Skip to main content

P53 in Head and Neck Squamous Cell Carcinoma

  • Chapter
  • First Online:
Molecular Determinants of Head and Neck Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 535 Accesses

Abstract

TP53 is the most commonly mutated gene in head and neck cancer. Mutations in TP53 are associated with poor prognosis; approximately 50% of patients with locally advanced disease and nearly all patients with metastatic disease succumb to their illness. Novel and more effective treatment strategies are needed for these patients. However, due to the numerous intracellular roles of p53, and to the presence of both gain-of-function and loss-of-function mutations, targeting p53 has been challenging. Here, we review the p53 pathway and its role in the pathogenesis, prognosis, and treatment of head and neck squamous cell carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.

    Article  CAS  PubMed  Google Scholar 

  3. Brown CJ, Lain S, Verma CS, et al. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9:862–73.

    Article  PubMed  CAS  Google Scholar 

  4. Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev. 2000;14:34–44.

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Farhang Ghahremani M, Goossens S, Nittner D, et al. p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death Differ. 2013;20:888–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Teodoro JG, Evans SK, Green MR. Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med (Berl). 2007;85:1175–86.

    Article  CAS  Google Scholar 

  7. Huang Y, Yu P, Li W, et al. p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene. 2014;33:3830–8.

    Article  PubMed  CAS  Google Scholar 

  8. Palumbo A Jr, Da Costa Nde O, Bonamino MH, et al. Genetic instability in the tumor microenvironment: a new look at an old neighbor. Mol Cancer. 2015;14:145.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Muller PAJ, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192:209.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Powell E, Piwnica-Worms D, Piwnica-Worms H. Contribution of p53 to metastasis. Cancer Discov. 2014;4:405.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Soussi T. p53 alterations in human cancer: more questions than answers. Oncogene. 2007;26:2145–56.

    Article  CAS  PubMed  Google Scholar 

  12. Muller PAJ, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.

    Article  CAS  PubMed  Google Scholar 

  13. Peltonen JK, Helppi HM, Pääkkö P, et al. p53 in head and neck cancer: functional consequences and environmental implications of TP53 mutations. Head Neck Oncol. 2010;2:36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. The Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.

    Article  CAS  Google Scholar 

  16. Shin DM, Kim J, Ro JY, et al. Activation of p53 gene expression in premalignant lesions during head and neck tumorigenesis. Cancer Res. 1994;54:321–6.

    PubMed  CAS  Google Scholar 

  17. Califano J, van der Riet P, Westra W, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56:2488–92.

    PubMed  CAS  Google Scholar 

  18. Poeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357:2552–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Hayes DN, Waes C, Seiwert TY. Genetic landscape of human papillomavirus-associated head and neck cancer and comparison to tobacco-related tumors. J Clin Oncol. 2015;33:3227.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Beck TN, Golemis EA. Genomic insights into head and neck cancer. Cancers Head Neck. 2016;1:1.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Maruyama H, Yasui T, Ishikawa-Fujiwara T, et al. Human papillomavirus and p53 mutations in head and neck squamous cell carcinoma among Japanese population. Cancer Sci. 2014;105:409–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Hafkamp HC, Speel EJM, Haesevoets A, et al. A subset of head and neck squamous cell carcinomas exhibits integration of HPV 16/18 DNA and overexpression of p16INK4A and p53 in the absence of mutations in p53 exons 5–8. Int J Cancer. 2003;107:394–400.

    Article  CAS  PubMed  Google Scholar 

  23. Khoury MP, Bourdon JC. The isoforms of the p53 protein. Cold Spring Harb Perspect Biol. 2010;2:a000927.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Khoury MP, Bourdon J-C. p53 isoforms: an intracellular microprocessor? Genes Cancer. 2011;2:453–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Joerger AC, Fersht AR. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol. 2010;2:a000919.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Raj N, Attardi LD. The transactivation domains of the p53 protein. Cold Spring Harb Perspect Med. 2016. https://doi.org/10.1101/cshperspect.a026047.

  27. Puca R, Nardinocchi L, Givol D, et al. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene. 2010;29:4378–87.

    Article  CAS  PubMed  Google Scholar 

  28. Miller Jenkins LM, Yamaguchi H, Hayashi R, et al. Two distinct motifs within the p53 transactivation domain bind to the Taz2 domain of p300 and are differentially affected by phosphorylation. Biochemistry. 2009;48:1244–55.

    Article  CAS  Google Scholar 

  29. Shan B, Li DW, Bruschweiler-Li L, et al. Competitive binding between dynamic p53 transactivation subdomains to human MDM2 protein: implications for regulating the p53.MDM2/MDMX interaction. J Biol Chem. 2012;287:30376–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Lee CW, Martinez-Yamout MA, Dyson HJ, et al. Structure of the p53 transactivation domain in complex with the nuclear receptor coactivator binding domain of CREB binding protein. Biochemistry. 2010;49:9964–71.

    Article  PubMed  CAS  Google Scholar 

  31. Cho Y, Gorina S, Jeffrey PD, et al. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–55.

    Article  PubMed  CAS  Google Scholar 

  32. Friend S. p53: a glimpse at the puppet behind the shadow play. Science. 1994;265:334–5.

    Article  PubMed  CAS  Google Scholar 

  33. Hainaut P, Pfeifer GP. Somatic TP53 mutations in the era of genome sequencing. Cold Spring Harb Perspect Med. 2016;6:a026179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. McLure KG, Lee PW. How p53 binds DNA as a tetramer. EMBO J. 1998;17:3342–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Chene P. The role of tetramerization in p53 function. Oncogene. 2001;20:2611–7.

    Article  PubMed  CAS  Google Scholar 

  36. Halazonetis TD, Kandil AN. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 1993;12:5057–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Kubbutat MH, Ludwig RL, Ashcroft M, et al. Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol. 1998;18:5690–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Maki CG. Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2. J Biol Chem. 1999;274:16531–5.

    Article  PubMed  CAS  Google Scholar 

  39. Stommel JM, Marchenko ND, Jimenez GS, et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 1999;18:1660–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Hupp TR, Meek DW, Midgley CA, et al. Regulation of the specific DNA binding function of p53. Cell. 1992;71:875–86.

    Article  PubMed  CAS  Google Scholar 

  41. Laptenko O, Shiff I, Freed-Pastor W, et al. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell. 2015;57:1034–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Laptenko O, Tong DR, Manfredi J, et al. The tail that wags the dog: how the disordered C-terminal domain controls the transcriptional activities of the p53 tumor-suppressor protein. Trends Biochem Sci. 2016;41:1022–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 90:595–606.

    Google Scholar 

  44. Sakaguchi K, Herrera JE, Saito S, et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 1998;12:2831–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Liu L, Scolnick DM, Trievel RC, et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999;19:1202–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Rodriguez MS, Desterro JMP, Lain S, et al. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol. 2000;20:8458–67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Nakamura S, Roth JA, Mukhopadhyay T. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol Cell Biol. 2000;20:9391–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2:305–16.

    Article  PubMed  CAS  Google Scholar 

  49. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 90:809–19.

    Google Scholar 

  50. Dotsch V, Bernassola F, Coutandin D, et al. p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol. 2010;2:a004887.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Liu G, Nozell S, Xiao H, et al. DeltaNp73beta is active in transactivation and growth suppression. Mol Cell Biol. 2004;24:487–501.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Helton ES, Zhu J, Chen X. The unique NH2-terminally deleted (DeltaN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the DeltaN variant of p63. J Biol Chem. 2006;281:2533–42.

    Article  PubMed  CAS  Google Scholar 

  53. Du J, Romano RA, Si H, et al. Epidermal overexpression of transgenic ΔNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-κB activation. J Pathol. 2014;232:356–68. https://doi.org/10.1002/path.4302.

  54. King KE, Ponnamperuma RM, Yamashita T, et al. deltaNp63alpha functions as both a positive and a negative transcriptional regulator and blocks in vitro differentiation of murine keratinocytes. Oncogene. 2003;22:3635–44.

    Article  PubMed  CAS  Google Scholar 

  55. Deyoung MP, Ellisen LW. p63 and p73 in human cancer: defining the network. Oncogene. 2007;26:5169–83.

    Article  PubMed  CAS  Google Scholar 

  56. Patturajan M, Nomoto S, Sommer M, et al. ∆Np63 induces β-catenin nuclear accumulation and signaling. Cancer Cell. 1:369–79.

    Google Scholar 

  57. Senoo M, Matsumura Y, Habu S. TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene. 2002;21:2455–65.

    Article  PubMed  CAS  Google Scholar 

  58. Murray-Zmijewski F, Lane DP, Bourdon JC. p53//p63//p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006;13:962–72.

    Article  PubMed  CAS  Google Scholar 

  59. Chen X, Sturgis EM, Etzel CJ, et al. p73 G4C14-to-A4T14 polymorphism and risk of human papillomavirus associated squamous cell carcinoma of the oropharynx in never smokers and never drinkers. Cancer. 2008;113:3307–14.

    Article  PubMed  CAS  Google Scholar 

  60. Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2. Int J Cancer. 2016;138:1577–85.

    Article  PubMed  CAS  Google Scholar 

  61. Momand J, Zambetti GP, Olson DC, et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992;69:1237–45.

    Article  PubMed  CAS  Google Scholar 

  62. Oliner JD, Pietenpol JA, Thiagalingam S, et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362:857–60.

    Article  PubMed  CAS  Google Scholar 

  63. Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.

    Article  PubMed  CAS  Google Scholar 

  64. Cheok CF, Verma CS, Baselga J, et al. Translating p53 into the clinic. Nat Rev Clin Oncol. 2011;8:25–37.

    Article  PubMed  CAS  Google Scholar 

  65. Sharp DA, Kratowicz SA, Sank MJ, et al. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J Biol Chem. 1999;274:38189–96.

    Article  PubMed  CAS  Google Scholar 

  66. Valentin-Vega YA, Box N, Terzian T, et al. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities. Differentiation. 2009;77:442–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Marine JC, Jochemsen AG. MDMX (MDM4), a promising target for p53 reactivation therapy and beyond. Cold Spring Harb Perspect Med. 2016;6:a026237.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Bartel F, Schulz J, Bohnke A, et al. Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer. 2005;117:469–75.

    Article  PubMed  CAS  Google Scholar 

  69. Danovi D, Meulmeester E, Pasini D, et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol. 2004;24:5835–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Ramos YF, Stad R, Attema J, et al. Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res. 2001;61:1839–42.

    PubMed  CAS  Google Scholar 

  71. Riemenschneider MJ, Knobbe CB, Reifenberger G. Refined mapping of 1q32 amplicons in malignant gliomas confirms MDM4 as the main amplification target. Int J Cancer. 2003;104:752–7.

    Article  PubMed  CAS  Google Scholar 

  72. Valentin-Vega YA, Barboza JA, Chau GP, et al. Overexpression of the p53 inhibitor MDM4 in head and neck squamous carcinomas. Hum Pathol. 2007;38:1553–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol. 2004;5:805–15.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–34.

    Article  PubMed  CAS  Google Scholar 

  75. Weber JD, Taylor LJ, Roussel MF, et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol. 1999;1:20–6.

    Article  PubMed  CAS  Google Scholar 

  76. Ozenne P, Eymin B, Brambilla E, et al. The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer. 2010;127:2239–47.

    Article  PubMed  CAS  Google Scholar 

  77. Millon R, Muller D, Schultz I, et al. Loss of MDM2 expression in human head and neck squamous cell carcinomas and clinical significance. Oral Oncol. 2001;37:620–31.

    Article  PubMed  CAS  Google Scholar 

  78. Sailasree R, Abhilash A, Sathyan KM, et al. Differential roles of p16INK4A and p14ARF genes in prognosis of oral carcinoma. Cancer Epidemiol Biomark Prev. 2008;17:414–20.

    Article  CAS  Google Scholar 

  79. Schlecht NF, Ben-Dayan M, Anayannis N, et al. Epigenetic changes in the CDKN2A locus are associated with differential expression of P16INK4A and P14ARF in HPV-positive oropharyngeal squamous cell carcinoma. Cancer Med. 2015;4:342–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Sakaguchi K, Saito S, Higashimoto Y, et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem. 2000;275:9278–83.

    Article  PubMed  CAS  Google Scholar 

  81. Dornan D, Hupp TR. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep. 2001;2:139–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996;384:641–3.

    Article  PubMed  CAS  Google Scholar 

  83. Ogryzko VV, Schiltz RL, Russanova V, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–9.

    Article  PubMed  CAS  Google Scholar 

  84. Kee BL, Arias J, Montminy MR. Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J Biol Chem. 1996;271(5):2373.

    Article  PubMed  CAS  Google Scholar 

  85. Patel D, Huang SM, Baglia LA, et al. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 1999;18:5061–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Zimmermann H, Degenkolbe R, Bernard HU, et al. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol. 1999;73:6209–19.

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Carracedo DG, Astudillo A, Rodrigo JP, et al. Skp2, p27kip1 and EGFR assessment in head and neck squamous cell carcinoma: prognostic implications. Oncol Rep. 2008;20:589–95.

    PubMed  CAS  Google Scholar 

  88. Wu CC, Yang TY, Yu CT, et al. p53 negatively regulates Aurora A via both transcriptional and posttranslational regulation. Cell Cycle. 2012;11:3433–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Katayama H, Sasai K, Kawai H, et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet. 2004;36:55–62.

    Article  PubMed  CAS  Google Scholar 

  90. Liu Q, Kaneko S, Yang L, et al. Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem. 2004;279:52175–82.

    Article  CAS  PubMed  Google Scholar 

  91. Marxer M, Ma HT, Man WY, et al. p53 deficiency enhances mitotic arrest and slippage induced by pharmacological inhibition of Aurora kinases. Oncogene. 2014;33:3550–60.

    Article  CAS  PubMed  Google Scholar 

  92. Mehra R, Serebriiskii IG, Burtness B, et al. Aurora kinases in head and neck cancer. Lancet Oncol. 2013;14:e425–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Reiter R, Gais P, Jütting U, et al. Aurora kinase a messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12:5136.

    Article  CAS  PubMed  Google Scholar 

  94. Li Y, Zhang J. AURKA is a predictor of chemotherapy response and prognosis for patients with advanced oral squamous cell carcinoma. Tumour Biol. 2015;36:3557–64.

    Article  CAS  PubMed  Google Scholar 

  95. Melichar B, Adenis A, Lockhart AC, et al. Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. 2015;16:395–405.

    Article  CAS  PubMed  Google Scholar 

  96. Wang XW, Yeh H, Schaeffer L, et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet. 1995;10:188–95.

    Article  CAS  PubMed  Google Scholar 

  97. Leveillard T, Andera L, Bissonnette N, et al. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J. 1996;15:1615–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Arias-Lopez C, Lazaro-Trueba I, Kerr P, et al. p53 modulates homologous recombination by transcriptional regulation of the RAD51 gene. EMBO Rep. 2006;7:219–24.

    Article  CAS  PubMed  Google Scholar 

  99. Gatz SA, Wiesmuller L. p53 in recombination and repair. Cell Death Differ. 2006;13:1003–16.

    Article  CAS  PubMed  Google Scholar 

  100. Zink D, Mayr C, Janz C, et al. Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene. 2002;21:4788–800.

    Article  CAS  PubMed  Google Scholar 

  101. Achanta G, Huang P. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res. 2004;64:6233–9.

    Article  CAS  PubMed  Google Scholar 

  102. Oka S, Leon J, Tsuchimoto D, et al. MUTYH, an adenine DNA glycosylase, mediates p53 tumor suppression via PARP-dependent cell death. Oncogene. 2014;3:e121.

    Article  CAS  Google Scholar 

  103. Zhou J, Ahn J, Wilson SH, et al. A role for p53 in base excision repair. EMBO J. 2001;20:914–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Hemann MT, Lowe SW. The p53-Bcl-2 connection. Cell Death Differ. 2006;13:1256–9.

    Article  PubMed  CAS  Google Scholar 

  105. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–94.

    Article  CAS  PubMed  Google Scholar 

  106. Wilson GD, Saunders MI, Dische S, et al. bcl-2 expression in head and neck cancer: an enigmatic prognostic marker. Int J Radiat Oncol Biol Phys. 2001;49:435–41.

    Article  CAS  PubMed  Google Scholar 

  107. Gallo O, Boddi V, Calzolari A, et al. bcl-2 protein expression correlates with recurrence and survival in early stage head and neck cancer treated by radiotherapy. Clin Cancer Res. 1996;2:261–7.

    CAS  PubMed  Google Scholar 

  108. Pena JC, Thompson CB, Recant W, et al. Bcl-xL and Bcl-2 expression in squamous cell carcinoma of the head and neck. Cancer. 1999;85:164–70.

    Article  CAS  PubMed  Google Scholar 

  109. Grochola LF, Zeron-Medina J, Mériaux S, et al. Single-nucleotide polymorphisms in the p53 signaling pathway. Cold Spring Harb Perspect Biol. 2010;2:a001032.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Buchman VL, Chumakov PM, Ninkina NN, et al. A variation in the structure of the protein-coding region of the human p53 gene. Gene. 1988;70:245–52.

    Article  PubMed  CAS  Google Scholar 

  111. Shen H, Zheng Y, Sturgis EM, et al. p53 codon 72 polymorphism and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Lett. 2002;183:123–30.

    Article  PubMed  CAS  Google Scholar 

  112. Sullivan A, Syed N, Gasco M, et al. Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene. 2004;23:3328–37.

    Article  PubMed  CAS  Google Scholar 

  113. Bulavin DV, Saito S, Hollander MC, et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 1999;18:6845–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Li X, Dumont P, Della Pietra A, et al. The codon 47 polymorphism in p53 is functionally significant. J Biol Chem. 2005;280:24245–51.

    Article  PubMed  CAS  Google Scholar 

  115. Basu S, Barnoud T, Kung CP, et al. The African-specific S47 polymorphism of p53 alters chemosensitivity. Cell Cycle. 2016;15:2557–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Felley-Bosco E, Weston A, Cawley HM, et al. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am J Hum Genet. 1993;53:752–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Yu H, Huang YJ, Liu Z, et al. Effects of MDM2 promoter polymorphisms and p53 codon 72 polymorphism on risk and age at onset of squamous cell carcinoma of the head and neck. Mol Carcinog. 2011;50:697–706.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Zhou J, Yang Y, Zhang D, et al. Association of the recurrence of vocal leukoplakia with MDM2-309 variants over a 2-year period: a prospective study. Acta Otolaryngol. 2016;136:95–9.

    Article  PubMed  Google Scholar 

  119. Vivenza D, Gasco M, Monteverde M, et al. MDM2 309 polymorphism predicts outcome in platinum-treated locally advanced head and neck cancer. Oral Oncol. 2012;48(7):602.

    Article  PubMed  CAS  Google Scholar 

  120. Malkin D. Li-fraumeni syndrome. Genes Cancer. 2011;2:475–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Schneider KZK, Nichols KE, et al. Li-Fraumeni syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al. GeneReviews® [Internet], 1999 Jan 19 [Updated 2013 Apr 11].

    Google Scholar 

  122. Bougeard G, Renaux-Petel M, Flaman JM, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33:2345–52.

    Article  PubMed  CAS  Google Scholar 

  123. Sengupta S, Linke SP, Pedeux R, et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J. 2003;22:1210–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Wang XW, Tseng A, Ellis NA, et al. Functional interaction of p53 and BLM DNA helicase in apoptosis. J Biol Chem. 2001;276:32948–55.

    Article  PubMed  CAS  Google Scholar 

  125. Arora H, Chacon AH, Choudhary S, et al. Bloom syndrome. Int J Dermatol. 2014;53:798–802.

    Article  PubMed  CAS  Google Scholar 

  126. Gorlin RJ, et al. Syndromes of the head and neck: Oxford University Press, New York, NY; 2001.

    Google Scholar 

  127. Blander G, Kipnis J, Leal JF, et al. Physical and functional interaction between p53 and the Werner’s syndrome protein. J Biol Chem. 1999;274:29463–9.

    Article  PubMed  CAS  Google Scholar 

  128. Spillare EA, Robles AI, Wang XW, et al. p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev. 1999;13:1355–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Lauper JM, Krause A, Vaughan TL, et al. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8:e59709.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Brennan JA, Mao L, Hruban RH, et al. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med. 1995;332:429–35.

    Article  PubMed  CAS  Google Scholar 

  131. Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92:709–20.

    Article  PubMed  CAS  Google Scholar 

  132. Tinhofer I, Budach V, Saki M, et al. Targeted next-generation sequencing of locally advanced squamous cell carcinomas of the head and neck reveals druggable targets for improving adjuvant chemoradiation. Eur J Cancer. 2016;57:78–86.

    Article  PubMed  CAS  Google Scholar 

  133. Morris LT, Chandramohan R, West L, et al. The molecular landscape of recurrent and metastatic head and neck cancers: insights from a precision oncology sequencing platform. JAMA Oncol. 2017;3(2):244-255

    Google Scholar 

  134. Bradford CR, Zhu S, Poore J, et al. p53 mutation as a prognostic marker in advanced laryngeal carcinoma. Department of Veterans Affairs Laryngeal Cancer Cooperative Study Group. Arch Otolaryngol Head Neck Surg. 1997;123:605–9.

    Article  PubMed  CAS  Google Scholar 

  135. Group* TDoVALCS. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. N Engl J Med. 1991;324:1685–90.

    Article  Google Scholar 

  136. Neskey DM, Osman AA, Ow TJ, et al. Evolutionary action score of TP53 identifies high-risk mutations associated with decreased survival and increased distant metastases in head and neck cancer. Cancer Res. 2015;75:1527–36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  137. Masica DL, Li S, Douville C, et al. Predicting survival in head and neck squamous cell carcinoma from TP53 mutation. Hum Genet. 2015;134:497–507.

    Article  PubMed  CAS  Google Scholar 

  138. van Houten VM, Tabor MP, van den Brekel MW, et al. Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J Pathol. 2002;198:476–86.

    Article  PubMed  CAS  Google Scholar 

  139. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  PubMed  CAS  Google Scholar 

  140. Shanmugaratnam K, Sobin LH. The World Health Organization histological classification of tumours of the upper respiratory tract and ear. A commentary on the second edition. Cancer. 1993;71:2689–97.

    Article  PubMed  CAS  Google Scholar 

  141. Vasef MA, Ferlito A, Weiss LM. Nasopharyngeal carcinoma, with emphasis on its relationship to Epstein-Barr virus. Ann Otol Rhinol Laryngol. 1997;106:348–56.

    Article  PubMed  CAS  Google Scholar 

  142. Singhi AD, Califano J, Westra WH. High-risk human papillomavirus in nasopharyngeal carcinoma. Head Neck. 2012;34:213–8.

    Article  PubMed  Google Scholar 

  143. Maxwell JH, Kumar B, Feng FY, et al. HPV-positive/p16-positive/EBV-negative nasopharyngeal carcinoma in white North Americans. Head Neck. 2010;32:562–7.

    PubMed Central  PubMed  Google Scholar 

  144. Sheu LF, Chen A, Lee HS, et al. Cooperative interactions among p53, bcl-2 and Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma cells. Pathol Int. 2004;54:475–85.

    Article  CAS  PubMed  Google Scholar 

  145. Niedobitek G, Agathanggelou A, Barber P, et al. P53 overexpression and Epstein-Barr virus infection in undifferentiated and squamous cell nasopharyngeal carcinomas. J Pathol. 1993;170:457–61.

    Article  CAS  PubMed  Google Scholar 

  146. Murono S, Yoshizaki T, Park CS, et al. Association of Epstein-Barr virus infection with p53 protein accumulation but not bcl-2 protein in nasopharyngeal carcinoma. Histopathology. 1999;34:432–8.

    Article  PubMed  CAS  Google Scholar 

  147. Lo KW, Mok CH, Huang DP, et al. p53 mutation in human nasopharyngeal carcinomas. Anticancer Res. 1992;12:1957–63.

    PubMed  CAS  Google Scholar 

  148. Sun Y, Hegamyer G, Cheng YJ, et al. An infrequent point mutation of the p53 gene in human nasopharyngeal carcinoma. Proc Natl Acad Sci U S A. 1992;89:6516–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Van Tornout JM, Spruck CH 3rd, Shibata A, et al. Presence of p53 mutations in primary nasopharyngeal carcinoma (NPC) in non-Asians of Los Angeles, California, a low-risk population for NPC. Cancer Epidemiol Biomark Prev. 1997;6:493–7.

    Google Scholar 

  150. Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 2003;3:117–29.

    Article  PubMed  CAS  Google Scholar 

  151. Koch WM, Brennan JA, Zahurak M, et al. p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst. 1996;88:1580–6.

    Article  PubMed  CAS  Google Scholar 

  152. Alsner J, Sørensen SB, Overgaard J. TP53 mutation is related to poor prognosis after radiotherapy, but not surgery, in squamous cell carcinoma of the head and neck. Radiother Oncol. 2001;59:179–85.

    Article  PubMed  CAS  Google Scholar 

  153. Skinner HD, Sandulache VC, Ow TJ, et al. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res. 2012;18:290–300.

    Article  PubMed  CAS  Google Scholar 

  154. Bradford CR, Zhu S, Ogawa H, et al. P53 mutation correlates with cisplatin sensitivity in head and neck squamous cell carcinoma lines. Head Neck. 2003;25:654–61.

    Article  PubMed  Google Scholar 

  155. Hoffmann TK, Sonkoly E, Hauser U, et al. Alterations in the p53 pathway and their association with radio- and chemosensitivity in head and neck squamous cell carcinoma. Oral Oncol. 2008;44:1100–9.

    Article  CAS  PubMed  Google Scholar 

  156. Andrews GA, Xi S, Pomerantz RG, et al. Mutation of p53 in head and neck squamous cell carcinoma correlates with Bcl-2 expression and increased susceptibility to cisplatin-induced apoptosis. Head Neck. 2004;26:870–7.

    Article  PubMed  Google Scholar 

  157. Mandic R, Schamberger CJ, Muller JF, et al. Reduced cisplatin sensitivity of head and neck squamous cell carcinoma cell lines correlates with mutations affecting the COOH-terminal nuclear localization signal of p53. Clin Cancer Res. 2005;11:6845–52.

    Article  CAS  PubMed  Google Scholar 

  158. Osman AA, Neskey DM, Katsonis P, et al. Evolutionary action score of TP53 coding variants is predictive of platinum response in head and neck cancer patients. Cancer Res. 2015;75:1205–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  159. Gadhikar MA, Sciuto MR, Alves MVO, et al. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther. 2013;12:1860.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  160. Bergamaschi D, Gasco M, Hiller L, et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell. 2003;3:387–402.

    Article  PubMed  CAS  Google Scholar 

  161. Ekshyyan O, Rong Y, Rong X, et al. Comparison of radiosensitizing effects of the mammalian target of rapamycin inhibitor CCI-779 to cisplatin in experimental models of head and neck squamous cell carcinoma. Mol Cancer Ther. 2009;8:2255–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Tokalov SV, Abolmaali N. Radiosensitization of p53-deficient lung cancer cells by pre-treatment with cytostatic compounds. Anticancer Res. 2012;32:1239–43.

    CAS  PubMed  Google Scholar 

  163. Adelstein DJ, Li Y, Adams GL, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003;21:92–8.

    Article  PubMed  Google Scholar 

  164. Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350:1937–44.

    Article  PubMed  Google Scholar 

  165. Forastiere AA, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med. 2003;349:2091–8.

    Article  PubMed  CAS  Google Scholar 

  166. Fallai C, Perrone F, Licitra L, et al. Oropharyngeal squamous cell carcinoma treated with radiotherapy or radiochemotherapy: prognostic role of TP53 and HPV status. Int J Radiat Oncol Biol Phys. 2009;75:1053–9.

    Article  PubMed  Google Scholar 

  167. Cooper JS, Zhang Q, Pajak TF, et al. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head & neck. Int J Radiat Oncol Biol Phys. 2012;84:1198–205.

    Article  PubMed Central  PubMed  Google Scholar 

  168. Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck. 2005;27:843–50.

    Article  PubMed  Google Scholar 

  169. Wang Y, Li J, Booher RN, et al. Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res. 2001;61:8211–7.

    PubMed  CAS  Google Scholar 

  170. Do K, Wilsker D, Ji J, et al. Phase I study of single-agent AZD1775 (MK-1775), a Wee1 kinase inhibitor, in patients with refractory solid tumors. J Clin Oncol. 2015;33:3409–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  171. Suzanne L, Jos HB, Jan HMS. Abrogation of the G2 checkpoint by inhibition of Wee-1 kinase results in sensitization of p53-deficient tumor cells to DNA-damaging agents. Curr Clin Pharmacol. 2010;5:186–91.

    Article  Google Scholar 

  172. Leijen S, van Geel RM, Pavlick AC, et al. Phase I study evaluating WEE1 inhibitor AZD1775 as monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol. 2016;34:4371–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Leijen S, van Geel RM, Sonke GS, et al. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J Clin Oncol. 2016;34:4354–61.

    Article  PubMed  CAS  Google Scholar 

  174. Salim KY, Maleki Vareki S, Danter WR, et al. COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo. Oncotarget. 2016;7:41363–79.

    Article  PubMed Central  PubMed  Google Scholar 

  175. Silver NL, Osman AA, Patel AA, et al. A novel third generation thiosemicarbazone, COTI-2, is highly effective in killing head and neck squamous cell carcinomas (HNSCC) bearing a variety of TP53 mutations. Int J Radiat Oncol Biol Phys. 94:942.

    Google Scholar 

  176. Lambert JMR, Gorzov P, Veprintsev DB, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 2009;15:376–88.

    Article  CAS  PubMed  Google Scholar 

  177. Wang W, Takimoto R, Rastinejad F, et al. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol. 2003;23:2171–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  178. Wischhusen J, Naumann U, Ohgaki H, et al. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene. 22:8233–8245, 0000.

    Google Scholar 

  179. Bykov VJ, Issaeva N, Zache N, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem. 2005;280:30384–91.

    Article  CAS  PubMed  Google Scholar 

  180. Kravchenko JE, Ilyinskaya GV, Komarov PG, et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci U S A. 2008;105:6302–7.

    Article  PubMed Central  PubMed  Google Scholar 

  181. Roh JL, Kang SK, Minn I, et al. p53-reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncol. 2011;47:8–15.

    Article  PubMed  CAS  Google Scholar 

  182. Roh JL, Ko JH, Moon SJ, et al. The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer. Cancer Lett. 2012;325:35–41.

    Article  PubMed  CAS  Google Scholar 

  183. Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 2004;10:1321–8.

    Article  PubMed  CAS  Google Scholar 

  184. Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.

    Article  PubMed  CAS  Google Scholar 

  185. He T, Guo J, Song H, et al. Nutlin-3, an antagonist of MDM2, enhances the radiosensitivity of esophageal squamous cancer with wild-type p53. Pathol Oncol Res. 2018;24:75–81.

    Google Scholar 

  186. Aziz MH, Shen H, Maki CG. Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3. Oncogene. 2011;30:4678–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  187. Bu Y, Cai G, Shen Y, et al. Targeting NF-kappaB RelA/p65 phosphorylation overcomes RITA resistance. Cancer Lett. 2016;383:261–71.

    Article  CAS  PubMed  Google Scholar 

  188. Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006;98:298–300.

    Article  PubMed  Google Scholar 

  189. Nemunaitis J, Clayman G, Agarwala SS, et al. Biomarkers predict p53 gene therapy efficacy in recurrent squamous cell carcinoma of the head and neck. Clin Cancer Res. 2009;15:7719–25.

    Article  CAS  PubMed  Google Scholar 

  190. Senior K. ONYX-015 phase II clinical trial results. Lancet Oncol. 2001;2:3.

    Article  Google Scholar 

  191. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  192. Chow LQ, Haddad R, Gupta S, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34:3838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Okada N, Lin CP, Ribeiro MC, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014;28:438–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  194. Cortez MA, Ivan C, Valdecanas D, et al. PDL1 regulation by p53 via miR-34. J Natl Cancer Inst. 2016;108:1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Burtness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parameswaran, J., Burtness, B. (2018). P53 in Head and Neck Squamous Cell Carcinoma. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78762-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78762-6_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78761-9

  • Online ISBN: 978-3-319-78762-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics