84.

    Article  Google Scholar 

  15. Tsagris M, Elmatzoglou I, Frangos CC. The assessment of performance of correlation estimates in discrete bivariate distributions using bootstrap methodology. Commun Stat Theory Methods. 2012;41:138–52.

    Article  Google Scholar 

  16. Li T, Puhan MA, Vedula SS, Singh S, Dickersin K, Ad Hoc Network Meta-analysis Methods Meeting Working G. Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. 2011;9:79.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rücker G. Network meta-analysis, electrical networks and graph theory. Res Synth Methods. 2012;3:312–24.

    Article  PubMed  Google Scholar 

  18. Greco T, Biondi-Zoccai G, Saleh O, Pasin L, Cabrini L, Zangrillo A, Landoni G. The attractiveness of network meta-analysis: a comprehensive systematic and narrative review. Heart Lung Vessel. 2015;7:133–42.

    PubMed  PubMed Central  Google Scholar 

  19. White IR. Network meta-analysis. Stata J. 2015;15:951–85.

    Google Scholar 

  20. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis. Lancet. 2007;369:201–7.

    Article  CAS  Google Scholar 

  21. Neapolitan RE. Learning Bayesian networks. Harlow: Prentice Hall; 2004.

    Google Scholar 

  22. Madden LV, Piepho HP, Paul PA. Statistical models and methods for network meta-analysis. Phytopathology. 2016;106:792–806.

    Article  CAS  PubMed  Google Scholar 

  23. Glass GV. Primary, secondary, and meta-analysis of research. Educ Res. 1976;5:3–8.

    Article  Google Scholar 

  24. Irwig L, Macaskill P, Glasziou P, Fahey M. Meta-analytic methods for diagnostic test accuracy. J Clin Epidemiol. 1995;48:119–30.

    Article  CAS  PubMed  Google Scholar 

  25. Virgili G, Conti AA, Murro V, Gensini GF, Gusinu R. Systematic reviews of diagnostic test accuracy and the Cochrane collaboration. Intern Emerg Med. 2009;4:255–8.

    Article  PubMed  Google Scholar 

  26. Moreno GG, Pantoja CT. Systematic reviews of studies of diagnostic test accuracy. Rev Med Chil. 2009;137:303–7.

    Article  Google Scholar 

  27. Takwoingi Y, Riley RD, Deeks JJ. Meta-analysis of diagnostic accuracy studies in mental health. Evid Based Ment Health. 2015;18:103–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harbord RM, Whiting P, Sterne JA, Egger M, Deeks JJ, Shang A, Bachmann LM. An empirical comparison of methods for meta-analysis of diagnostic accuracy showed hierarchical models are necessary. J Clin Epidemiol. 2008;61:1095–103.

    Article  PubMed  Google Scholar 

  29. Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JA. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics. 2007;8:239–51.

    Article  PubMed  Google Scholar 

  30. Begg CB. Meta-analysis methods for diagnostic accuracy. J Clin Epidemiol. 2008;61:1081–2.

    Article  PubMed  Google Scholar 

  31. Chen Y, Liu Y, Chu H, Ting Lee ML, Schmid CH. A simple and robust method for multivariate meta-analysis of diagnostic test accuracy. Stat Med. 2017;36:105–21.

    Article  PubMed  Google Scholar 

  32. Dukic V, Gatsonis C. Meta-analysis of diagnostic test accuracy assessment studies with varying number of thresholds. Biometrics. 2003;59:936–46.

    Article  CAS  PubMed  Google Scholar 

  33. Leeflang MM. Systematic reviews and meta-analyses of diagnostic test accuracy. Clin Microbiol Infect. 2014;20:105–13.

    Article  CAS  PubMed  Google Scholar 

  34. Deeks JJ. Systematic reviews of evaluations of diagnostic and screening tests. In: Egger M, Davey Smith G, Altman DG, editors. Systematic reviews in health care. London: BMJ Publishing Group; 2008. pp 248–282.

    Google Scholar 

  35. Littenberg B, Moses LE. Estimating diagnostic accuracy from multiple conflicting reports: a new meta-analytic method. Med Decis Mak. 1993;13:313–21.

    Article  CAS  Google Scholar 

  36. Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med. 1993;12:1293–316.

    Article  CAS  PubMed  Google Scholar 

  37. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58:982–90.

    Article  PubMed  Google Scholar 

  38. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med. 2001;20:2865–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsagris, M., Fragkos, K.C. (2018). Meta-Analyses of Clinical Trials Versus Diagnostic Test Accuracy Studies. In: Biondi-Zoccai, G. (eds) Diagnostic Meta-Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-78966-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78966-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78965-1

  • Online ISBN: 978-3-319-78966-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics