Skip to main content

The PI3K Signaling Pathway in Head and Neck Squamous Cell Carcinoma

  • Chapter
  • First Online:
  • 563 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

The PI3K/PTEN/AKT/mTOR signaling axis has been intensively studied in many cancer systems. Extensive evidence suggests deregulation of this pathway plays an important role in the initiation, development, and recurrence of head and neck squamous cell carcinoma (HNSCC). A heterogeneous disease by nature, HNSCC encompasses a disparate collection of anatomical sites with complex tumor biology. Nevertheless, PI3K/PTEN/AKT/mTOR signaling has a critical role in nearly every facet of this disease. In this chapter we will provide a brief introduction to the mechanisms involved in PI3K/PTEN/AKT/mTOR signaling and how specific alterations in these signaling nodes enable HNSCC development and progression. We will also discuss differences in PI3K/PTEN/AKT/mTOR signaling with respect to human papillomavirus (HPV) status. A number of inhibitors targeting multiple nodes in this pathway have been developed, with these agents having potential application and in some cases demonstrated clinical activity in HNSCC. We will briefly review how these therapeutic agents are being evaluated and what predictive biomarkers have been established for them in HNSCC. Finally, PI3K/PTEN/AKT/mTOR signaling represents an important source of resistance to radiation and chemotherapy as well as other targeted agents. We will speculate on how PI3K/PTEN/AKT/mTOR inhibitors may increase the efficacy of these established therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pedrero JMG, Carracedo DG, Pinto CM, Zapatero AH, Rodrigo JP, Nieto CS, et al. Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer. 2005;114(2):242–8.

    Article  PubMed  CAS  Google Scholar 

  2. Lui VW, Hedberg ML, Li H, Vangara BS, Pendleton K, Zeng Y, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3(7):761–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Dhand R, Hiles I, Panayotou G, Roche S, Fry MJ, Gout I, et al. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 1994;13(3):522–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Foukas LC, Beeton CA, Jensen J, Phillips WA, Shepherd PR. Regulation of phosphoinositide 3-kinase by its intrinsic serine kinase activity in vivo. Mol Cell Biol. 2004;24(3):966–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kang S, Denley A, Vanhaesebroeck B, Vogt PK. Oncogenic transformation induced by the p110beta, − , and – isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci. 2006;103(5):1289–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell. 1991;65(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  9. Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell. 1994;77(1):83–93.

    Article  PubMed  CAS  Google Scholar 

  10. Chan TO, Rodeck U, Chan AM, Kimmelman AC, Rittenhouse SE, Panayotou G, et al. Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell. 2002;1(2):181–91.

    Article  PubMed  Google Scholar 

  11. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase direct target of Ras. Nature. 1994;370(6490):527–32.

    Article  PubMed  CAS  Google Scholar 

  12. Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 1996;15(10):2442–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11(5):329–41.

    Article  CAS  PubMed  Google Scholar 

  14. Franke TF, Kaplan DR, Cantley LC, Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 1997;275(5300):665–8.

    Article  CAS  PubMed  Google Scholar 

  15. Guilherme A, Klarlund JK, Krystal G, Czech MP. Regulation of phosphatidylinositol 3,4,5-trisphosphate 5′-phosphatase activity by insulin. J Biol Chem. 1996;271(47):29533–6.

    Article  CAS  PubMed  Google Scholar 

  16. Hawkins PT, Stephens LR. Emerging evidence of signalling roles for PI(3,4)P2 in Class I and II PI3K-regulated pathways. Biochem Soc Trans. 2016;44(1):307–14.

    Article  CAS  PubMed  Google Scholar 

  17. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PRJ, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol. 1997;7(4):261–9.

    Article  CAS  PubMed  Google Scholar 

  18. Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P. Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett. 1996;399(3):333–8.

    Article  CAS  PubMed  Google Scholar 

  19. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3):381–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jethwa N, Chung GH, Lete MG, Alonso A, Byrne RD, Calleja V, et al. Endomembrane PtdIns(3,4,5)P3 activates the PI3K-Akt pathway. J Cell Sci. 2015;128(18):3456–65.

    Article  PubMed  CAS  Google Scholar 

  21. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFbeta signaling. Oncogene. 2016;35(35):4641–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8.

    Article  PubMed  CAS  Google Scholar 

  23. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  24. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.

    Article  PubMed  CAS  Google Scholar 

  25. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Murugan A, Hong N, Fukui Y, Munirajan A, Tsuchida N. Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. Int J Oncol. 2008;

    Google Scholar 

  27. Qiu W, Schonleben F, Li X, Ho DJ, Close LG, Manolidis S, et al. PIK3CA mutations in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(5):1441–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Machiels J-P. Evaluation for the mutational landscape of head and neck squamous cell carcinoma. F1000 – Post-publication peer review of the biomedical literature: Faculty of 1000, Ltd.; 2014.

    Google Scholar 

  30. Kommineni N, Jamil K, Pingali UR, Addala L, M V, Naidu M. Association of PIK3CA gene mutations with head and neck squamous cell carcinomas. Neoplasma. 2015;62(01):72–80.

    Article  PubMed  CAS  Google Scholar 

  31. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, et al. The structure of a human p110 /p85 complex elucidates the effects of oncogenic PI3K mutations. Science. 2007;318(5857):1744–8.

    Article  PubMed  CAS  Google Scholar 

  32. Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y, et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007;317(5835):239–42.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110 of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci. 2008;105(7):2652–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun M, Hillmann P, Hofmann BT, Hart JR, Vogt PK. Cancer-derived mutations in the regulatory subunit p85 of phosphoinositide 3-kinase function through the catalytic subunit p110. Proc Natl Acad Sci. 2010;107(35):15547–52.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Memorial Sloan Kettering Cancer Center. cBioPortal for Cancer Genomics. http://www.cbioportal.org/public-portal/. 2014.

  36. Ikenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J, et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res. 2005;65(11):4562–7.

    Article  PubMed  CAS  Google Scholar 

  37. Gymnopoulos M, Elsliger MA, Vogt PK. Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci U S A. 2007;104(13):5569–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bigner SH, Mark J, Mahaley MS, Bigner DD. Patterns of the early, gross chromosomal changes in malignant human gliomas. Hereditas. 2008;101(1):103–13.

    Article  Google Scholar 

  39. Squarize CH, Castilho RM, Abrahao AC, Molinolo A, Lingen MW, Gutkind JS. PTEN deficiency contributes to the development and progression of head and neck cancer. Neoplasia. 2013;15(5):461–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.

    Article  PubMed  CAS  Google Scholar 

  41. Liaw D, Marsh DJ, Li J, Dahia PLM, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16(1):64–7.

    Article  PubMed  CAS  Google Scholar 

  42. Steck PA, Pershouse MA, Jasser SA, Yung WKA, Lin H, Ligon AH, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356–62.

    Article  PubMed  CAS  Google Scholar 

  43. Fackenthal JD. Male breast cancer in Cowden syndrome patients with germline PTEN mutations. J Med Genet. 2001;38(3):159–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci. 1999;96(4):1563–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Natl Acad Sci. 2001;98(18):10320–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. Impaired Fas response and autoimmunity in Pten+/− mice. Science. 1999;285(5436):2122–5.

    Article  PubMed  Google Scholar 

  47. Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell. 2007;128(2):383–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29.

    Article  PubMed  CAS  Google Scholar 

  49. Ombrato L, Malanchi I. The EMT universe: space between cancer cell dissemination and metastasis initiation. Crit Rev Oncog. 2014;19(5):349–61.

    Article  PubMed  Google Scholar 

  50. Smith BN, Bhowmick NA. Role of EMT in metastasis and therapy resistance. J Clin Med. 2016;5(2)

    Google Scholar 

  51. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell. 2007;128(1):157–70.

    Article  PubMed  CAS  Google Scholar 

  52. Lindsay Y, McCoull D, Davidson L, Leslie NR, Fairservice A, Gray A, et al. Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci. 2006;119(24):5160–8.

    Article  PubMed  CAS  Google Scholar 

  53. Leslie NR, Yang X, Downes CP, Weijer CJ. PtdIns(3,4,5)P3-dependent and -independent roles for PTEN in the control of cell migration. Curr Biol. 2007;17(2):115–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bellacosa A, Testa JR, Staal S, Tsichlis P. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science. 1991;254(5029):274–7.

    Article  PubMed  CAS  Google Scholar 

  55. Coffer PJ, Woodgett JR. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem. 1991;201(2):475–81.

    Article  PubMed  CAS  Google Scholar 

  56. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci. 1991;88(10):4171–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Staal SP, Hartley JW, Rowe WP. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Acad Sci. 1977;74(7):3065–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bellacosa A, Franke TF, Gonzalez-Portal ME, Datta K, Taguchi T, Gardner J, et al. Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene. 1993;8(3):745–54.

    PubMed  CAS  Google Scholar 

  59. Jones PF, Jakubowicz T, Hemmings BA. Molecular cloning of a second form of rac protein kinase. Mol Biol Cell. 1991;2(12):1001–9.

    CAS  Google Scholar 

  60. Konishi H, Shinomura T, Kuroda S, Ono Y, Kikkawa U. Molecular cloning of rat RAC protein kinase α and β and their association with protein kinase Cζ. Biochem Biophys Res Commun. 1994;205(1):817–25.

    Article  PubMed  CAS  Google Scholar 

  61. Nakatani K, Sakaue H, Thompson DA, Weigel RJ, Roth RA. Identification of a human Akt3 (protein kinase B γ) which contains the regulatory serine phosphorylation site. Biochem Biophys Res Commun. 1999;257(3):906–10.

    Article  PubMed  CAS  Google Scholar 

  62. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446(7132):153–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268–74.

    Article  PubMed  CAS  Google Scholar 

  64. Chen WS, Xu P-Z, Gottlob K, Chen M-L, Sokol K, Shiyanova T, et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene. Genes Dev. 2001;15(17):2203–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, EBr C, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBbeta ). Science. 2001;292(5522):1728–31.

    Article  PubMed  CAS  Google Scholar 

  66. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem. 2001;276(42):38349–52.

    Article  PubMed  CAS  Google Scholar 

  67. Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS, et al. Role for Akt3/protein kinase B in attainment of normal brain size. Mol Cell Biol. 2005;25(5):1869–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Mieszczak M, Watanabe T, et al. Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development. 2005;132(13):2943–54.

    Article  PubMed  CAS  Google Scholar 

  69. Sarbassov DD, Guertin DA, Siraj MA, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101.

    Article  PubMed  CAS  Google Scholar 

  70. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15(23):6541–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mahajan K, Coppola D, Challa S, Fang B, Chen YA, Zhu W, et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS One. 2010;5(3):e9646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mahajan K, Mahajan NP. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J Cell Physiol. 2010;224(2):327–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Chen R, Kim O, Yang J, Sato K, Eisenmann KM, McCarthy J, et al. Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem. 2001;276(34):31858–62.

    Article  PubMed  CAS  Google Scholar 

  74. Zheng Y, Peng M, Wang Z, Asara JM, Tyner AL. Protein tyrosine kinase 6 directly phosphorylates AKT and promotes AKT activation in response to epidermal growth factor. Mol Cell Biol. 2010;30(17):4280–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Joung SM, Park ZY, Rani S, Takeuchi O, Akira S, Lee JY. Akt contributes to activation of the TRIF-dependent signaling pathways of TLRs by interacting with TANK-binding kinase 1. J Immunol. 2010;186(1):499–507.

    Article  PubMed  CAS  Google Scholar 

  76. Ou Y-H, Torres M, Ram R, Formstecher E, Roland C, Cheng T, et al. TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell. 2011;41(4):458–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Xie X, Zhang D, Zhao B, Lu MK, You M, Condorelli G, et al. I B kinase and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci. 2011;108(16):6474–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci. 2001;98(20):11598–603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhou BP, Liao Y, Xia W, Spohn B, Lee M-H, Hung M-C. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001;3(3):245–52.

    Article  PubMed  CAS  Google Scholar 

  80. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12(22):3499–511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 2005;8(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  82. Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell. 2003;12(2):381–92.

    Article  PubMed  CAS  Google Scholar 

  83. Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G, et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol. 2004;6(4):308–18.

    Article  PubMed  CAS  Google Scholar 

  84. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–68.

    Article  PubMed  CAS  Google Scholar 

  85. Huang WC, Chen CC. Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol. 2005;25(15):6592–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Laine J, Künstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell. 2000;6(2):395–407.

    Article  PubMed  CAS  Google Scholar 

  87. Pekarsky Y, Koval A, Hallas C, Bichi R, Tresini M, Malstrom S, et al. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci. 2000;97(7):3028–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwäble J, et al. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res. 2005;65(21):9643–50.

    Article  PubMed  CAS  Google Scholar 

  89. Cappellini A, Tabellini G, Zweyer M, Bortul R, Tazzari PL, Billi AM, et al. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27Kip1 and control of cyclin D1 expression. Leukemia. 2003;17(11):2157–67.

    Article  PubMed  CAS  Google Scholar 

  90. Lee SH, Kim HS, Park WS, Kim SY, Lee KY, Kim SH, et al. Non-small cell lung cancers frequently express phosphorylated Akt; an immunohistochemical study. APMIS. 2002;110(7–8):587–92.

    Article  PubMed  CAS  Google Scholar 

  91. Nicholson KM, Streuli CH, Anderson NG. Autocrine signalling through erbB receptors promotes constitutive activation of protein kinase B/Akt in breast cancer cell lines. Breast Cancer Res Treat. 2003;81(2):117–28.

    Article  PubMed  CAS  Google Scholar 

  92. Vasko V, Saji M, Hardy E, Kruhlak M, Larin A, SAvchenko V, et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet. 2004;41(3):161–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Van de Sande T, Roskams T, Lerut E, Joniau S, Van Poppel H, Verhoeven G, et al. High-level expression of fatty acid synthase in human prostate cancer tissues is linked to activation and nuclear localization of Akt/PKB. J Pathol. 2005;206(2):214–9.

    Article  PubMed  CAS  Google Scholar 

  94. Montironi R, Mazzuccheli R, Scarpelli M, Lopez-Beltran A, Fellegara G, Algaba F. Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens: contemporary approach, current clinical significance and sources of pathology discrepancies. BJU Int. 2005;95(8):1146–52.

    Article  PubMed  Google Scholar 

  95. Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP. Identification of a tumour suppressor network opposing nuclear Akt function. Nature. 2006;441(7092):523–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, et al. A mosaic activating mutation inAKT1Associated with the Proteus syndrome. N Engl J Med. 2011;365(7):611–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Biesecker L. The challenges of Proteus syndrome: diagnosis and management. Eur J Hum Genet. 2006;14(11):1151–7.

    Article  PubMed  Google Scholar 

  98. Biesecker LG. The multifaceted challenges of Proteus syndrome. JAMA. 2001;285(17):2240.

    Article  PubMed  CAS  Google Scholar 

  99. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer (AKT1-PH_E17K). Protein Data Bank, Rutgers University; 2007.

    Google Scholar 

  100. Askham JM, Platt F, Chambers PA, Snowden H, Taylor CF, Knowles MA. AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K. Oncogene. 2009;29(1):150–5.

    Article  PubMed  CAS  Google Scholar 

  101. Cohen Y, Shalmon B, Korach J, Barshack I, Fridman E, Rechavi G. AKT1 pleckstrin homology domain E17K activating mutation in endometrial carcinoma. Gynecol Oncol. 2010;116(1):88–91.

    Article  PubMed  CAS  Google Scholar 

  102. Hara K, Maruki Y, Long X, Yoshino K-i, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89.

    Article  PubMed  CAS  Google Scholar 

  103. Kim D-H, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.

    Article  PubMed  CAS  Google Scholar 

  104. Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K-i, et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem. 2003;278(18):15461–4.

    Article  PubMed  CAS  Google Scholar 

  105. Pearce Laura R, Huang X, Boudeau J, Pawłowski R, Wullschleger S, Deak M, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405(3):513–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Schalm SS, Fingar DC, Sabatini DM, Blenis J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol. 2003;13(10):797–806.

    Article  PubMed  CAS  Google Scholar 

  108. Wullschleger S, Loewith R, Oppliger W, Hall MN. Molecular organization of target of rapamycin complex 2. J Biol Chem. 2005;280(35):30697–704.

    Article  PubMed  CAS  Google Scholar 

  109. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903–15.

    Article  PubMed  CAS  Google Scholar 

  110. Haar EV, Lee S-I, Bandhakavi S, Griffin TJ, Kim D-H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9(3):316–23.

    Article  CAS  Google Scholar 

  111. Dos DS, Ali SM, Kim D-H, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302.

    Article  CAS  Google Scholar 

  112. Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122–8.

    Article  CAS  PubMed  Google Scholar 

  113. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10(3):457–68.

    Article  CAS  PubMed  Google Scholar 

  114. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng Q-P, et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 1997;272(42):26457–63.

    Article  CAS  PubMed  Google Scholar 

  115. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80.

    Article  CAS  PubMed  Google Scholar 

  116. Ma XM, Yoon S-O, Richardson CJ, Jülich K, Blenis J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell. 2008;133(2):303–13.

    Article  CAS  PubMed  Google Scholar 

  117. Mayer C, Zhao J, Yuan X, Grummt I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 2004;18(4):423–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 1998;273(7):3963–6.

    Article  CAS  PubMed  Google Scholar 

  119. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023–32.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150(6):1507–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol. 2006;16(18):1865–70.

    Article  CAS  PubMed  Google Scholar 

  122. Yang Q, Inoki K, Ikenoue T, Guan KL. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev. 2006;20(20):2820–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Liu P, Gan W, Chin YR, Ogura K, Guo J, Zhang J, et al. PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov. 2015;5(11):1194–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Ebner M, Sinkovics B, Szczygiel M, Ribeiro DW, Yudushkin I. Localization of mTORC2 activity inside cells. J Cell Biol. 2017;216(2):343–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 2008;27(14):1932–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. García-Martínez Juan M, Alessi Dario R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 2008;416(3):375–85.

    Article  CAS  PubMed  Google Scholar 

  127. Ikenoue T, Inoki K, Yang Q, Zhou X, Guan K-L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008;27(14):1919–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–8.

    Article  PubMed  Google Scholar 

  130. Mariño G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, López-Otín C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/Autophagin-3. J Biol Chem. 2007;282(25):18573–83.

    Article  PubMed  Google Scholar 

  131. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Investig. 2003;112(12):1809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci. 2003;100(25):15077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen J-H, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15(2):148–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Hietakangas V, Cohen SM. TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells. BMC Cancer. 2008;8(1)

    Google Scholar 

  135. Fenic I, Steger K, Gruber C, Arens C, Woenckhaus J. Analysis of PIK3CA and Akt/protein kinase B in head and neck squamous cell carcinoma. Oncol Rep. 2007;18(1):253–9.

    CAS  PubMed  Google Scholar 

  136. Sewell A, Brown B, Biktasova A, Mills GB, Lu Y, Tyson DR, et al. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer. Clin Cancer Res. 2014;20(9):2300–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Suda T, Hama T, Kondo S, Yuza Y, Yoshikawa M, Urashima M, et al. Copy number amplification of the PIK3CA gene is associated with poor prognosis in non-lymph node metastatic head and neck squamous cell carcinoma. BMC Cancer. 2012;12(1)

    Google Scholar 

  138. Lechner M, Frampton GM, Fenton T, Feber A, Palmer G, Jay A, et al. Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV tumors. Genome Med. 2013;5(5):49.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lin SC, Liu CJ, Ko SY, Chang HC, Liu TY, Chang KW. Copy number amplification of 3q26-27 oncogenes in microdissected oral squamous cell carcinoma and oral brushed samples from areca chewers. J Pathol. 2005;206(4):417–22.

    Article  PubMed  CAS  Google Scholar 

  140. Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015;21(3):632–41.

    Article  CAS  PubMed  Google Scholar 

  141. Chau NG, Li YY, Jo VY, Rabinowits G, Lorch JH, Tishler RB, et al. Incorporation of next-generation sequencing into routine clinical care to direct treatment of head and neck squamous cell carcinoma. Clin Cancer Res. 2016;22(12):2939–49.

    Article  CAS  PubMed  Google Scholar 

  142. Poetsch M, Lorenz G, Kleist B. Detection of new PTEN/MMAC1 mutations in head and neck squamous cell carcinomas with loss of chromosome 10. Cancer Genet Cytogenet. 2002;132(1):20–4.

    Article  PubMed  CAS  Google Scholar 

  143. Shao X, Tandon R, Samara G, Kanki H, Yano H, Close LG, et al. Mutational analysis of the PTEN gene in head and neck squamous cell carcinoma. Int J Cancer. 1998;77(5):684–8.

    Article  CAS  PubMed  Google Scholar 

  144. Yu Z, Weinberger PM, Sasaki C, Egleston BL, Speier WF 4th, Haffty B, et al. Phosphorylation of Akt (Ser473) predicts poor clinical outcome in oropharyngeal squamous cell cancer. Cancer Epidemiol Biomark Prev. 2007;16(3):553–8.

    Article  CAS  Google Scholar 

  145. Pickering CR, Zhang J, Yoo SY, Bengtsson L, Moorthy S, Neskey DM, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013;3(7):770–81.

    Article  PubMed  CAS  Google Scholar 

  146. Segrelles C, Moral M, Lara MF, Ruiz S, Santos M, Leis H, et al. Molecular determinants of Akt-induced keratinocyte transformation. Oncogene. 2006;25(8):1174–85.

    Article  PubMed  CAS  Google Scholar 

  147. Amornphimoltham P, Sriuranpong V, Patel V, Benavides F, Conti CJ, Sauk J, et al. Persistent activation of the Akt pathway in head and neck squamous cell carcinoma: a potential target for UCN-01. Clin Cancer Res. 2004;10(12 Pt 1):4029–37.

    Article  PubMed  CAS  Google Scholar 

  148. García-Carracedo D, Villaronga MÁ, Álvarez-Teijeiro S, Hermida-Prado F, Santamaría I, Allonca E, et al. Impact of PI3K/AKT/mTOR pathway activation on the prognosis of patients with head and neck squamous cell carcinomas. Oncotarget. 2016;7(20):29780–93.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Woenckhaus J, Steger K, Werner E, Fenic I, Gamerdinger U, Dreyer T, et al. Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J Pathol. 2002;198(3):335–42.

    Article  PubMed  CAS  Google Scholar 

  150. Chung CH, Guthrie VB, Masica DL, Tokheim C, Kang H, Richmon J, et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann Oncol. 2015;26(6):1216–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Tsui IFL, Poh CF, Garnis C, Rosin MP, Zhang L, Lam WL. Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int J Cancer. 2009;125(9):2219–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Xu B, Wang L, Borsu L, Ghossein R, Katabi N, Ganly I, et al. A proportion of primary squamous cell carcinomas of the parotid gland harbour high-risk human papillomavirus. Histopathology. 2016;69(6):921–9.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Hu YC, Lam KY, Tang JC, Srivastava G. Mutational analysis of the PTEN/MMAC1 gene in primary oesophageal squamous cell carcinomas. Mol Pathol. 1999;52(6):353–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Lee JI, Soria J-C, Hassan KA, El-Naggar AK, Tang X, Liu DD, et al. Loss of PTEN expression as a prognostic marker for tongue cancer. Arch Otolaryngol Head Neck Surg. 2001;127(12):1441.

    Article  PubMed  CAS  Google Scholar 

  155. Darido C, Georgy Smitha R, Wilanowski T, Dworkin S, Auden A, Zhao Q, et al. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell. 2011;20(5):635–48.

    Article  PubMed  CAS  Google Scholar 

  156. Georgy SR, Cangkrama M, Srivastava S, Partridge D, Auden A, Dworkin S, et al. Identification of a novel proto-oncogenic network in head and neck squamous cell carcinoma. JNCI (Journal of the National Cancer Institute). 2015;107(9)

    Google Scholar 

  157. Minor J, Wang X, Zhang F, Song J, Jimeno A, Wang X-J, et al. Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol. 2012;48(1):73–8.

    Article  PubMed  CAS  Google Scholar 

  158. Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Investig. 2009;

    Google Scholar 

  159. Malkoski SP, Wang X-J. Two sides of the story? Smad4 loss in pancreatic cancer versus head-and-neck cancer. FEBS Lett. 2012;586(14):1984–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P, et al. Progressive tumor formation in mice with conditional deletion of TGF- signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res. 2009;69(14):5918–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Bian Y, Hall B, Sun ZJ, Molinolo A, Chen W, Gutkind JS, et al. Loss of TGF-β signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene. 2011;31(28):3322–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Sun ZJ, Zhang L, Hall B, Bian Y, Gutkind JS, Kulkarni AB. Chemopreventive and chemotherapeutic actions of mTOR inhibitor in genetically defined head and neck squamous cell carcinoma mouse model. Clin Cancer Res. 2012;18(19):5304–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Amornphimoltham P, Roth SJ, Ideker T, Silvio Gutkind J. Targeting the mTOR signaling circuitry in head and neck Cancer. Squamous cell carcinoma. Netherlands: Springer; 2017. p. 163–81.

    Google Scholar 

  164. Martinez-Cruz AB, Santos M, Lara MF, Segrelles C, Ruiz S, Moral M, et al. Spontaneous squamous cell carcinoma induced by the somatic inactivation of retinoblastoma and Trp53 tumor suppressors. Cancer Res. 2008;68(3):683–92.

    Article  PubMed  CAS  Google Scholar 

  165. Moral M, Segrelles C, Lara MF, Martinez-Cruz AB, Lorz C, Santos M, et al. Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma. Cancer Res. 2009;69(3):1099–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Vander Broek R, Snow GE, Chen Z, Van Waes C. Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-κB signaling. Oral Oncol. 2014;50(10):930–41.

    Article  PubMed  CAS  Google Scholar 

  167. Vineis P, Alavanja M, Buffler P, Fontham E, Franceschi S, Gao YT, et al. Tobacco and cancer: recent epidemiological evidence. JNCI (Journal of the National Cancer Institute). 2004;96(2):99–106.

    Article  CAS  Google Scholar 

  168. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Investig 2003;111(1):81–90.

    Google Scholar 

  170. Weber SM, Bornstein S, Li Y, Malkoski SP, Wang D, Rustgi AK, et al. Tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induces AKT activation in head and neck epithelia. Int J Oncol. 2011;39(5):1193–8.

    PubMed  CAS  Google Scholar 

  171. An Y, Kiang A, Lopez JP, Kuo SZ, Yu MA, Abhold EL, et al. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population. PLoS One. 2012;7(11):e47919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Lin K, Patel SG, Chu PY, Matsuo JMS, Singh B, Wong RJ, et al. Second primary malignancy of the aerodigestive tract in patients treated for cancer of the oral cavity and larynx. Head Neck. 2005;27(12):1042–8.

    Article  PubMed  Google Scholar 

  173. Hsu S-H, Wong Y-K, Wang C-P, Wang C-C, Jiang R-S, Chen F-J, et al. Survival analysis of patients with oral squamous cell carcinoma with simultaneous second primary tumors. Head Neck. 2013;35(12):1801–7.

    Article  PubMed  Google Scholar 

  174. Benner SE, Pajak TF, Lippman SM, Earley C, Hong WK. Prevention of second primary tumors with isotretinoin in patients with squamous cell carcinoma of the head and neck: long-term follow-up. JNCI (Journal of the National Cancer Institute). 1994;86(2):140–1.

    Article  CAS  Google Scholar 

  175. Hong WKI, Lippman SM, Itri LM, Karp DD, Lee JS, Byers RM, et al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med. 1990;323(12):795–801.

    Article  PubMed  CAS  Google Scholar 

  176. Khuri FR, Lee JJ, Lippman SM, Kim ES, Cooper JS, Benner SE, et al. Randomized phase III trial of low-dose isotretinoin for prevention of second primary tumors in stage I and II head and neck Cancer patients. JNCI (Journal of the National Cancer Institute). 2006;98(7):441–50.

    Article  CAS  Google Scholar 

  177. Bhatia AK, Lee JW, Pinto HA, Jacobs CD, Limburg PJ, Rubin P, et al. Double-blind, randomized phase 3 trial of low-dose 13-cis retinoic acid in the prevention of second primaries in head and neck cancer: long-term follow-up of a trial of the Eastern Cooperative Oncology Group-ACRIN Cancer Research Group (C0590). Cancer. 2017;123(23):4653–62.

    Article  PubMed  CAS  Google Scholar 

  178. Hildebrandt MAT, Lippman SM, Etzel CJ, Kim E, Lee JJ, Khuri FR, et al. Genetic variants in the PI3K/PTEN/AKT/mTOR pathway predict head and neck Cancer patient second primary tumor/recurrence risk and response to retinoid chemoprevention. Clin Cancer Res. 2012;18(13):3705–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of human papillomavirus–positive head and neck squamous cell carcinoma. J Clin Oncol. 2015;33(29):3235–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Maritz GS, Mutemwa M. Tobacco smoking: patterns, health consequences for adults, and the long-term health of the offspring. Glob J Health Sci. 2012;4(4):62–75.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Howard JD, Chung CH. Biology of human papillomavirus–related oropharyngeal cancer. Semin Radiat Oncol. 2012;22(3):187–93.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L, Day PM, et al. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog. 2012;8(4):e1002657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Slebos RJC, Yi Y, Ely K, Carter J, Evjen A, Zhang X, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12(3):701–9.

    Article  CAS  PubMed  Google Scholar 

  184. Yarbrough WG, Whigham A, Brown B, Roach M, Slebos R. Phosphoinositide kinase-3 status associated with presence or absence of human papillomavirus in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys. 2007;69(2):S98–S101.

    Article  PubMed  CAS  Google Scholar 

  185. The Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.

    Article  CAS  Google Scholar 

  186. Fury MG, Drobnjak M, Sima CS, Asher M, Shah J, Lee N, et al. Tissue microarray evidence of association between p16 and phosphorylated eIF4E in tonsillar squamous cell carcinoma. Head Neck. 2010;33(9):1340–5.

    Article  PubMed  Google Scholar 

  187. Lewis JS, Chernock RD, Bishop JA. Squamous and neuroendocrine specific immunohistochemical markers in head and neck squamous cell carcinoma: a tissue microarray study. Head Neck Pathol. 2017;12(1):62–70.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Mamane Y, Petroulakis E, Martineau Y, Sato T-A, Larsson O, Rajasekhar VK, et al. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One. 2007;2(2):e242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell. 2003;12(4):889–901.

    Article  PubMed  CAS  Google Scholar 

  190. Molinolo AA, Marsh C, El Dinali M, Gangane N, Jennison K, Hewitt S, et al. mTOR as a molecular target in HPV-associated oral and cervical squamous carcinomas. Clin Cancer Res. 2012;18(9):2558–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Yang SXND, Rubinstein L, Sherman ME, Swain SM, Tomaszewska JE, Doroshow JH. pAKT expression in paraffin-embedded xenograft tumors after fixation delays and human breast cancer by optimized immunohistochemistry. J Clin Oncol. 2012;30(Suppl):Abstr 10603.

    Google Scholar 

  192. Burris HA 3rd. Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol. 2013;71(4):829–42.

    Article  PubMed  CAS  Google Scholar 

  193. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975;28(10):721–6.

    Article  CAS  Google Scholar 

  194. Heitman J, Movva N, Hall M. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253(5022):905–9.

    Article  PubMed  CAS  Google Scholar 

  195. Zheng Y, Jiang Y. mTOR inhibitors at a glance. Mol Cell Pharmacol. 2015;7(2):15–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Madera D, Vitale-Cross L, Martin D, Schneider A, Molinolo AA, Gangane N, et al. Prevention of tumor growth driven by PIK3CA and HPV oncogenes by targeting mTOR signaling with metformin in oral squamous carcinomas expressing OCT3. Cancer Prev Res. 2015;8(3):197–207.

    Article  CAS  Google Scholar 

  197. Rini BI. Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin Cancer Res. 2008;14(5):1286–90.

    Article  PubMed  CAS  Google Scholar 

  198. Gabardi S, Baroletti SA. Everolimus: a proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology. Pharmacotherapy. 2010;30(10):1044–56.

    Article  PubMed  CAS  Google Scholar 

  199. Geiger JL, Bauman JE, Gibson MK, Gooding WE, Varadarajan P, Kotsakis A, et al. Phase II trial of everolimus in patients with previously treated recurrent or metastatic head and neck squamous cell carcinoma. Head Neck. 2016;38(12):1759–64.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Bauman JE, Arias-Pulido H, Lee SJ, Fekrazad MH, Ozawa H, Fertig E, et al. A phase II study of temsirolimus and erlotinib in patients with recurrent and/or metastatic, platinum-refractory head and neck squamous cell carcinoma. Oral Oncol. 2013;49(5):461–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Wang Z, Martin D, Molinolo AA, Patel V, Iglesias-Bartolome R, Degese MS, et al. mTOR co-targeting in cetuximab resistance in head and neck cancers harboring PIK3CA and RAS mutations. J Natl Cancer Inst. 2014;106(9)

    Google Scholar 

  202. Burtness BMS, Marur S, Bauman JE, Golemis EA, Mehra R, Cohen SJ. Comment on “epidermal growth factor receptor is essential for Toll-Like receptor 3 signaling”. Sci Signal. 2012;5(254):lc5

    Google Scholar 

  203. Dunn LA, Fury MG, Xiao H, Baxi SS, Sherman EJ, Korte S, et al. A phase II study of temsirolimus added to low-dose weekly carboplatin and paclitaxel for patients with recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). Ann Oncol. 2017;28(10):2533–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Piha-Paul SA, Munster PN, Hollebecque A, Argiles G, Dajani O, Cheng JD, et al. Results of a phase 1 trial combining ridaforolimus and MK-0752 in patients with advanced solid tumours. Eur J Cancer. 2015;51(14):1865–73. (1879–0852 (Electronic))

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Dowling RJO, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin dependent translation initiation in breast cancer cells. Cancer Res. 2007;67(22):10804–12.

    Article  PubMed  CAS  Google Scholar 

  206. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11(5):390–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Nair V, Sreevalsan S, Basha R, Abdelrahim M, Abudayyeh A, Rodrigues Hoffman A, et al. Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: role of specificity protein (Sp) transcription factors. J Biol Chem. 2014;289(40):27692–701. (1083-351X (Electronic))

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Bo S, Benso A, Durazzo M, Ghigo E. Does use of metformin protect against cancer in Type 2 diabetes mellitus? J Endocrinol Investig. 2012;35(2):231–5.

    Article  CAS  Google Scholar 

  210. Kong D, Yamori T, Yamazaki K, Dan S. In vitro multifaceted activities of a specific group of novel phosphatidylinositol 3-kinase inhibitors on hotspot mutant PIK3CA. Invest New Drugs. 2014;32(6):1134–43. (1573–0646 (Electronic))

    Article  PubMed  CAS  Google Scholar 

  211. Psyrri A, Lee JW, Pectasides E, Vassilakopoulou M, Kosmidis EK, Burtness BA, et al. Prognostic biomarkers in phase II trial of cetuximab-containing induction and chemoradiation in resectable HNSCC: eastern cooperative oncology group E2303. Clin Cancer Res. 2014;20(11):3023–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Bozec A, Ebran N, Radosevic-Robin N, Chamorey E, Yahia HB, Marcie S, et al. Combination of phosphotidylinositol-3-kinase targeting with cetuximab and irradiation: a preclinical study on an orthotopic xenograft model of head and neck cancer. Head Neck. 2017;39(1):151–9.

    Article  PubMed  Google Scholar 

  213. Soulieres D, Faivre S, Mesia R, Remenar E, Li SH, Karpenko A, et al. Buparlisib and paclitaxel in patients with platinum-pretreated recurrent or metastatic squamous cell carcinoma of the head and neck (BERIL-1): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol. 2017;18(3):323–35.

    Article  PubMed  CAS  Google Scholar 

  214. Liu N, Rowley BR, Bull CO, Schneider C, Haegebarth A, Schatz CA, Fracasso PR, et al. BAY 80–6946 is a highly selective intravenous PI3K inhibitor with potent p110alpha and p110delta activities in tumor cell lines and xenograft models. Mol Cancer Ther. 2013;12(11):2319–30. (1538–8514 (Electronic))

    Article  PubMed  CAS  Google Scholar 

  215. Garlich JR, De P, Dey N, Su JD, Peng X, Miller A, Murali R, et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res. 2008;68(1):206–15. (1538–7445 (Electronic))

    Article  PubMed  CAS  Google Scholar 

  216. Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, Knapp M, Fritsch C, et al. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett. 2013;23(13):3741–8. (1464–3405 (Electronic))

    Article  PubMed  CAS  Google Scholar 

  217. Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL, et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature. 2014;510(7505):407–11. (1476–4687 (Electronic))

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9(7):1956–67.

    Article  PubMed  CAS  Google Scholar 

  219. Ihle NT, Williams R, Chow S, Chew W, Berggren MI, Paine-Murrieta G, Minion DJ, et al. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther. 2004;3(7):763–72. (1535–7163 (Print))

    PubMed  CAS  Google Scholar 

  220. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7(7):1851–63.

    Article  PubMed  CAS  Google Scholar 

  221. Serra V, Markman B, Scaltriti M, Eichhorn PJA, Valero V, Guzman M, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008;68(19):8022–30.

    Article  PubMed  CAS  Google Scholar 

  222. Chung CH, Ely K, McGavran L, Varella-Garcia M, Parker J, Parker N, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol. 2006;24(25):4170–6.

    Article  CAS  PubMed  Google Scholar 

  223. Kang H, Kiess A, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol. 2015;12(1):11–26.

    Article  PubMed  Google Scholar 

  224. Freudlsperger C, Horn D, Weissfuss S, Weichert W, Weber KJ, Saure D, et al. Phosphorylation of AKT(Ser473) serves as an independent prognostic marker for radiosensitivity in advanced head and neck squamous cell carcinoma. Int J Cancer. 2015;136(12):2775–85.

    Article  PubMed  CAS  Google Scholar 

  225. Gupta AK, McKenna WG, Weber CN, Feldman MD, Goldsmith JD, Mick R, et al. Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clin Cancer Res. 2002;8(3):885–92.

    PubMed  Google Scholar 

  226. Nathan C-AO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A. Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene. 1997;15(5):579–84.

    Article  PubMed  CAS  Google Scholar 

  227. Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, et al. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res. 2012;72(24):6468–76.

    Article  PubMed  CAS  Google Scholar 

  228. Nathan CAO, Amirghahari N, Abreo FW, Rong X, Caldito G, Jones ML, et al. Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res. 2004;10(17):5820–7.

    Article  PubMed  CAS  Google Scholar 

  229. Pattje WJ, Schuuring E, Mastik MF, Slagter-Menkema L, Schrijvers ML, Alessi S, et al. The phosphatase and tensin homologue deleted on chromosome 10 mediates radiosensitivity in head and neck cancer. Br J Cancer. 2010;102(12):1778–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Snietura M, Jaworska M, Mlynarczyk-Liszka J, Goraj-Zajac A, Piglowski W, Lange D, et al. PTEN as a prognostic and predictive marker in postoperative radiotherapy for squamous cell Cancer of the head and neck. PLoS One. 2012;7(3):e33396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. da Costa AA, D’Almeida Costa F, Ribeiro AR, Guimaraes AP, Chinen LT, Lopes CA, et al. Low PTEN expression is associated with worse overall survival in head and neck squamous cell carcinoma patients treated with chemotherapy and cetuximab. Int J Clin Oncol. 2015;20(2):282–9.

    Article  CAS  PubMed  Google Scholar 

  232. Di Cristofano A. Impaired Fas response and autoimmunity in Pten+/ mice. Science. 1999;285(5436):2122–5.

    Article  PubMed  Google Scholar 

  233. Barbareschi M, Buttitta F, Felicioni L, Cotrupi S, Barassi F, Del Grammastro M, et al. Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin Cancer Res. 2007;13(20):6064–9.

    Article  CAS  PubMed  Google Scholar 

  234. Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, Stepanek VM, et al. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res. 2012;73(1):276–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Rao VH, Kandel A, Lynch D, Pena Z, Marwaha N, Deng C, et al. A positive feedback loop between HER2 and ADAM12 in human head and neck cancer cells increases migration and invasion. Oncogene. 2012;31(23):2888–98.

    Article  CAS  PubMed  Google Scholar 

  236. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med. 2002;8(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  237. Kang Q, Cao Y, Zolkiewska A. Direct interaction between the cytoplasmic tail of ADAM 12 and the Src homology 3 domain of p85α activates phosphatidylinositol 3-kinase in C2C12 cells. J Biol Chem. 2001;276(27):24466–72.

    Article  CAS  PubMed  Google Scholar 

  238. Roy R, Wewer UM, Zurakowski D, Pories SE, Moses MA. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem. 2004;279(49):51323–30.

    Article  CAS  PubMed  Google Scholar 

  239. Erjala K, Sundvall M, Junttila TT, Zhang N, Savisalo M, Mali P, et al. Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res. 2006;12(13):4103–11.

    Google Scholar 

  240. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.

    Article  CAS  PubMed  Google Scholar 

  241. Nguyen PT, Tsunematsu T, Yanagisawa S, Kudo Y, Miyauchi M, Kamata N, et al. The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. Br J Cancer. 2013;109(8):2248–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Sweeny L, Liu Z, Lancaster W, Hart J, Hartman YE, Rosenthal EL. Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor. Laryngoscope. 2012;122(7):1539–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Argiris A, Ghebremichael M, Gilbert J, Lee JW, Sachidanandam K, Kolesar JM, et al. Phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: an eastern cooperative oncology group trial. J Clin Oncol. 2013;31(11):1405–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Knowles LM, Stabile LP, Egloff AM, Rothstein ME, Thomas SM, Gubish CT, et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 2009;15(11):3740–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Seiwert TY, Jagadeeswaran R, Faoro L, Janamanchi V, Nallasura V, El Dinali M, et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;69(7):3021–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Xu H, Stabile LP, Gubish CT, Gooding WE, Grandis JR, Siegfried JM. Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin Cancer Res. 2011;17(13):4425–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Zhang YE. Non-Smad pathways in TGF-β signaling. Cell Res. 2009;19(1):128–39.

    Article  PubMed  CAS  Google Scholar 

  248. Bedi A, Chang X, Noonan K, Pham V, Bedi R, Fertig EJ, et al. Inhibition of TGF- enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol Cancer Ther. 2012;11(11):2429–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Deneka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deneka, A.Y., Howard, J.D., Chung, C.H. (2018). The PI3K Signaling Pathway in Head and Neck Squamous Cell Carcinoma. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78762-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78762-6_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78761-9

  • Online ISBN: 978-3-319-78762-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics