Skip to main content

MRI Neuroimaging and Psychiatry

  • Chapter
  • First Online:
  • 1423 Accesses

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Neuroimaging techniques have greatly been developed over the past 10 years, allowing access to brain anatomy, function, and metabolism in vivo. The last 20 years have seen a significant and constant increase of the number of studies using these techniques to explore psychiatric diseases. Indeed, human neuropsychology studies and experimental animal neurophysiology studies have led to a main hypothesis that there would be an anatomical and/or functional and/or metabolism substratum to psychiatric disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NIMH. Bipolar Disorder [Internet] (2016) Available from: https://www.nimh.nih.gov/health/topics/bipolar-disorder/index.shtml#part_152505

  2. Association AP (2013) DSM-5 : diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Pub. 1629 p

    Google Scholar 

  3. Hajek T, Kopecek M, Kozeny J, Gunde E, Alda M, Höschl C (2009) Amygdala volumes in mood disorders — meta-analysis of magnetic resonance volumetry studies. J Affect Disord 115(3):395–410

    PubMed  Google Scholar 

  4. Bora E, Fornito A, Yücel M, Pantelis C (2010) Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry 67(11):1097–1105

    PubMed  Google Scholar 

  5. Ellison-Wright I, Bullmore E (2010) Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr Res 117(1):1):1–1)12

    PubMed  Google Scholar 

  6. Birur B, Kraguljac NV, Shelton RC, Lahti AC (2017) Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr [Internet]. 2017 Apr 3;3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441538/

  7. Lee J, Choi S, Kang J, Won E, Tae W-S, Lee M-S et al (2017) Structural characteristics of the brain reward circuit regions in patients with bipolar I disorder: a voxel-based morphometric study. Psychiatry Res Neuroimaging 269:82–89

    PubMed  Google Scholar 

  8. Adler CM, Holland SK, Schmithorst V, Wilke M, Weiss KL, Pan H et al (2004) Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord 6(3):197–203

    PubMed  Google Scholar 

  9. Wang F, Jackowski M, Kalmar JH, Chepenik LG, Tie K, Qiu M et al (2008) Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging. Br J Psychiatry J Ment Sci 193(2):126–129

    Google Scholar 

  10. Haznedar MM, Roversi F, Pallanti S, Baldini-Rossi N, Schnur DB, LiCalzi EM et al (2005) Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biol Psychiatry 57(7):733–742

    PubMed  Google Scholar 

  11. Bruno S, Cercignani M, Ron MA (2008) White matter abnormalities in bipolar disorder: a voxel-based diffusion tensor imaging study. Bipolar Disord 10(4):460–468

    PubMed  Google Scholar 

  12. Mahon K, Wu J, Malhotra AK, Burdick KE, DeRosse P, Ardekani BA et al (2009) A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 34(6):1590–1600

    Google Scholar 

  13. Sussmann JE, Lymer GKS, McKirdy J, Moorhead TWJ, Maniega SM, Job D et al (2009) White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disord 11(1):11–18

    PubMed  Google Scholar 

  14. Zanetti MV, Jackowski MP, Versace A, Almeida JRC, Hassel S, Duran FLS et al (2009) State-dependent microstructural white matter changes in bipolar I depression. Eur Arch Psychiatry Clin Neurosci 259(6):316–328

    PubMed  PubMed Central  Google Scholar 

  15. Barysheva M, Jahanshad N, Foland-Ross L, Altshuler LL, Thompson PM (2013) White matter microstructural abnormalities in bipolar disorder: a whole brain diffusion tensor imaging study. Neuroimage Clin 2(Supplement C):558–568

    PubMed  PubMed Central  Google Scholar 

  16. Emsell L, Leemans A, Langan C, Van Hecke W, Barker GJ, McCarthy P et al (2013) Limbic and Callosal white matter changes in euthymic bipolar I disorder: an advanced diffusion magnetic resonance imaging Tractography study. Biol Psychiatry 73(2):194–201

    PubMed  Google Scholar 

  17. Linke J, King AV, Poupon C, Hennerici MG, Gass A, Wessa M (2013) Impaired anatomical connectivity and related executive functions: differentiating vulnerability and disease marker in bipolar disorder. Biol Psychiatry 74(12):908–916

    CAS  PubMed  Google Scholar 

  18. Nortje G, Stein DJ, Radua J, Mataix-Cols D, Horn N (2013) Systematic review and voxel-based meta-analysis of diffusion tensor imaging studies in bipolar disorder. J Affect Disord 150(2):192–200

    PubMed  Google Scholar 

  19. Lu LH, Zhou XJ, Keedy SK, Reilly JL, Sweeney JA (2011) White matter microstructure in untreated first episode bipolar disorder with psychosis: comparison with schizophrenia. Bipolar Disord 13(0):604–613

    PubMed  PubMed Central  Google Scholar 

  20. Ganzola R, Nickson T, Bastin ME, Giles S, Macdonald A, Sussmann J et al (2017) Longitudinal differences in white matter integrity in youth at high familial risk for bipolar disorder. Bipolar Disord 19(3):158–167

    PubMed  Google Scholar 

  21. Vargas C, López-Jaramillo C, Vieta E (2013) A systematic literature review of resting state network—functional MRI in bipolar disorder. J Affect Disord 150(3):727–735

    PubMed  Google Scholar 

  22. Argyelan M, Ikuta T, DeRosse P, Braga RJ, Burdick KE, John M et al (2014) Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr Bull 40(1):100–110

    PubMed  Google Scholar 

  23. Blumberg HP, Kaufman J, Martin A, Whiteman R, Zhang JH, Gore JC et al (2003) Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry 60(12):1201–1208

    PubMed  Google Scholar 

  24. Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C et al (2004) Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 55(6):578–587

    PubMed  Google Scholar 

  25. Delvecchio G, Fossati P, Boyer P, Brambilla P, Falkai P, Gruber O et al (2012) Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol 22(2):100–113

    CAS  PubMed  Google Scholar 

  26. Brooks JO, Vizueta N (2014) Diagnostic and clinical implications of functional neuroimaging in bipolar disorder. J Psychiatr Res 57(Supplement C):12–25

    PubMed  Google Scholar 

  27. Townsend JD, Torrisi SJ, Lieberman MD, Sugar CA, Bookheimer SY, Altshuler LL (2013) Frontal-amygdala connectivity alterations during emotion down-regulation in bipolar I disorder. Biol Psychiatry 73(2):127–135

    PubMed  Google Scholar 

  28. Cremaschi L, Penzo B, Palazzo M, Dobrea C, Cristoffanini M, Dell’Osso B et al (2013) Assessing working memory via N-back task in euthymic bipolar I disorder patients: a review of functional magnetic resonance imaging studies. Neuropsychobiology 68(2):63–70

    PubMed  Google Scholar 

  29. McKenna BS, Sutherland AN, Legenkaya AP, Eyler LT (2014) Abnormalities of brain response during encoding into verbal working memory among euthymic patients with bipolar disorder. Bipolar Disord 16(3):289–299

    PubMed  Google Scholar 

  30. Dell’Osso B, Cinnante C, Giorgio AD, Cremaschi L, Palazzo MC, Cristoffanini M et al (2015) Altered prefrontal cortex activity during working memory task in bipolar disorder: a functional magnetic resonance imaging study in euthymic bipolar I and II patients. J Affect Disord 184:116–122

    PubMed  Google Scholar 

  31. Chase HW, Nusslock R, Almeida JR, Forbes EE, LaBarbara EJ, Phillips ML (2013) Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disord 15(8):839–854

    PubMed  PubMed Central  Google Scholar 

  32. Urošević S, Luciana M, Jensen JB, Youngstrom EA, Thomas KM (2016) Age associations with neural processing of reward anticipation in adolescents with bipolar disorders. Neuroimage Clin 11:476–485

    PubMed  PubMed Central  Google Scholar 

  33. Trost S, Diekhof EK, Zvonik K, Lewandowski M, Usher J, Keil M et al (2014) Disturbed anterior prefrontal control of the mesolimbic reward system and increased impulsivity in bipolar disorder. Neuropsychopharmacology 39(8):1914–1923

    PubMed  PubMed Central  Google Scholar 

  34. Dutra SJ, Man V, Kober H, Cunningham WA, Gruber J (2017) Disrupted cortico-limbic connectivity during reward processing in remitted bipolar I disorder. Bipolar Disord 19:661

    PubMed  PubMed Central  Google Scholar 

  35. Berghorst LH, Kumar P, Greve DN, Deckersbach T, Ongur D, Dutra S et al (2016) Stress and reward processing in bipolar disorder: an fMRI study. Bipolar Disord 18(7):602–611

    PubMed  PubMed Central  Google Scholar 

  36. Kraguljac NV, Reid M, White D, Jones R, den Hollander J, Lowman D et al (2012) Neurometabolites in schizophrenia and bipolar disorder – a systematic review and meta-analysis. Psychiatry Res 203(2–3):111–125

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Atagün Mİ, Şıkoğlu EM, Can SS, Karakaş-Uğurlu G, Ulusoy-Kaymak S, Çayköylü A et al (2015) Investigation of Heschl’s gyrus and planum temporale in patients with schizophrenia and bipolar disorder: a proton magnetic resonance spectroscopy study. Schizophr Res 161(2):202–209

    PubMed  Google Scholar 

  38. Li H, Xu H, Zhang Y, Guan J, Zhang J, Xu C et al (2016) Differential neurometabolite alterations in brains of medication-free individuals with bipolar disorder and those with unipolar depression: a two-dimensional proton magnetic resonance spectroscopy study. Bipolar Disord 18(7):583–590

    CAS  PubMed  Google Scholar 

  39. Chitty KM, Lagopoulos J, Lee RSC, Hickie IB, Hermens DF (2013) A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur Neuropsychopharmacol 23(11):1348–1363

    CAS  PubMed  Google Scholar 

  40. Kubo H, Nakataki M, Sumitani S, Iga J, Numata S (2017) Kameoka N, et al. 1H-magnetic resonance spectroscopy study of glutamate-related abnormality in bipolar disorder. J Affect Disord 208(Supplement C):139–144

    CAS  PubMed  Google Scholar 

  41. Silveira LE, Bond DJ, MacMillan EL, Kozicky J-M, Muralidharan K, Bücker J et al (2017) Hippocampal neurochemical markers in bipolar disorder patients following the first-manic episode: a prospective 12-month proton magnetic resonance spectroscopy study. Aust N Z J Psychiatry 51(1):65–74

    PubMed  Google Scholar 

  42. Shi X-F, Carlson PJ, Sung Y-H, Fiedler KK, Forrest LN, Hellem TL et al (2015) Decreased brain PME/PDE ratio in bipolar disorder: a preliminary 31P magnetic resonance spectroscopy study. Bipolar Disord 17(7):743–752

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343

    CAS  PubMed  Google Scholar 

  44. NIMH (2016) Schizophrenia [Internet]. Available from: https://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml

  45. Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162(12):2233–2245

    PubMed  Google Scholar 

  46. Crow TJ (1997) Is schizophrenia the price that Homo sapiens pays for language? Schizophr Res 28(2–3):127–141

    CAS  PubMed  Google Scholar 

  47. Rajarethinam RP, DeQuardo JR, Nalepa R, Tandon R (2000) Superior temporal gyrus in schizophrenia: a volumetric magnetic resonance imaging study. Schizophr Res 41(2):303–312

    CAS  PubMed  Google Scholar 

  48. Dietsche B, Kircher T, Falkenberg I (2017) Structural brain changes in schizophrenia at different stages of the illness: a selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry 51(5):500–508

    PubMed  Google Scholar 

  49. Sumner PJ, Bell IH, Rossell SL (2017) A systematic review of the structural neuroimaging correlates of thought disorder. Neurosci Biobehav Rev [Internet]. Available from: http://www.sciencedirect.com/science/article/pii/S0149763417301252

  50. Wheeler AL, Voineskos AN (2014) A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci [Internet]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142355/

  51. Yao L, Lui S, Liao Y, Du M-Y, Hu N, Thomas JA et al (2013) White matter deficits in first episode schizophrenia: an activation likelihood estimation meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry 45:100–106

    Google Scholar 

  52. Goghari VM, Sponheim SR, MacDonald AW (2010) The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neurosci Biobehav Rev 34(3):468

    PubMed  Google Scholar 

  53. Mwansisya TE, Hu A, Li Y, Chen X, Wu G, Huang X, et al (2017) Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophr Res [Internet]. [cited 2017 Nov 17];0(0). Available from: http://www.schres-journal.com/article/S0920-9964(17)30115-9/fulltext

  54. Poels EMP, Kegeles LS, Kantrowitz JT, Javitt DC, Lieberman JA, Abi-Dargham A et al (2014) Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res 152(0):325–332

    PubMed  PubMed Central  Google Scholar 

  55. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al (2001) Effect of COMT Val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98(12):6917–6922

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Meyer-Lindenberg A, Kolachana B, Weinberger DR, Buckholtz J, Ding J, Callicott JH et al (2006) Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 11(9):867

    CAS  PubMed  Google Scholar 

  57. Steen RG, Hamer L (2005) Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 30(11):1949

    CAS  PubMed  Google Scholar 

  58. Bustillo JR (2013) Use of proton magnetic resonance spectroscopy in the treatment of psychiatric disorders: a critical update. Dialogues Clin Neurosci 15(3):329–337

    PubMed  PubMed Central  Google Scholar 

  59. Taylor SF, Tso IF (2015) GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophr Res 167(0):84–90

    PubMed  Google Scholar 

  60. Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X et al (2012) Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 69(5):449–459

    CAS  PubMed  Google Scholar 

  61. Kelemen O, Kiss I, Benedek G, Kéri S (2013) Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: The potential impact of GABA concentration in the visual cortex. Prog Neuro-Psychopharmacol Biol Psychiatry 47(Supplement C):13–19

    CAS  Google Scholar 

  62. Yuksel C, Tegin C, O’Connor L, Du F, Ahat E, Cohen BM et al (2015) Phosphorus magnetic resonance spectroscopy studies in schizophrenia. J Psychiatr Res 68:157–166

    PubMed  Google Scholar 

  63. Karno M, Golding JM, Sorenson SB, Burnam M (1988) THe epidemiology of obsessive-compulsive disorder in five us communities. Arch Gen Psychiatry 45(12):1094–1099

    CAS  PubMed  Google Scholar 

  64. Robins LN, Helzer JE, Orvaschel H, Anthony JC, Blazer DG, Burnam A, et al (1985) 8 - The diagnostic interview schedule. In Kessler WWEG, editor. Epidemiologic field methods in psychiatry [Internet]. San Diego: Academic Press; [cited 2014 Oct 6]. pp 143–70. Available from: http://www.sciencedirect.com/science/article/pii/B9780080917986500129

  65. Ruscio AM, Stein DJ, Chiu WT, Kessler RC (2010) The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 15(1):53–63

    CAS  PubMed  Google Scholar 

  66. Rasmussen SA, Eisen JL (1992) The epidemiology and clinical features of obsessive compulsive disorder. Psychiatr Clin North Am 15(4):743–758

    CAS  PubMed  Google Scholar 

  67. Rasmussen SA, Tsuang MT (1984) The epidemiology of obsessive compulsive disorder. J Clin Psychiatry 45(11):450–457

    CAS  PubMed  Google Scholar 

  68. Skoog G, Skoog I (1999) A 40-year follow-up of patients with obsessive-compulsive disorder [see comments]. Arch Gen Psychiatry 56(2):121–127

    CAS  PubMed  Google Scholar 

  69. Koran LM, Thienemann ML, Davenport R (1996) Quality of life for patients with obsessive-compulsive disorder. Am J Psychiatry 153(6):783–788

    CAS  PubMed  Google Scholar 

  70. Jaafari N, Daniel M-L, Lacoste J, Bacconnier M, Belin D, Rotge J-Y (2011) Insight, obsession et vérification dans le trouble obsessionnel-compulsif. Ann Méd Psychol Rev Psychiatr 169(7):453–456

    Google Scholar 

  71. Rotge J-Y, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M et al (2009) Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatry 65(1):75–83

    PubMed  Google Scholar 

  72. Atmaca M, Yildirim H, Ozdemir H, Ozler S, Kara B, Ozler Z et al (2008) Hippocampus and amygdalar volumes in patients with refractory obsessive-compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 32(5):1283–1286

    Google Scholar 

  73. Atmaca M (2011) Review of structural neuroimaging in patients with refractory obsessive-compulsive disorder. Neurosci Bull 27(3):215–220

    PubMed  PubMed Central  Google Scholar 

  74. Radua J, Mataix-Cols D (2009) Voxel-wise meta-analysis of grey matter changes in obsessive–compulsive disorder. Br J Psychiatry 195(5):393–402

    PubMed  Google Scholar 

  75. Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex [Internet]. [cited 2014 Aug 4]; Available from: http://www.sciencedirect.com/science/article/pii/S0010945213000464

  76. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32(3):525–549

    PubMed  Google Scholar 

  77. Piras F, Piras F, Caltagirone C, Spalletta G Brain circuitries of obsessive compulsive disorder: a systematic review and meta-analysis of diffusion tensor imaging studies. Neurosci Biobehav Rev [Internet]. [cited 2013 Nov 8]; Available from: http://www.sciencedirect.com/science/article/pii/S0149763413002327

  78. Gan J, Zhong M, Fan J, Liu W, Niu C, Cai S et al (2017) Abnormal white matter structural connectivity in adults with obsessive-compulsive disorder. Transl Psychiatry 7(3):e1062

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakao T, Okada K, Kanba S (2014) Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci 68(8):587–605

    PubMed  Google Scholar 

  80. Jung WH, Kang D-H, Kim E, Shin KS, Jang JH, Kwon JS (2013) Abnormal corticostriatal-limbic functional connectivity in obsessive–compulsive disorder during reward processing and resting-state. Neuroimage Clin 3:27–38

    PubMed  PubMed Central  Google Scholar 

  81. Keshavan MS, Stanley JA, Pettegrew JW (2000) Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings--part II. Biol Psychiatry 48(5):369–380

    CAS  PubMed  Google Scholar 

  82. Stanley JA (2002) In vivo magnetic resonance spectroscopy and its application to neuropsychiatric disorders. Can J Psychiatry 47(4):315–326

    PubMed  Google Scholar 

  83. McClure RJ, Kanfer JN, Panchalingam K, Klunk WE, Pettegrew JW (1994) Alzheimer’s disease: membrane-associated metabolic changes. Ann N Y Acad Sci 747:110–124

    CAS  PubMed  Google Scholar 

  84. Tartaglia MC, Narayanan S, De Stefano N, Arnaoutelis R, Antel SB, Francis SJ et al (2002) Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J Neurol 249(10):1382–1390

    CAS  PubMed  Google Scholar 

  85. Maier M, Ron MA, Barker GJ, Tofts PS (1995) Proton magnetic resonance spectroscopy: an in vivo method of estimating hippocampal neuronal depletion in schizophrenia. Psychol Med 25(6):1201–1209

    CAS  PubMed  Google Scholar 

  86. Kantarci K (2013) Magnetic resonance spectroscopy in common dementias. Neuroimaging Clin N Am 23(3):393–406

    PubMed  PubMed Central  Google Scholar 

  87. Nie K, Zhang Y, Huang B, Wang L, Zhao J, Huang Z et al (2013) Marked N-acetylaspartate and choline metabolite changes in Parkinson’s disease patients with mild cognitive impairment. Parkinsonism Relat Disord 19(3):329–334

    PubMed  Google Scholar 

  88. Frye MA, Thomas MA, Yue K, Binesh N, Davanzo P, Ventura J et al (2007) Reduced concentrations of N-acetylaspartate (NAA) and the NAA–creatine ratio in the basal ganglia in bipolar disorder: a study using 3-tesla proton magnetic resonance spectroscopy. Psychiatry Res Neuroimaging 154(3):259–265

    CAS  Google Scholar 

  89. Bertolino A, Callicott JH, Mattay VS, Weidenhammer KM, Rakow R, Egan MF et al (2001) The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiatry 49(1):39–46

    CAS  PubMed  Google Scholar 

  90. Weber AM, Soreni N, Stanley JA, Greco A, Mendlowitz S, Szatmari P et al (2014) Proton magnetic resonance spectroscopy of prefrontal white matter in psychotropic naïve children and adolescents with obsessive–compulsive disorder. Psychiatry Res Neuroimaging 222(1–2):67–74

    Google Scholar 

  91. Jang J, Kwon J, Jang D, Moon W-J, Lee J-M, Ha T et al (2006) A proton MRSI study of brain N-acetylaspartate level after 12 weeks of citalopram treatment in drug-naive patients with obsessive-compulsive disorder. Am J Psychiatry 163(7):1202–1207

    PubMed  Google Scholar 

  92. O’Neill J, Gorbis E, Feusner JD, Yip JC, Chang S, Maidment KM et al (2013) Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive–compulsive disorder. J Psychiatr Res 47(4):494–504

    PubMed  PubMed Central  Google Scholar 

  93. Tükel R, Özata B, Öztürk N, Ertekin BA, Ertekin E, Saruhan Direskeneli G (2014) The role of the brain-derived neurotrophic factor SNP rs2883187 in the phenotypic expression of obsessive-compulsive disorder. J Clin Neurosci 21(5):790–793

    PubMed  Google Scholar 

  94. Yücel M, Harrison BJ, Wood SJ, Fornito A, Wellard RM, Pujol J et al (2007) Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Arch Gen Psychiatry 64(8):946

    PubMed  Google Scholar 

  95. Bartha R, Stein MB, Williamson PC, Drost DJ, Neufeld RWJ, Carr TJ et al (1998) A short Echo 1H spectroscopy and volumetric MRI study of the Corpus striatum in patients with obsessive- compulsive disorder and comparison subjects. Am J Psychiatry 155(11):1584–1591

    CAS  PubMed  Google Scholar 

  96. Ebert D, Speck O, König A, Berger M, Hennig J, Hohagen F (1997) 1H-magnetic resonance spectroscopy in obsessive-compulsive disorder: evidence for neuronal loss in the cingulate gyrus and the right striatum. Psychiatry Res Neuroimaging 74(3):173–176

    CAS  Google Scholar 

  97. Fitzgerald KD, Moore GJ, Paulson LA, Stewart CM, Rosenberg DR (2000) Proton spectroscopic imaging of the thalamus in treatment-naive pediatric obsessive–compulsive disorder∗. Biol Psychiatry 47(3):174–182

    CAS  PubMed  Google Scholar 

  98. Rosenberg DR, Amponsah A, Sullivan A, MacMillan S, Moore GJ (2001) Increased medial thalamic choline in pediatric obsessive-compulsive disorder as detected by quantitative in vivo spectroscopic imaging. J Child Neurol 16(9):636–641

    CAS  PubMed  Google Scholar 

  99. Atmaca M, Yildirim H, Ozdemir H, Koc M, Ozler S, Tezcan E (2009) Neurochemistry of the hippocampus in patients with obsessive–compulsive disorder. Psychiatry Clin Neurosci 63(4):486–490

    CAS  PubMed  Google Scholar 

  100. Hatchondo L, Jaafari N, Langbour N, Maillochaud S, Herpe G (2017) Guillevin R, et al. 1H magnetic resonance spectroscopy suggests neural membrane alteration in specific regions involved in obsessive-compulsive disorder. Psychiatry Res Neuroimaging 269:48–53

    PubMed  Google Scholar 

  101. Smith EA, Russell A, Lorch E, Banerjee SP, Rose M, Ivey J et al (2003) Increased medial thalamic choline found in pediatric patients with obsessive-compulsive disorder versus major depression or healthy control subjects: a magnetic resonance spectroscopy study. Biol Psychiatry 54(12):1399–1405

    CAS  PubMed  Google Scholar 

  102. Fan S, Cath DC, van den Heuvel OA, van der Werf YD, Schöls C, Veltman DJ et al (2017) Abnormalities in metabolite concentrations in tourette’s disorder and obsessive-compulsive disorder—a proton magnetic resonance spectroscopy study. Psychoneuroendocrinology 77:211–217

    CAS  PubMed  Google Scholar 

  103. Meyerhoff DJ, MacKay S, Constans JM, Norman D, Van Dyke C, Fein G et al (1994) Axonal injury and membrane alterations in Alzheimer’s disease suggested by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 36(1):40–47

    CAS  PubMed  Google Scholar 

  104. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43(12):2689–2695

    CAS  PubMed  Google Scholar 

  105. Arnold DL, Matthews PM, Francis GS, O’Connor J, Antel JP (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31(3):235–241

    CAS  PubMed  Google Scholar 

  106. Hattingen E, Magerkurth J, Pilatus U, Hübers A, Wahl M, Ziemann U (2011) Combined 1H and 31P spectroscopy provides new insights into the pathobiochemistry of brain damage in multiple sclerosis. NMR Biomed 24(5):536–546

    CAS  PubMed  Google Scholar 

  107. Zaaraoui W, Audoin B, Pelletier J, Cozzone PJ, Ranjeva J-P (2010) Advanced magnetic resonance imaging techniques to better understand multiple sclerosis. Biophys Rev 2(2):83–90

    PubMed  PubMed Central  Google Scholar 

  108. Brennan BP, Rauch SL, Jensen JE, Pope HG Jr (2013) A critical review of magnetic resonance spectroscopy studies of obsessive-compulsive disorder. Biol Psychiatry 73(1):24–31

    PubMed  Google Scholar 

  109. Atmaca M, Onalan E, Yildirim H, Yuce H, Koc M, Korkmaz S (2010) The association of myelin oligodendrocyte glycoprotein gene and white matter volume in obsessive–compulsive disorder. J Affect Disord 124(3):309–313

    CAS  PubMed  Google Scholar 

  110. Stewart SE, Platko J, Fagerness J, Birns J, Jenike E, Smoller JW et al (2007) A genetic family-based association study of OLIG2 in obsessive-compulsive disorder. Arch Gen Psychiatry 64(2):209–214

    CAS  PubMed  Google Scholar 

  111. Mohamed MA, Smith MA, Schlund MW, Nestadt G, Barker PB, Hoehn-Saric R (2007) Proton magnetic resonance spectroscopy in obsessive-compulsive disorder: a pilot investigation comparing treatment responders and non-responders. Psychiatry Res Neuroimaging 156(2):175–179

    Google Scholar 

  112. Bédard M-J, Chantal S (2011) Brain magnetic resonance spectroscopy in obsessive–compulsive disorder: the importance of considering subclinical symptoms of anxiety and depression. Psychiatry Res Neuroimaging 192(1):45–54

    Google Scholar 

  113. Yücel M, Wood SJ, Wellard RM, Harrison BJ, Fornito A, Pujol J et al (2008) Anterior cingulate glutamate–glutamine levels predict symptom severity in women with obsessive–compulsive disorder. Aust N Z J Psychiatry 42(6):467–477

    PubMed  Google Scholar 

  114. Ohara K, Isoda H, Suzuki Y, Takehara Y, Ochiai M, Takeda H et al (1999) Proton magnetic resonance spectroscopy of lenticular nuclei in obsessive–compulsive disorder. Psychiatry Res Neuroimaging 92(2):83–91

    CAS  Google Scholar 

  115. Sumitani S, Harada M, Kubo H, Ohmori T (2007) Proton magnetic resonance spectroscopy reveals an abnormality in the anterior cingulate of a subgroup of obsessive–compulsive disorder patients. Psychiatry Res Neuroimaging 154(1):85–92

    Google Scholar 

  116. Whiteside SPH, Abramowitz JS, Port JD (2012) Decreased caudate N-acetyl-l-aspartic acid in pediatric obsessive-compulsive disorder and the effects of behavior therapy. Psychiatry Res Neuroimaging 202(1):53–59

    CAS  Google Scholar 

  117. Bolton J, Moore GJ, MacMillan S, Stewart CM, Rosenberg D (2001) Case study: caudate glutamatergic changes with paroxetine persist after medication discontinuation in pediatric OCD. J Am Acad Child Adolesc Psychiatry 40(8):903–906

    CAS  PubMed  Google Scholar 

  118. Moore GJ, MacMaster F, Stewart CM, Rosenberg D (1998) Case study: caudate glutamatergic changes with paroxetine therapy for pediatric obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry 37(6):663–667

    CAS  PubMed  Google Scholar 

  119. Simpson HB, Kegeles LS, Hunter L, Mao X, Van Meter P, Xu X et al (2015) Assessment of glutamate in striatal subregions in obsessive-compulsive disorder with proton magnetic resonance spectroscopy. Psychiatry Res 232(1):65–70

    PubMed  PubMed Central  Google Scholar 

  120. Aoki Y, Aoki A, Suwa H (2012) Reduction of N-acetylaspartate in the medial prefrontal cortex correlated with symptom severity in obsessive-compulsive disorder: meta-analyses of 1H-MRS studies. Transl Psychiatry 2(8):e153

    PubMed  PubMed Central  Google Scholar 

  121. O’Neill J, Lai TM, Sheen C, Salgari GC, Ly R, Armstrong C et al (2016) Cingulate and thalamic metabolites in obsessive-compulsive disorder. Psychiatry Res 254:34–40

    PubMed Central  Google Scholar 

  122. Aouizerate B, Guehl D, Cuny E, Rougier A, Bioulac B, Tignol J et al (2004) Pathophysiology of obsessive–compulsive disorder: A necessary link between phenomenology, neuropsychology, imagery and physiology. Prog Neurobiol 72(3):195–221

    PubMed  Google Scholar 

  123. Pauls DL, Abramovitch A, Rauch SL, Geller DA (2014) Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci 15(6):410–424

    CAS  PubMed  Google Scholar 

  124. Arnone D, McKie S, Elliott R, Thomas EJ, Downey D, Juhasz G et al (2012) Increased amygdala responses to sad but not fearful faces in major depression: relation to mood state and pharmacological treatment. Am J Psychiatry 169(8):841–850

    PubMed  Google Scholar 

  125. Heller AS, Johnstone T, Light S, Peterson MJ, Kolden GG, Kalin NH et al (2013) Relationships between changes in sustained Fronto-striatal connectivity and positive affect with antidepressant treatment in major depression. Am J Psychiatry 170(2):197–206

    PubMed  PubMed Central  Google Scholar 

  126. Wessa M, Lois G (2015) Brain functional effects of psychopharmacological treatment in major depression: a focus on neural circuitry of affective processing. Curr Neuropharmacol 13(4):466–479

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Dichter GS, Gibbs D, Smoski MJ (2015) A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J Affect Disord 172:8–17

    PubMed  Google Scholar 

  128. Liu Y, Du L, Li Y, Liu H, Zhao W, Liu D, et al Antidepressant effects of electroconvulsive therapy correlate with subgenual anterior cingulate activity and connectivity in depression. Medicine (Baltimore) [Internet]. 2015 13 [cited 2017 Dec 17];94(45). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912303/

  129. Ives-Deliperi VL, Howells F, Stein DJ, Meintjes EM, Horn N (2013) The effects of mindfulness-based cognitive therapy in patients with bipolar disorder: a controlled functional MRI investigation. J Affect Disord 150(3):1152–1157

    PubMed  Google Scholar 

  130. Strawn JR, Cotton S, Luberto CM, Patino LR, Stahl LA, Weber WA et al (2016) Neural function before and after mindfulness-based cognitive therapy in anxious adolescents at risk for developing bipolar disorder. J Child Adolesc Psychopharmacol 26(4):372–379

    PubMed  PubMed Central  Google Scholar 

  131. Altinay M, Karne H, Anand A (2018) Lithium monotherapy associated clinical improvement effects on amygdala-ventromedial prefrontal cortex resting state connectivity in bipolar disorder. J Affect Disord 225:4–12

    CAS  PubMed  Google Scholar 

  132. Nakajima S, Takeuchi H, Plitman E, Fervaha G, Gerretsen P, Caravaggio F et al (2015) Neuroimaging findings in treatment-resistant schizophrenia: a systematic review. Schizophr Res 164(0):164–175

    PubMed  PubMed Central  Google Scholar 

  133. Penadés R, González-Rodríguez A, Catalán R, Segura B, Bernardo M, Junqué C (2017) Neuroimaging studies of cognitive remediation in schizophrenia: a systematic and critical review. World J Psychiatr 7(1):34–43

    PubMed  PubMed Central  Google Scholar 

  134. Abbott CC, Jaramillo A, Wilcox CE, Hamilton DA (2013) Antipsychotic drug effects in schizophrenia: a review of longitudinal fMRI investigations and neural interpretations. Curr Med Chem 20(3):428–437

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Keedy SK, Reilly JL, Bishop JR, Weiden PJ, Sweeney JA (2015) Impact of antipsychotic treatment on attention and motor learning Systems in First-Episode Schizophrenia. Schizophr Bull 41(2):355–365

    PubMed  Google Scholar 

  136. Sonawalla SB, Renshaw PF, Moore CM, Alpert JE, Nierenberg AA, Rosenbaum JF et al (1999) Compounds containing cytosolic choline in the basal ganglia: a potential biological marker of true drug response to fluoxetine. Am J Psychiatry 156(10):1638–1640

    CAS  PubMed  Google Scholar 

  137. Luborzewski A, Schubert F, Seifert F, Danker-Hopfe H, Brakemeier E-L, Schlattmann P et al (2007) Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. J Psychiatr Res 41(7):606–615

    PubMed  Google Scholar 

  138. Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B (2003) Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 33(7):1277–1284

    CAS  PubMed  Google Scholar 

  139. Sanacora G, Mason GF, Rothman DL, Hyder F, Ciarcia JJ, Ostroff RB et al (2003) Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry 160(3):577–579

    PubMed  Google Scholar 

  140. Sanacora G, Fenton LR, Fasula MK, Rothman DL, Levin Y, Krystal JH et al (2006) Cortical γ-aminobutyric acid concentrations in depressed patients receiving cognitive behavioral therapy. Biol Psychiatry 59(3):284–286

    CAS  PubMed  Google Scholar 

  141. Gonul AS, Kitis O, Ozan E, Akdeniz F, Eker C, Eker OD et al (2006) The effect of antidepressant treatment on N-acetyl aspartate levels of medial frontal cortex in drug-free depressed patients. Prog Neuro-Psychopharmacol Biol Psychiatry 30(1):120–125

    CAS  Google Scholar 

  142. Taylor MJ, Godlewska BR, Norbury R, Selvaraj S, Near J, Cowen PJ (2012) Early increase in marker of neuronal integrity with antidepressant treatment of major depression: 1H-magnetic resonance spectroscopy of N-acetyl-aspartate. Int J Neuropsychopharmacol 15(10):1541–1546

    CAS  PubMed  Google Scholar 

  143. Machado-Vieira R, Otaduy MC, Zanetti MV, De Sousa RT, Dias VV, Leite CC et al (2016) A selective association between central and peripheral Lithium levels in remitters in bipolar depression: a 3T-(7) li magnetic resonance spectroscopy study. Acta Psychiatr Scand 133(3):214–220

    CAS  PubMed  Google Scholar 

  144. Strawn JR, Patel NC, Chu W-J, Lee J-H, Adler CM, Kim MJ et al (2012) Glutamatergic effects of divalproex in manic adolescents: a proton magnetic resonance spectroscopy study. J Am Acad Child Adolesc Psychiatry 51(6):642–651

    PubMed  PubMed Central  Google Scholar 

  145. Adler CM, DelBello MP, Weber WA, Jarvis KB, Welge J, Chu W-J et al (2013) Neurochemical effects of quetiapine in patients with bipolar mania: a proton magnetic resonance spectroscopy study. J Clin Psychopharmacol 33(4):528–532

    CAS  PubMed  Google Scholar 

  146. Lotfi M, Shafiee S, Ghanizadeh A, Sigaroudi MO, Razeghian L (2017) A magnetic resonance spectroscopy study of lovastatin for treating bipolar mood disorder: a 4-week randomized double-blind, placebo- controlled clinical trial. Recent Patents Inflamm Allergy Drug Discov 10(2):133–141

    Google Scholar 

  147. Stanley JA, Williamson PC, Drost DJ, Carr TJ, Rylett RJ, Malla A et al (1995) An in vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorus magnetic resonance spectroscopy. Arch Gen Psychiatry 52(5):399–406

    CAS  PubMed  Google Scholar 

  148. Volz H-P, Riehemann S, Maurer I, Smesny S, Sommer M, Rzanny R et al (2000) Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a 31P chemical shift spectroscopic-imaging study. Biol Psychiatry 47(11):954–961

    CAS  PubMed  Google Scholar 

  149. Smesny S, Langbein K, Rzanny R, Gussew A, Burmeister HP, Reichenbach JR et al (2012) Antipsychotic drug effects on left prefrontal phospholipid metabolism: a follow-up 31P-2D-CSI study of haloperidol and risperidone in acutely ill chronic schizophrenia patients. Schizophr Res 138(2):164–170

    PubMed  Google Scholar 

  150. Nenadic I, Dietzek M, Langbein K, Rzanny R, Gussew A, Reichenbach JR et al (2013) Effects of olanzapine on 31P MRS metabolic markers in schizophrenia. Hum Psychopharmacol Clin Exp 28(1):91–93

    CAS  Google Scholar 

  151. Whiteside SPH, Abramowitz JS, Port JD (2011) The effect of behavior therapy on caudate N-acetyl-l-aspartic acid in adults with obsessive–compulsive disorder. Psychiatry Res Neuroimaging 201(1):10–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Hatchondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hatchondo, L. (2018). MRI Neuroimaging and Psychiatry. In: Habas, C. (eds) The Neuroimaging of Brain Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-78926-2_12

Download citation

Publish with us

Policies and ethics