Skip to main content

Geophysical Techniques Applied in Archaeology

  • Chapter
  • First Online:
Book cover Archaeogeophysics

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

Abstract

With the increased demand to facilitate the archaeological work either in well-known archaeological sites or the crude sites, geophysical methods plays an important role. The Geophysical methods have been used since 1946 with increasing frequency for archaeological investigations and currently the branch of archaeogeophysics is widely applied. The wide varieties of geophysical methods applied in archaeological work relies principally upon existing reasonable contrast in physical properties between the buried archaeological feature and the surrounding subsoil. Understanding the archaeological properties of the physical contrasts, in terms of density, thermal conductivity, electrical resistance, magnetic or dielectric properties, remains fundamental issues of choosing and applying the discipline geophysical techniques. In this regard, we tried to introduce a brief outline for the common and applicable techniques in archaeological investigations. The physical principles and field instrumentation involved for the acquisition of data with each method are considered, as well as some common results from the worldwide case studies. Generally, the archeogeophysical survey results can be used to guide excavation and to give archaeologists insight into the patterning of non-excavated parts of the site as well as it is often used where preservation of the sensitive sites is the aim rather than excavation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallatif TF, El Emam AE, Suh M, El Hemaly IA, Odah HH, Ghazala HH, Deebes HA (2010) Discovery of the causeway and the mortuary temple of the Pyramid of Amenemhat II using near-surface magnetic investigation, Dahshour, Giza, Egypt. Geophys Prospect 58:307–320

    Article  Google Scholar 

  • Ancient origin (2016) HIP Institute, Faculty of Engineering, Cairo/Ministry of Antiquities. http://www.ancient-origins.net/news-history-archaeology/thermal-scan-egyptian-pyramids-reveals-mysterious-anomaly-great-pyramid-020616

  • ARMADALE (2016) West Lothian Archaeological Trust Scottish Charity No. SC043118. http://www.armadale.org.uk/phototech03.htm

  • Baranwal VC (2007) Integrated interpretation of VLF data with other geophysical data and study of two-dimensional VLF modeling and inversion. Ph.D. Thesis, Department of Geology and Geophysics, IIT Kharagpur, India

    Google Scholar 

  • Baranwal VC, Franke A, Börner RU, Spitzer K (2011) Unstructured grid based 2-D inversion of VLF data for models including topography. J Appl Geophys 75:363–372

    Article  Google Scholar 

  • Basile V, Carrazzo MT, Negri S, Nuzzo L, Quarta T, Villani AV (2000) A ground penetrating radar survey for archaeological investigations in an urban area (Lecce, Italy). J Appl Geophys 44:15–32

    Article  Google Scholar 

  • Benech C, Marmet E (1999) Optimum depth of investigation and conductivity response rejection of the different electromagnetic devices measuring apparent magnetic susceptibility. Archaeol Prospect 6:31–45

    Article  Google Scholar 

  • Benner SM, Brodkey RS (1984) Underground detection using differential heat analysis. Archaeometry 26:21–26

    Article  Google Scholar 

  • Benson AK, Payne KL, Stubbenz MA (1997) Mapping groundwater contamination using dc resistivity and VLF geophysical methods—a case study. Geophysics 62:80–86

    Article  Google Scholar 

  • Binley A, Shaw B, Henry-Poulter S (1996) Flow pathways in porous media: electrical resistance tomography and dye staining image verification. Meas Sci Technol 7:384–390

    Article  Google Scholar 

  • Black R, Steeples D, Miller R (1994) Migration of shallow seismic reflection data. Geophysics. 59:402–410

    Article  Google Scholar 

  • Blizkovsky M (1979) Processing and applications in microgravity surveys. Geophys Prospect 27:848–861

    Article  Google Scholar 

  • Booth AD, Linford NT, Clark RA, Murray T (2008) Three-dimensional, multioffset ground-penetrating radar imaging of archaeological targets. Archaeol Prospect 15:93–112

    Article  Google Scholar 

  • Büker F, Green AG, Horstmeyer H (1998a) Shallow seismic reflection study of a glaciated valley. Geophysics 63:1395–1407

    Article  Google Scholar 

  • Büker F, Green AG, Horstmeyer H (1998b) Shallow 3-D seismic reflection surveying: data acquisition and preliminary processing. Geophysics 63:1434–1450

    Article  Google Scholar 

  • Christensen NB, Sørensen KI (1998) Surface and borehole electric and electromagnetic methods for hydrogeophysical investigations. Eur J Environ Eng Geophys 3:75–90

    Google Scholar 

  • Clark AJ (1986) Archaeological geophysics in Britain. Geophysics 51:1404–1413

    Article  Google Scholar 

  • Clark AJ (1990) Seeing beneath the soil. Batsford, London

    Book  Google Scholar 

  • Cole MA, Linford NT, Payne AW, Linford PK (1995) Soil magnetic susceptibility measurements and their application to archaeological site investigation. In: Beavis J, Barker K (eds) Science and site: archaeological sciences conference 1993, Bournemouth University, Bournemouth, pp 144–162

    Google Scholar 

  • Conyers LB (2015) Analysis and interpretation of GPR datasets for integrated archaeological mapping. Near Surf Geophys 13:645–651

    Article  Google Scholar 

  • Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531–551

    Article  Google Scholar 

  • Dobrin MB (1976) Introduction to geophysical prospecting, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Doornenbal JC, Helbig K (1983) High-resolution reflection seismics on a tidal flat in the Dutch delta—acquisition, processing and interpretation. First Break 1:9–20

    Article  Google Scholar 

  • Drahor MG (2004) Application of the self-potential method to archaeological prospection: some case studies. Archaeol Prospect 11:77–105

    Article  Google Scholar 

  • Drahor MG (2006) Integrated geophysical studies in the upper part of Sardis archaeological site, Turkey. J Appl Geophys 59:205–223

    Article  Google Scholar 

  • Drahor MG (2011) A review of integrated geophysical investigations from archaeological and cultural sites under encroaching urbanisation in İzmir, Turkey. Phys Chem Earth Parts A/B/C 36:1294–1309

    Article  Google Scholar 

  • Drahor MG, Öztürk C (2011) A report on magnetic gradiometry, electrical resistivity tomography (ERT) and induced polarization tomography (IPT) studies in the Sultantepe archaeological site in south-eastern region of Turkey. GEOIM LTD, 2011ARKEO1-01, 40p (internal report, in Turkish)

    Google Scholar 

  • Drahor MG, Akyol AL, Dilaver N (1996) An application of the self-potential (SP) method in archaeogeophysical prospection. Archaeol Prospect 3:141–158

    Article  Google Scholar 

  • Drahor MG, Berge MA, Kurtulmuş TÖ, Hartmann M, Speidel MA (2008a) Magnetic and electrical resistivity tomography investigations in a Roman Legionary camp site (Legio IV Scythica) in Zeugma, Southeastern Anatolia, Turkey. Archaeol Prospect 15:159–186

    Article  Google Scholar 

  • Drahor MG, Kurtulmuş TO, Berge MA, Hartmann M, Speidel MA (2008b) Magnetic imaging and electrical resistivity tomography studies in a Roman Military installation found in Satala archaeological site from northeastern of Anatolia, Turkey. J Archaeol Sci 35:259–271

    Article  Google Scholar 

  • Drahor MG, Öztürk C, Ortan B, Berge MA, Ongar A (2015) A report on integrated geophysical investigation in the Šapinuva archaeological site in Central Anatolia of Turkey. GEOIM LTD. internal report no. 2015ARKEO1-05, 90 p (in Turkish)

    Google Scholar 

  • Fais S, Radogna PV, Romoli E, Klingele EE (2015) Microgravity for detecting cavities an archaeological site in Sardinia (Italy). Near Surf Geophys 13:495–502

    Article  Google Scholar 

  • Fajklewicz ZJ (1976) Gravity vertical gradient measurements for the detection of small geologic and anthropogenic forms. Geophysics 41:1016–1030

    Article  Google Scholar 

  • Fajklewicz A, Glinski A, Sliz J (1982) Some applications of the underground tower gravity vertical gradient. Geophysics 47:1688–1692

    Article  Google Scholar 

  • Fokin IV, Basakina IM, Kapustyan NK, Tikhotskii SA, Schur D Yu (2012) Application of travel time seismic tomography for archaeological studies of building foundations and basements. Seismic Instrum 48(2):185–195

    Article  Google Scholar 

  • Gaffeny C, Gater J, Ovenden S (1991) The use of geophysical techniques in archaeological evaluations. Technical paper number 9, Institute of field Archaeologists, Birmingham

    Google Scholar 

  • Grasmueck M, Weger R, Horstmeyer H (2006) Full-resolution 3D GPR imaging. Geophysics 70(1):K12–K19

    Article  Google Scholar 

  • Green AG, Mair JA (1983) Subhorizontal fractures in a granitic pluton: their detection and implications for radioactive waste disposal. Geophysics 48:1428–1449

    Article  Google Scholar 

  • Green AG, Pugin A, Beres M, Lanz E, Büker F, Huggenberger P, Horstmeyer H, Grasmück M, De Iaco R, Holliger K, Maurer H (1995) 3-D high-resolution seismic and georadar reflection mapping of glacial, glaciolacustrinel and glaciofluvial sediments in Switzerland. In: Ann Symp Environ Eng Geophys Soc (SAGEEP), extended abstracts, pp 419–434

    Google Scholar 

  • Hunter JA, Pullan SE, Burns RA, Gagne RM, Good RL (1984) Shallow seismic reflection mapping of the overburden-bedrock interface with the engineering seismograph: some simple techniques. Geophysics 49:1381–1385

    Article  Google Scholar 

  • Johnson JK (ed) (2006) Remote sensing in archaeology: an explicitly North American perspective. University of Alabama Press, Tuscaloosa, AL

    Google Scholar 

  • Jongerius P, Helbig K (1988) Onshore high-resolution seismic profiling applied to sedimentology. Geophysics 53:1276–1283

    Article  Google Scholar 

  • Kaikkonen P, Sharma SP (1998) 2-D nonlinear joint inversion of VLF and VLF-R data using simulated annealing. J Appl Geophys 39:155–176

    Article  Google Scholar 

  • Kaufmann AA, Keller GV (1983) Frequency and transient soundings, methods in geochemistry and geophysics, vol 16. Elsevier, Amsterdam. 685p

    Google Scholar 

  • Knapp RW, Steeples DW (1986a) High-resolution common-depth-point seismic reflection profiling: instrumentation. Geophysics 51:276–282

    Article  Google Scholar 

  • Knapp RW, Steeples DW (1986b) High-resolution common-depth-point seismic reflection profiling: field acquisition and parameter design. Geophysics 51:283–294

    Article  Google Scholar 

  • Knödel K, Krummel H, Lange G (1997) Geophysik. Springer, Berlin

    Book  Google Scholar 

  • Kolendo J, Przenioslo J, Lciek A, Jagodzinski A, Taluc S, Porzezynski S (1973) Geophysical prospecting for the historic remains of Carthage, Tunisia (abs.). In: Proceedings of the Society of Exploration Geophysicists 43rd annual international meeting, Mexico City, October 1973, 30 p

    Google Scholar 

  • Lakshmanan J, Montlucon J (1987) Microgravity probes the Great Pyramid. Leading Edge 6:10–17

    Article  Google Scholar 

  • Le Borgne E (1955) Susceptibilité magnetique anormale du sol superficial. Annales de Géophysique 11:399–419

    Google Scholar 

  • Le Borgne E (1960) Influence du feu sur les propriétés magnétique du sol et sur celles du schiste et du granit. Annales de Géophysique 16:159–195

    Google Scholar 

  • Linford NT (1998) Geophysical survey at Boden Vean, Cornwall, including an assessment of the microgravity technique for the location of suspected archaeological void features. Archaeometry 40:187–216

    Article  Google Scholar 

  • Linington RE (1966) Test use of a gravimeter on Etruscan chamber tombs at Cerveteri. Prospezioni Archeologiche 1:37–41

    Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton methods. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Mair JA, Green AG (1981) High-resolution seismic reflection profiles reveal fracture zones within a “homogeneous” granite batholith. Nature 294:439–442

    Article  Google Scholar 

  • Marsiglio L, Pipan M, Forte E, Dal Moro G, Finetti I (2003) Multi-frequency and multi-azimuth polarimetric GPR for buried utilities detection. In: EAGE 65th conference & exhibition, Stavanger, Norway, 2–5 June 2003

    Google Scholar 

  • Miller RD (1992) Normal moveout stretch mute on shallow-reflection data. Geophysics 57:1502–1507

    Article  Google Scholar 

  • Miller RD, Steeples DW (1986) Shallow structure from a seismic-reflection profile across Borah Peak, Idaho, fault scarp. Geophys Res Lett 13:953–956

    Article  Google Scholar 

  • Monteiro Santos FA, Mateus A, Figueiras J, Gonçalves MA (2006) Mapping groundwater contamination around a landfill facility using the VLF-EM method—a case study. J Appl Geophys 60:115–125

    Article  Google Scholar 

  • Mullins CE (1977) Magnetic susceptibility of the soil and its significance in soil science: a review. J Soil Sci 28:223–246

    Article  Google Scholar 

  • Nabighian MN, Macanae JC (1991) Time domain electromagnetic prospecting methods. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 2. Society of Exploration Geophysicists, Tulsa, OK, pp 427–514

    Chapter  Google Scholar 

  • Orfanos C, Apostopoulos G (2011) 2D–3D resistivity and microgravity measurements for the detection of an ancient tunnel in the Lavrion area, Greece. Near Surf Geophys 9:449–457

    Article  Google Scholar 

  • Owen TE (1983) Detection and mapping of tunnels and caves. In: Fitch AA (ed) Development in geophysical exploration methods, vol 5, 161258, Wiley, 209–221

    Google Scholar 

  • Panisova J, Pasteka R (2009) The use of microgravity technique in archaeology: a case study from the St. Nicolas Church in Pukanec, Slovakia. Contrib Geophys Geodes 39(3):237–254

    Article  Google Scholar 

  • Panisova J, Frastia M, Wunderlich T, Pasteka R, Kusnirak D (2013) Microgravity and ground-penetrating radar investigations of subsurface features at the St Catherine’s Monastery, Slovakia. Archaeol Prospect 20:163–174

    Article  Google Scholar 

  • Panissod C, Dabas M, Jolivet A, Tabbagh A (1997) A novel mobile multipole system (MUCEP) for shallow (0–3 m) geoelectrical investigation: the ‘Vol-de-Canards’ array. Geophys Prospect 45:983–1002

    Article  Google Scholar 

  • Papadopoulos NG, Tsourlos P, Tsokas GN, Sarris A (2007) Efficient ERT measuring and inversion strategies for 3D imaging of buried antiquities. Near Surf Geophys 5:349–362

    Article  Google Scholar 

  • Parasnis DS (1997) Principles of applied geophysics, Pure and applied geophysics, vol 152, 5th edn. Chapman and Hall, London, pp 184–186

    Google Scholar 

  • Pašteka R, Zahorec P (2000) Interpretation of microgravimetrical anomalies in the region of the former church of St. Catherine, Dechtice. Contrib Geophys Geodes 30:373–387

    Google Scholar 

  • Perssona K, Olofsson B (2004) Inside a mound: applied geophysics in archaeological prospecting at the Kings’ Mounds, Gamla Uppsala, Sweden. J Archaeol Sci 31:551–562

    Google Scholar 

  • Peters LP Jr, Daniels JJ, Young JD (1994) Ground penetrating radar as a subsurface environmental sensing tool. Proc IEEE 82:1802–1822

    Article  Google Scholar 

  • Reynolds J (1997) An introduction to applied and environmental geophysics. Wiley, Chichester

    Google Scholar 

  • Robertsson JOA, Holliger K, Green AG (1996a) Source-generated noise in shallow seismic data. Eur J Environ Eng Geophys 1:107–124

    Google Scholar 

  • Robertsson JOA, Holliger K, Green AG, Pugin A, De Iaco R (1996b) Effects of near-surface waveguides on shallow high-resolution seismic refraction and reflection data. Geophys Res Lett 23:495–498

    Article  Google Scholar 

  • Samouelian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil Tillage Res 83:173–193

    Article  Google Scholar 

  • Scollar I, Tabbagh T, Hesse A, Herzog I (1990) Archaeological prospecting and remote sensing. Cambridge University Press, Cambridge

    Google Scholar 

  • Shaaban FA, Abbas MA, Atya MA, Hafez MA (2009) Ground-penetrating radar exploration for ancient monuments at the Valley of Mummies—Kilo 6, Bahariya Oasis, Egypt. J Appl Geophys 68:194–202

    Article  Google Scholar 

  • Sharma SP, Kaikkonen P (1998) Two-dimensional non-linear inversion of VLF-R data using simulated annealing. Geophys J Int 133:649–668

    Article  Google Scholar 

  • Sheriff RE (1984) Encyclopedic dictionary of exploration geophysics. Society of Exploration Geophysicists, Tusla, OK. 323 p

    Google Scholar 

  • Sheriff RE (1991) Encyclopedic dictionary of exploration geophysics, 3rd edn. SEG Geophysical References Series 1, Tusla, OK. 384 p

    Google Scholar 

  • Simon FX, Tabbagh A, Thiesson J, Donati JC, Sarris A (2014) Complex susceptibility measurement using multi-frequency Slingram EMI instrument. In: Near surface geoscience 2014, 20th European meeting of environmental and engineering geophysics, Athens, Greece, 14–18 Sept 2014

    Google Scholar 

  • Steeples DW (1984) High-resolution seismic reflections at 200 Hz. Oil Gas J 82:86–92

    Google Scholar 

  • Steeples DW, Knapp RW (1982) Reflection from 25 feet or less. In: 52nd annual international meeting, Society of Exploration Geophysicists, expanded abstracts, pp 469–471

    Google Scholar 

  • Steeples DW, Miller RD (1990) Seismic reflection methods applied to engineering, environmental and groundwater problems. In: Ward S (ed) Geotechnical and environmental geophysics, vol I: Review and tutorial. Society of Exploration Geophysicists, Tulsa, OK, pp 1–30

    Google Scholar 

  • Steeples DW, Green AG, McEvilly TV, Miller RD, Doll WE, Rector JW (1997) A workshop examination of shallow seismic reflection surveying. Leading Edge 16:1641–1647

    Article  Google Scholar 

  • Stummer P, Maurer H, Horstmeyer H, Green AG (2002) Optimization of DC resistivity data acquisition: real-time experimental design and a new multielectrode system. IEEE Trans Geosci Rem Sens 40:2727–2735

    Article  Google Scholar 

  • Stummer P, Maurer H, Green AG (2003) Experimental design: electrical resistivity data sets that provide optimum subsurface information. Geophysics 69(1):120–139. https://doi.org/10.1190/1.1649381

    Article  Google Scholar 

  • Tabbagh A (1986) Applications and advantages of the Slingram EM method for archaeological prospecting. Geophysics 51:576–584

    Article  Google Scholar 

  • Taha AI, El-Qady G, Metwaly MA, Massoud U (2011) Geophysical investigation at Tell El-Dabaa “Avaris” archaeological site. Mediterr Archaeol Archaeometry 11(1):51–58

    Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • TerraDat (UK) (2003) www.terradat.co.uk

  • Tite MS (1972) Methods of physical examination in archaeology, Studies in archaeological science, Seminar Press, London. 319 pp, 124 figs

    Google Scholar 

  • Tite MS, Mullins C (1971) Enhancement of the magnetic susceptibility of soils on archaeological sites. Archaeometry 13:209–219

    Article  Google Scholar 

  • Valle S, Zanzi L, Sgheiz M, Lenzi G, Friborg J (2001) Ground penetrating radar antennas: theoretical and experimental directivity functions. IEEE Trans Geosci Rem Sens 39(4):749–758

    Article  Google Scholar 

  • Venter ML, Thompson VD, Reynolds MD, Waggoner JC Jr (2006) Integrating shallow geophysical survey: archaeological investigations at Totogal in the Sierra de los Tuxtlas, Veracruz, Mexico. J Archaeol Sci 33:767–777

    Article  Google Scholar 

  • Wang T, Oristaglio M (2000) 3D simulation of GPR survey over pipes in dispersive soils. Geophysics 65:1560–1568

    Article  Google Scholar 

  • Witten AJ, Thomas E, Levy TE, Adams RB, Won IJ (2000) Geophysical surveys in the Jebel Hamrat Fidan, Jordan. Geoarchaeology 15:135–150

    Article  Google Scholar 

  • Wynn CJ (1997) http://www.terraplus.com/papers/wynn.html

  • Wynn JC, Sherwood SI (1984) The self-potential (SP) method: an inexpensive reconnaissance and archaeological mapping tool. J Field Archaeol 11:195–204

    Google Scholar 

  • Yilmaz Ö (2001) Seismic data analysis: processing, inversion, and interpretation of seismic data. Society of Exploration Geophysicists, Tulsa, OK. 2027 pp

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Qady, G., Metwaly, M., Drahor, M.G. (2019). Geophysical Techniques Applied in Archaeology. In: El-Qady, G., Metwaly, M. (eds) Archaeogeophysics. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-78861-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78861-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78860-9

  • Online ISBN: 978-3-319-78861-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics