Skip to main content

Combined Seismic Tomographic and Ultra-Shallow Seismic Reflection Study of an Early Dynastic Mastaba, Saqqara, Egypt

  • Chapter
  • First Online:
Archaeogeophysics

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

  • 959 Accesses

Abstract

Mastabas were large rectangular structures built for the funerals and burials of the earliest Pharaohs. One such mastaba was the basic building block that led to the first known stone pyramid, the >4600-year old Step Pyramid within the Saqqara necropolis of Egypt. We have tested a number of shallow geophysical techniques for investigating in a non-invasive manner the subsurface beneath a large Early Dynastic mastaba located close to the Step Pyramid. After discovering that near-surface sedimentary rocks with unusually high electrical conductivities precluded the use of the ground-penetrating radar method, a very high-resolution seismic data set was collected along a profile that extended the 42.5 m length of the mastaba. A sledgehammer source was used every 0.2 m and the data were recorded using a 48-channel array of single geophones spaced at 0.2 m intervals. Inversions of the direct- and refracted-wave traveltimes provided P-wave velocity tomograms of the shallow subsurface, whereas relatively standard processing techniques yielded a high-fold (50–80) ultra-shallow seismic reflection section. The tomographic and reflection images were jointly interpreted in terms of loose sand and friable limestone layers with low P-wave velocities of 150–650 m/s overlying consolidated limestone and shale with velocities >1500 m/s. The sharp contact between the low and high velocity regimes was approximately horizontal at a depth of ~2 m. This contact was the source of a strong seismic reflection. Above this contact, the velocity tomogram revealed moderately high velocities at the surface location of a friable limestone outcrop and two low velocity blocks that probably outlined sand-filled shafts. Below the contact, three regularly spaced low velocity blocks likely represented tunnels and/or subsurface chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachrach R, Mukerji T (2001) Fast 3D ultra-shallow seismic reflection imaging using a portable geophone mount. Geophys Res Lett 28:45–48

    Article  Google Scholar 

  • Bachrach R, Nur AM (1998) High-resolution seismic experiments in sand, Part 1: Water table, fluid flow, and saturation. Geophysics 63:1225–1233

    Article  Google Scholar 

  • Bachrach R, Nur AM, Dvorkin J (1998) High-resolution seismic experiments in sand, Part 2: velocities in shallow unconsolidated sands. Geophysics 63:1234–1240

    Article  Google Scholar 

  • Baines J, Malek J (1992) Atlas of Ancient Egypt. Andromeda, Oxford

    Google Scholar 

  • Baker GS, Schmeissner C, Steeples D (1999) Seismic reflections from depths of less than two meters. Geophys Res Lett 26:279–282

    Article  Google Scholar 

  • Baker GS, Steeples DW, Schmeissner C, Spikes KT (2000) Ultra-shallow seismic reflection monitoring of seasonal fluctuations in the water table. Environ Eng Geosci VI:271–277

    Article  Google Scholar 

  • Baker GS, Steeples DW, Schmeissner C, Pavlovic M, Plumb R (2001) Near-surface imaging using coincident seismic and GPR data. Geophys Res Lett 28:627–630

    Article  Google Scholar 

  • Beck A, Weinstein-Evron M (1997) A geophysical survey in the el-Wad Cave, Mount Carmel, Israel. Archaeol Prospect 4:85–91

    Article  Google Scholar 

  • Black AC, Norton WW (1993) Blue Guide Egypt. Bedford, London

    Google Scholar 

  • Black R, Steeples D, Miller R (1994) Migration of shallow seismic reflection data. Geophysics 59:402–410

    Article  Google Scholar 

  • Branham K, Steeples D (1998) Cavity detection using high-resolution seismic reflection methods. Min Eng 40:115–119

    Google Scholar 

  • Büker F, Green AG, Horstmeyer H (1998) Shallow seismic reflection study of a glaciated valley. Geophysics 63:1395–1407

    Article  Google Scholar 

  • Cardimona SJ, Clement WP, Kadinsky-Cade K (1998) Seismic reflection and ground penetrating radar imaging of a shallow aquifer. Geophysics 63:1310–1317

    Article  Google Scholar 

  • De Iaco R, Green AG, Maurer HR, Horstmeyer H (2003) Seismic reflection and refraction study of a landfill. J Appl Geophys 52:139–156

    Article  Google Scholar 

  • Deidda GP, Balia R (2001) An ultra-shallow SH-wave seismic reflection experiment on a subsurface ground model. Geophysics 66:1097–1104

    Article  Google Scholar 

  • Deidda GP, Ranieri G (2001) Some SH-wave seismic reflections from depths of less than 3 metres. Geophys Prospect 49:499–508

    Article  Google Scholar 

  • Dolphin LT (1981) Geophysical methods for archaeological surveys in Israel. Menlo Park, CA, Stanford Research International

    Google Scholar 

  • Goulty NR, Hudson AL (1994) Completion of the seismic refraction survey to locate the Vallum at Vindobala, Hadrian’s Wall. Archaeometry 36:372–335

    Article  Google Scholar 

  • Goulty NR, Gibson JPC, Moore JG, Welfare H (1990) Delineation of the Vallum at Vindobala, Hadrian’s Wall, by shear-wave seismic refraction survey. Archaeometry 32:71–82

    Article  Google Scholar 

  • Hildebrand JA, Wiggins SM, Henkart PC, Conyers LB (2002) Comparison of seismic reflection and ground-penetrating radar imaging at the controlled archaeological test site, Champaign, Illinois. Archaeol Prospect 9:9–21

    Article  Google Scholar 

  • Karastathis VK, Papamarinopoulos S (1997) The detection of King Xerxes’ canal by the use of shallow seismic reflection and refraction seismics-preliminary results. Geophys Prospect 45:389–401

    Article  Google Scholar 

  • Karastathis VK, Papamarinopoulos S, Jones RE (2001) 2-D velocity structure of the buried ancient canal of Xerxes: an application of seismic methods in archaeology. J Appl Geophys 47:29–43

    Article  Google Scholar 

  • Kinnaer J (2003) The ancient Egyptian site. http://www.ancient-egypt.org/index.html

  • Kourkafas P, Goulty NR (1996) Seismic reflection imaging of gypsum mine working at Sherburn-in-Elmet, Yorkshire, England. Eur J Environ Eng Geophys 1:53–63

    Google Scholar 

  • Lanz E, Maurer HR, Green AG (1998) Refraction tomography over a buried waste disposal site. Geophysics 63:1414–1433

    Article  Google Scholar 

  • Lanz E, Pugin A, Green AG, Horstmeyer H (1996) Results of 2- and 3-D high resolution seismic reflection surveying of surficial sediments. Geophys Res Lett 23:491–494

    Article  Google Scholar 

  • Miller R, Steeples D (1991) Detecting voids in a 0.6 m coal seam, 7 m deep, using seismic reflection. Geoexploration 28:109–119

    Article  Google Scholar 

  • Miller R, Xia J, Harding R, Neal J, Fairborn J, Steeples D (1995) Seismic investigation of a surface collapse feature at Weeks Island Salt Dome, Luisiana. Am Assoc Petrol Geol Div Environ Geosci 2:104–112

    Google Scholar 

  • Musil M, Maurer HR, Green AG (2003) Discrete tomography and joint inversion for loosely connected or unconnected physical properties: application to crosshole seismic and georadar data sets. Geophys J Int 153:389–402

    Article  Google Scholar 

  • Ovenden SM (1994) Application of seismic refraction to archaeological prospecting. Archaeol Prospect 1:53–63

    Article  Google Scholar 

  • PROMAX (1997) A reference guide for the ProMAX Geophysical Processing Software (2-D,7.0), 2 volumes. Advanced Geophysical Corporation, Englewood, CO

    Google Scholar 

  • Raffaele F (2003) Early dynastic Egypt. http://members.xoom.virgilio.it/francescoraf/index.html

  • Robertsson JOA, Holliger K, Green AG (1996a) Source-generated noise in shallow seismic data. Eur J Environ Eng Geophys 1:107–124

    Google Scholar 

  • Robertsson JOA, Holliger K, Green AG, Pugin A, De Iaco R (1996b) Effects of near-surface waveguides on shallow high-resolution seismic refraction and reflection data. Geophys Res Lett 23:495–498

    Article  Google Scholar 

  • Roth M, Holliger K, Green AG (1998) Guided waves in near-surface seismic surveys. Geophys Res Lett 25:1071–1074

    Article  Google Scholar 

  • Said R (1990) The geology of Egypt. Balkema, Rotterdam

    Google Scholar 

  • Schmelzbach C, Green AG, Horstmeyer H (2005) Ultra-shallow seismic reflection imaging in a region characterised by high source-generated noise. Near Surf Geophys 3:33–46

    Google Scholar 

  • Sheriff RE, Geldart LP (1995) Exploration seismology, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sitek D (2003) Ancient Egypt: history and chronology. http://www.narmer.pl/indexen.html

  • Spitzer R, Nitsche FO, Green AG (2001) Reducing source-generated noise in shallow seismic data using linear and hyperbolic t-p transformations. Geophysics 66:1612–1621

    Article  Google Scholar 

  • Steeples DW, Knapp RW, McElwee CD (1986) Seismic reflection investigations of sinkholes beneath interstate highway 70 in Kansas. Geophysics 51:295–301

    Article  Google Scholar 

  • Tsokas GN, Papazachos CB, Vafidis A, Loukoyiannakis MZ, Vargemezis G, Tzimeas K (1995) The detection of monumental tombs buried in Tumuli by seismic refraction. Geophysics 60:1735–1742

    Article  Google Scholar 

  • Vendel O (2002) Absolute egyptology. http://nemo.nu/ibisportal/0egyptintro/index.html

  • Yilamz O (2001) Seismic data analysis. Processing, inversion and interpretation of seismic data, volumes 1 and 2. Society of Exploration Geophysics, Tulsa, OK

    Book  Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crystal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

Download references

Acknowledgements

We thank various staff at National Research Institute of Astronomy and Geophysics for their contributions to the fieldwork, the National Research Institute of Astronomy and Geophysics and the Swiss National Science Foundation for financially supporting the project and SASKS for supporting the first author’s study period in Switzerland.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Metwaly, M., Green, A.G., Horstmeyer, H., Maurer, H., Abbas, A.M. (2019). Combined Seismic Tomographic and Ultra-Shallow Seismic Reflection Study of an Early Dynastic Mastaba, Saqqara, Egypt. In: El-Qady, G., Metwaly, M. (eds) Archaeogeophysics. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-78861-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78861-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78860-9

  • Online ISBN: 978-3-319-78861-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics