Skip to main content

Epigenetic Changes and Epigenetic Targets in Head and Neck Cancer

  • Chapter
  • First Online:
  • 564 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Epigenetic changes are both inheritable and reversible, affecting the spatial conformation of DNA and its transcriptional activity. The most common classes of epigenetic regulation include modification of DNA (typically by methylation), or modification of the histones that form nucleosomes (typically by methylation, acetylation, or phosphorylation). Epigenetic changes can influence gene expression patterns without making permanent changes in DNA. In this article, we discuss characteristic changes in the epigenetic modification of tumor DNA that occurs in squamous cell carcinomas of the head and neck (SCCHN), which controls the selective induction and repression of genes relevant to the disease pathology. We also describe key proteins that mediate epigenetic control of gene expression, and emerging therapeutic approaches to target epigenetic control systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrawal N, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7. https://doi.org/10.1126/science.1206923.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Cancer Genome Atlas, N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82. https://doi.org/10.1038/nature14129.

    Article  CAS  Google Scholar 

  3. Stransky N, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60. https://doi.org/10.1126/science.1208130.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Beck TN, Golemis EA. Genomic insights into head and neck cancer. Cancers Head Neck. 2016;1. https://doi.org/10.1186/s41199-016-0003-z.

  5. Cancer Genome Atlas Research, N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9. https://doi.org/10.1038/nature12222.

    Article  CAS  Google Scholar 

  6. Seiwert TY, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015;21:632–41. https://doi.org/10.1158/1078-0432.CCR-13-3310.

    Article  CAS  PubMed  Google Scholar 

  7. Ha PK, Califano JA. Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol. 2006;7:77–82. https://doi.org/10.1016/S1470-2045(05)70540-4.

    Article  CAS  PubMed  Google Scholar 

  8. Smith IM, Mydlarz WK, Mithani SK, Califano JA. DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage. Int J Cancer. 2007;121:1724–8. https://doi.org/10.1002/ijc.22889.

    Article  CAS  PubMed  Google Scholar 

  9. Tokumaru Y, et al. Inverse correlation between cyclin A1 hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Res. 2004;64:5982–7. https://doi.org/10.1158/0008-5472.CAN-04-0993.

    Article  CAS  PubMed  Google Scholar 

  10. Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011;11:726–34. https://doi.org/10.1038/nrc3130.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150:12–27. https://doi.org/10.1016/j.cell.2012.06.013.

    Article  CAS  PubMed  Google Scholar 

  12. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53. https://doi.org/10.1038/nrc1279.

    Article  CAS  PubMed  Google Scholar 

  13. Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6:597–610. https://doi.org/10.1038/nrg1655.

    Article  CAS  PubMed  Google Scholar 

  14. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10:295–304. https://doi.org/10.1038/nrg2540.

    Article  CAS  PubMed  Google Scholar 

  15. Schumacher A, et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 2006;34:528–42. https://doi.org/10.1093/nar/gkj461.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation. Epigenetics Chromatin. 2016;9:26. https://doi.org/10.1186/s13072-016-0075-3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet. 2012;13:705–19. https://doi.org/10.1038/nrg3273.

    Article  CAS  PubMed  Google Scholar 

  18. Chelaru F, Smith L, Goldstein N, Bravo HC. Epiviz: interactive visual analytics for functional genomics data. Nat Methods. 2014;11:938–40. https://doi.org/10.1038/nmeth.3038.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics. 2010;26:2204–7. https://doi.org/10.1093/bioinformatics/btq351.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Raney BJ, et al. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC genome browser. Bioinformatics. 2014;30:1003–5. https://doi.org/10.1093/bioinformatics/btt637.

    Article  CAS  PubMed  Google Scholar 

  21. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92. https://doi.org/10.1093/bib/bbs017.

    Article  CAS  PubMed  Google Scholar 

  22. Bellacosa A, Drohat AC. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. DNA Repair. 2015;32:33–42. https://doi.org/10.1016/j.dnarep.2015.04.011.

  23. Chen T, Li E. Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol. 2004;60:55–89. https://doi.org/10.1016/S0070-2153(04)60003-2.

    Article  CAS  PubMed  Google Scholar 

  24. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  25. Chen ZX, Mann JR, Hsieh CL, Riggs AD, Chedin F. Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem. 2005;95:902–17. https://doi.org/10.1002/jcb.20447.

    Article  CAS  PubMed  Google Scholar 

  26. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem. 2004;279:27816–23. https://doi.org/10.1074/jbc.M400181200.

    Article  CAS  PubMed  Google Scholar 

  27. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502:472–9. https://doi.org/10.1038/nature12750.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14:341–56. https://doi.org/10.1038/nrm3589.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Kuroda A, et al. Insulin gene expression is regulated by DNA methylation. PLoS One. 2009;4:e6953. https://doi.org/10.1371/journal.pone.0006953.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Nan X, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9. https://doi.org/10.1038/30764.

    Article  PubMed  CAS  Google Scholar 

  31. Lister R, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22. https://doi.org/10.1038/nature08514.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Maunakea AK, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7. https://doi.org/10.1038/nature09165.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Yang X, et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26:577–90. https://doi.org/10.1016/j.ccr.2014.07.028.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Hellman A, Chess A. Gene body-specific methylation on the active X chromosome. Science. 2007;315:1141–3. https://doi.org/10.1126/science.1136352.

    Article  PubMed  CAS  Google Scholar 

  35. Shukla S, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479:74–9. https://doi.org/10.1038/nature10442.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Jones P, The A. DNA methylation paradox. Trends Genet. 1999;15:34–7.

    Article  PubMed  CAS  Google Scholar 

  37. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–68. https://doi.org/10.1038/nbt.1685.

    Article  PubMed  CAS  Google Scholar 

  38. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39:61–9. https://doi.org/10.1038/ng1929.

    Article  PubMed  CAS  Google Scholar 

  39. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92. https://doi.org/10.1038/nrg3230.

    Article  PubMed  CAS  Google Scholar 

  40. Neri F, et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature. 2017;543:72–7. https://doi.org/10.1038/nature21373.

    Article  PubMed  CAS  Google Scholar 

  41. Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012;13:115–26. https://doi.org/10.1038/nrm3274.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Doi A, et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41:1350–3. https://doi.org/10.1038/ng.471.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Irizarry RA, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41:178–86. https://doi.org/10.1038/ng.298.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Ji H, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010;467:338–42. https://doi.org/10.1038/nature09367.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Straussman R, et al. Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol. 2009;16:564–71. https://doi.org/10.1038/nsmb.1594.

    Article  PubMed  CAS  Google Scholar 

  46. Kacem S, Feil R. Chromatin mechanisms in genomic imprinting. Mamm Genome. 2009;20:544–56. https://doi.org/10.1007/s00335-009-9223-4.

    Article  PubMed  CAS  Google Scholar 

  47. Hashibe M, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the international head and neck Cancer epidemiology consortium. J Natl Cancer Inst. 2007;99:777–89. https://doi.org/10.1093/jnci/djk179.

    Article  PubMed  Google Scholar 

  48. Maasland DH, van den Brandt PA, Kremer B, Goldbohm RA, Schouten LJ. Alcohol consumption, cigarette smoking and the risk of subtypes of head-neck cancer: results from the Netherlands Cohort Study. BMC Cancer. 2014;14:187. https://doi.org/10.1186/1471-2407-14-187.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Shaw R, Beasley N. Aetiology and risk factors for head and neck cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130:S9–S12. https://doi.org/10.1017/S0022215116000360.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Busch R, et al. Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations. Respir Res. 2016;17:143. https://doi.org/10.1186/s12931-016-0459-8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91:1194–210.

    Article  PubMed  CAS  Google Scholar 

  52. Ligthart S, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016;17:255. https://doi.org/10.1186/s13059-016-1119-5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Sundar IK, et al. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin Epigenetics. 2017;9:38. https://doi.org/10.1186/s13148-017-0335-5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Joehanes R, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9:436–47. https://doi.org/10.1161/CIRCGENETICS.116.001506.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109. https://doi.org/10.1038/nrg3142.

    Article  PubMed  CAS  Google Scholar 

  56. Ziller MJ, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500:477–81. https://doi.org/10.1038/nature12433.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Wan ES, et al. Smoking-associated site-specific differential methylation in buccal mucosa in the COPDGene study. Am J Respir Cell Mol Biol. 2015;53:246–54. https://doi.org/10.1165/rcmb.2014-0103OC.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Sankaranarayanan R, Masuyer E, Swaminathan R, Ferlay J, Whelan S. Head and neck cancer: a global perspective on epidemiology and prognosis. Anticancer Res. 1998;18:4779–86.

    PubMed  CAS  Google Scholar 

  59. Wang TH, Hsia SM, Shih YH, Shieh TM. Association of smoking, alcohol use, and betel quid chewing with epigenetic aberrations in cancers. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18061210.

  60. Scott RS. Epstein-Barr virus: a master epigenetic manipulator. Curr Opin Virol. 2017;26:74–80. https://doi.org/10.1016/j.coviro.2017.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen CJ, et al. Multiple risk factors of nasopharyngeal carcinoma: Epstein-Barr virus, malarial infection, cigarette smoking and familial tendency. Anticancer Res. 1990;10:547–53.

    CAS  PubMed  Google Scholar 

  62. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science. 1985;228:187–90.

    Article  CAS  PubMed  Google Scholar 

  63. Belinsky SA, et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA. 1998;95:11891–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arantes LM, de Carvalho AC, Melendez ME, Carvalho AL, Goloni-Bertollo EM. Methylation as a biomarker for head and neck cancer. Oral Oncol. 2014;50:587–92. https://doi.org/10.1016/j.oraloncology.2014.02.015.

    Article  CAS  PubMed  Google Scholar 

  65. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163–7. https://doi.org/10.1038/5947.

    Article  PubMed  CAS  Google Scholar 

  66. Sadikovic B, Al-Romaih K, Squire JA, Zielenska M. Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics. 2008;9:394–408. https://doi.org/10.2174/138920208785699580.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Burri N, et al. Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab Invest. 2001;81:217–29.

    Article  PubMed  CAS  Google Scholar 

  68. Esteller M, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.

    Article  PubMed  CAS  Google Scholar 

  69. Myohanen SK, Baylin SB, Herman JG. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res. 1998;58:591–3.

    PubMed  CAS  Google Scholar 

  70. Esteller M, et al. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res. 2001;61:4689–92.

    CAS  PubMed  Google Scholar 

  71. Esteller M, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 2000;60:2368–71.

    CAS  PubMed  Google Scholar 

  72. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38–55. https://doi.org/10.1016/j.cell.2013.03.008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Ishida E, et al. Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol. 2005;41:614–22. https://doi.org/10.1016/j.oraloncology.2005.02.003.

    Article  CAS  PubMed  Google Scholar 

  74. Pierini S, et al. Promoter hypermethylation of CDKN2A, MGMT, MLH1, and DAPK genes in laryngeal squamous cell carcinoma and their associations with clinical profiles of the patients. Head Neck. 2014;36:1103–8. https://doi.org/10.1002/hed.23413.

    Article  PubMed  Google Scholar 

  75. Fan CY. Epigenetic alterations in head and neck cancer: prevalence, clinical significance, and implications. Curr Oncol Rep. 2004;6:152–61.

    Article  PubMed  Google Scholar 

  76. Chen K, et al. Methylation of multiple genes as diagnostic and therapeutic markers in primary head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2007;133:1131–8. https://doi.org/10.1001/archotol.133.11.1131.

    Article  PubMed  Google Scholar 

  77. Demokan S, Dalay N. Role of DNA methylation in head and neck cancer. Clin Epigenetics. 2011;2:123–50. https://doi.org/10.1007/s13148-011-0045-3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Ovchinnikov DA, et al. Tumor-suppressor gene promoter hypermethylation in saliva of head and neck Cancer patients. Transl Oncol. 2012;5:321–6.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rettori MM, et al. Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients. Carcinogenesis. 2013;34:20–7. https://doi.org/10.1093/carcin/bgs311.

    Article  CAS  PubMed  Google Scholar 

  80. Rettori MM, et al. TIMP3 and CCNA1 hypermethylation in HNSCC is associated with an increased incidence of second primary tumors. J Transl Med. 2013;11:316. https://doi.org/10.1186/1479-5876-11-316.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. van Kempen PM, et al. Differences in methylation profiles between HPV-positive and HPV-negative oropharynx squamous cell carcinoma: a systematic review. Epigenetics. 2014;9:194–203. https://doi.org/10.4161/epi.26881.

    Article  CAS  PubMed  Google Scholar 

  82. Colacino JA, et al. Comprehensive analysis of DNA methylation in head and neck squamous cell carcinoma indicates differences by survival and clinicopathologic characteristics. PLoS One. 2013;8:e54742. https://doi.org/10.1371/journal.pone.0054742.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Marsit CJ, et al. Epigenetic profiling reveals etiologically distinct patterns of DNA methylation in head and neck squamous cell carcinoma. Carcinogenesis. 2009;30:416–22. https://doi.org/10.1093/carcin/bgp006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Marsit CJ, McClean MD, Furniss CS, Kelsey KT. Epigenetic inactivation of the SFRP genes is associated with drinking, smoking and HPV in head and neck squamous cell carcinoma. Int J Cancer. 2006;119:1761–6. https://doi.org/10.1002/ijc.22051.

    Article  CAS  PubMed  Google Scholar 

  85. Poage GM, et al. Global hypomethylation identifies Loci targeted for hypermethylation in head and neck cancer. Clin Cancer Res. 2011;17:3579–89. https://doi.org/10.1158/1078-0432.CCR-11-0044.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Richards KL, et al. Genome-wide hypomethylation in head and neck cancer is more pronounced in HPV-negative tumors and is associated with genomic instability. PLoS One. 2009;4:e4941. https://doi.org/10.1371/journal.pone.0004941.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Sartor MA, et al. Genome-wide methylation and expression differences in HPV(+) and HPV(−) squamous cell carcinoma cell lines are consistent with divergent mechanisms of carcinogenesis. Epigenetics. 2011;6:777–87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Degli Esposti D, et al. Unique DNA methylation signature in HPV-positive head and neck squamous cell carcinomas. Genome Med. 2017;9:33. https://doi.org/10.1186/s13073-017-0419-z.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96:8681–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Garcia-Manero G, et al. DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin Cancer Res. 2002;8:2217–24.

    CAS  PubMed  Google Scholar 

  91. Fang F, et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med. 2011;3:75ra25. https://doi.org/10.1126/scitranslmed.3001875.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Noushmehr H, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22. https://doi.org/10.1016/j.ccr.2010.03.017.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. van den Bent MJ, et al. A hypermethylated phenotype is a better predictor of survival than MGMT methylation in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. Clin Cancer Res. 2011;17:7148–55. https://doi.org/10.1158/1078-0432.CCR-11-1274.

    Article  PubMed  Google Scholar 

  94. Weisenberger DJ, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93. https://doi.org/10.1038/ng1834.

    Article  CAS  PubMed  Google Scholar 

  95. Figueroa ME, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67. https://doi.org/10.1016/j.ccr.2010.11.015.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Hughes LA, et al. The CpG island methylator phenotype: what’s in a name? Cancer Res. 2013;73:5858–68. https://doi.org/10.1158/0008-5472.CAN-12-4306.

    Article  CAS  PubMed  Google Scholar 

  97. Jithesh PV, et al. The epigenetic landscape of oral squamous cell carcinoma. Br J Cancer. 2013;108:370–9. https://doi.org/10.1038/bjc.2012.568.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13:335–40.

    Article  CAS  PubMed  Google Scholar 

  99. Liu WM, Maraia RJ, Rubin CM, Schmid CW. Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res. 1994;22:1087–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Paschos K, Allday MJ. Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol. 2010;18:439–47. https://doi.org/10.1016/j.tim.2010.07.003.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Rosl F, Arab A, Klevenz B, zur Hausen H. The effect of DNA methylation on gene regulation of human papillomaviruses. J Gen Virol. 1993;74(Pt 5):791–801. https://doi.org/10.1099/0022-1317-74-5-791.

    Article  PubMed  Google Scholar 

  102. Lechner M, et al. Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma. Genome Med. 2013;5:15. https://doi.org/10.1186/gm419.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Banister CE, Liu C, Pirisi L, Creek KE, Buckhaults PJ. Identification and characterization of HPV-independent cervical cancers. Oncotarget. 2017;8:13375–86. https://doi.org/10.18632/oncotarget.14533.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Rothbart SB, et al. An interactive database for the assessment of histone antibody specificity. Mol Cell. 2015;59:502–11. https://doi.org/10.1016/j.molcel.2015.06.022.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Mikkelsen TS, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448:553–60. https://doi.org/10.1038/nature06008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Pauler FM, et al. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res. 2009;19:221–33. https://doi.org/10.1101/gr.080861.108.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Volkel P, Angrand PO. The control of histone lysine methylation in epigenetic regulation. Biochimie. 2007;89:1–20. https://doi.org/10.1016/j.biochi.2006.07.009.

    Article  CAS  PubMed  Google Scholar 

  108. Barski A, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37. https://doi.org/10.1016/j.cell.2007.05.009.

    Article  CAS  PubMed  Google Scholar 

  109. Jones B, et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 2008;4:e1000190. https://doi.org/10.1371/journal.pgen.1000190.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Chen C, et al. Abnormal histone acetylation and methylation levels in esophageal squamous cell carcinomas. Cancer Investig. 2011;29:548–56. https://doi.org/10.3109/07357907.2011.597810.

    Article  CAS  Google Scholar 

  111. Zhang K, et al. Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities. J Proteome. 2015;112:180–9. https://doi.org/10.1016/j.jprot.2014.09.004.

    Article  CAS  Google Scholar 

  112. Esteller M Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet. 2007;16 Spec No 1:R50–R59, doi:https://doi.org/10.1093/hmg/ddm018.

  113. Lopez-Serra L, Esteller M. Proteins that bind methylated DNA and human cancer: reading the wrong words. Br J Cancer. 2008;98:1881–5. https://doi.org/10.1038/sj.bjc.6604374.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Thomson JP, et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464:1082–6. https://doi.org/10.1038/nature08924.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Zhang E, et al. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res. 2017;45:3086–101. https://doi.org/10.1093/nar/gkw1247.

    Article  CAS  PubMed  Google Scholar 

  116. Barneda-Zahonero B, Parra M. Histone deacetylases and cancer. Mol Oncol. 2012;6:579–89. https://doi.org/10.1016/j.molonc.2012.07.003.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Sakuma T, et al. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int J Oncol. 2006;29:117–24.

    CAS  PubMed  Google Scholar 

  118. Feinberg AP, Koldobskiy MA, Gondor A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17:284–99. https://doi.org/10.1038/nrg.2016.13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Kantidakis T, et al. Mutation of cancer driver MLL2 results in transcription stress and genome instability. Genes Dev. 2016;30:408–20. https://doi.org/10.1101/gad.275453.115.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Ortega-Molina A, et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. 2015;21:1199–208. https://doi.org/10.1038/nm.3943.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Chen Y et al. MLL2, not MLL1, plays a major role in sustaining MLL-rearranged acute myeloid Leukemia. Cancer Cell. 2017;31:755–770 e756. doi:https://doi.org/10.1016/j.ccell.2017.05.002.

  122. Rayasam GV, et al. NSD1 is essential for early post-implantation development and has a catalytically active SET domain. EMBO J. 2003;22:3153–63. https://doi.org/10.1093/emboj/cdg288.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Nimura K, et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature. 2009;460:287–91. https://doi.org/10.1038/nature08086.

    Article  CAS  PubMed  Google Scholar 

  124. Kuo AJ, et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell. 2011;44:609–20. https://doi.org/10.1016/j.molcel.2011.08.042.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Lu T, et al. Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc Natl Acad Sci USA. 2010;107:46–51. https://doi.org/10.1073/pnas.0912493107.

    Article  PubMed  Google Scholar 

  126. Morishita M, di Luccio E. Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta. 2011;1816:158–63. https://doi.org/10.1016/j.bbcan.2011.05.004.

    Article  CAS  PubMed  Google Scholar 

  127. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene. 2004;23:4225–31. https://doi.org/10.1038/sj.onc.1207118.

    Article  CAS  PubMed  Google Scholar 

  128. El-Naggar AK, et al. Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am J Pathol. 1997;151:1767–74.

    PubMed Central  PubMed  CAS  Google Scholar 

  129. Merlo A, et al. 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1:686–92.

    Article  CAS  PubMed  Google Scholar 

  130. Reed AL, et al. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 1996;56:3630–3.

    CAS  PubMed  Google Scholar 

  131. Diesch J, et al. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics. 2016;8:71. https://doi.org/10.1186/s13148-016-0237-y.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Heerboth S, et al. Use of epigenetic drugs in disease: an overview. Genet Epigenet. 2014;6:9–19. https://doi.org/10.4137/GEG.S12270.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5:37–50. https://doi.org/10.1038/nrd1930.

    Article  PubMed  CAS  Google Scholar 

  134. Greenblatt SM, Nimer SD. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia. 2014;28:1396–406. https://doi.org/10.1038/leu.2014.94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  135. Saba HI. Decitabine in the treatment of myelodysplastic syndromes. Ther Clin Risk Manag. 2007;3:807–17.

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics. 2015;7:127. https://doi.org/10.1186/s13148-015-0157-2.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  137. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12:1247–52. https://doi.org/10.1634/theoncologist.12-10-1247.

    Article  PubMed  CAS  Google Scholar 

  138. San-Miguel JF, et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014;15:1195–206. https://doi.org/10.1016/S1470-2045(14)70440-1.

    Article  PubMed  CAS  Google Scholar 

  139. O’Connor OA, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33:2492–9. https://doi.org/10.1200/JCO.2014.59.2782.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Viet CT, et al. Decitabine rescues cisplatin resistance in head and neck squamous cell carcinoma. PLoS One. 2014;9:e112880. https://doi.org/10.1371/journal.pone.0112880.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  141. Glasspool RM, et al. A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer. Br J Cancer. 2014;110:1923–9. https://doi.org/10.1038/bjc.2014.116.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  142. Biktasova A, et al. Demethylation therapy as a targeted treatment for human papillomavirus-associated head and neck cancer. Clin Cancer Res. 2017;23:7276–87. https://doi.org/10.1158/1078-0432.CCR-17-1438.

    Article  PubMed  CAS  Google Scholar 

  143. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42. https://doi.org/10.1038/nrg2485.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1:19–25. https://doi.org/10.1016/j.molonc.2007.01.001.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  145. Marks PA, Dokmanovic M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs. 2005;14:1497–511. https://doi.org/10.1517/13543784.14.12.1497.

    Article  CAS  PubMed  Google Scholar 

  146. Blumenschein GR Jr, et al. Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Investig New Drugs. 2008;26:81–7. https://doi.org/10.1007/s10637-007-9075-2.

    Article  CAS  Google Scholar 

  147. Brunetto AT, et al. First-in-human, pharmacokinetic and pharmacodynamic phase I study of Resminostat, an oral histone deacetylase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2013;19:5494–504. https://doi.org/10.1158/1078-0432.CCR-13-0735.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Haigentz M Jr, et al. Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer. Oral Oncol. 2012;48:1281–8. https://doi.org/10.1016/j.oraloncology.2012.05.024.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Galloway TJ, et al. A phase I study of CUDC-101, a multitarget inhibitor of HDACs, EGFR, and HER2, in combination with chemoradiation in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:1566–73. https://doi.org/10.1158/1078-0432.CCR-14-2820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bally AP, Austin JW, Boss JM. Genetic and epigenetic regulation of PD-1 expression. J Immunol. 2016;196:2431–7. https://doi.org/10.4049/jimmunol.1502643.

    Article  PubMed  CAS  Google Scholar 

  151. Chiappinelli KB, Zahnow CA, Ahuja N, Baylin SB. Combining epigenetic and immunotherapy to combat cancer. Cancer Res. 2016;76:1683–9. https://doi.org/10.1158/0008-5472.CAN-15-2125.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  152. Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013;20:1147–55. https://doi.org/10.1038/nsmb.2669.

    Article  PubMed  CAS  Google Scholar 

  153. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9. https://doi.org/10.1038/nature09784.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34. https://doi.org/10.1038/nm.4036.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  155. Kurmasheva RT, et al. Initial testing (stage 1) of tazemetostat (EPZ-6438), a novel EZH2 inhibitor, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2017;64. https://doi.org/10.1002/pbc.26218.

  156. Peri S, et al. NSD1- and NSD2-damaging mutations define a subset of laryngeal tumors with favorable prognosis. Nat Commun. 2017;8:1772. https://doi.org/10.1038/s41467-017-01877-7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Rogawski DS, Grembecka J, Cierpicki T. H3K36 methyltransferases as cancer drug targets: rationale and perspectives for inhibitor development. Future Med Chem. 2016;8:1589–607. https://doi.org/10.4155/fmc-2016-0071.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  158. Esteller M, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4. https://doi.org/10.1056/NEJM200011093431901.

    Article  PubMed  CAS  Google Scholar 

  159. Vogelstein B, et al. Cancer genome landscapes. Science. 2013;339:1546–58. https://doi.org/10.1126/science.1235122.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  160. Chung CH, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell. 2004;5:489–500.

    Article  PubMed  CAS  Google Scholar 

  161. Walter V, et al. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS One. 2013;8:e56823. https://doi.org/10.1371/journal.pone.0056823.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Chung CH, et al. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappaB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res. 2006;66:8210–8. https://doi.org/10.1158/0008-5472.CAN-06-1213.

    Article  PubMed  CAS  Google Scholar 

  163. Buffa FM, Harris AL, West CM, Miller CJ. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer. 2010;102:428–35. https://doi.org/10.1038/sj.bjc.6605450.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  164. Eschrich SA, et al. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys. 2009;75:489–96. https://doi.org/10.1016/j.ijrobp.2009.06.014.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  165. Roepman P, et al. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet. 2005;37:182–6. https://doi.org/10.1038/ng1502.

    Article  PubMed  CAS  Google Scholar 

  166. Toustrup K, et al. Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 2011;71:5923–31. https://doi.org/10.1158/0008-5472.CAN-11-1182.

    Article  CAS  PubMed  Google Scholar 

  167. Winter SC, et al. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res. 2007;67:3441–9. https://doi.org/10.1158/0008-5472.CAN-06-3322.

    Article  PubMed  CAS  Google Scholar 

  168. Onken MD, et al. A surprising cross-species conservation in the genomic landscape of mouse and human oral cancer identifies a transcriptional signature predicting metastatic disease. Clin Cancer Res. 2014;20:2873–84. https://doi.org/10.1158/1078-0432.CCR-14-0205.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  169. Overgaard J, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish head and neck Cancer study (DAHANCA) protocol 5-85. Radiother Oncol. 1998;46:135–46.

    Article  PubMed  CAS  Google Scholar 

  170. Toustrup K, et al. Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck. Radiother Oncol. 2012;102:122–9. https://doi.org/10.1016/j.radonc.2011.09.010.

    Article  PubMed  CAS  Google Scholar 

  171. Chalise P, Koestler DC, Bimali M, Yu Q, Fridley BL. Integrative clustering methods for high-dimensional molecular data. Transl Cancer Res. 2014;3:202–16. https://doi.org/10.3978/j.issn.2218-676X.2014.06.03.

    Article  PubMed  Google Scholar 

  172. Mo Q, et al. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics. 2018;19:71–86. https://doi.org/10.1093/biostatistics/kxx017.

    Article  PubMed  Google Scholar 

  173. Mo Q, et al. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc Natl Acad Sci USA. 2013;110:4245–50. https://doi.org/10.1073/pnas.1208949110.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  174. Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009;25:2906–12. https://doi.org/10.1093/bioinformatics/btp543.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  175. Zhang S, et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res. 2012;40:9379–91. https://doi.org/10.1093/nar/gks725.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  176. Choufani S, et al. NSD1 mutations generate a genome-wide DNA methylation signature. Nat Commun. 2015;6:10207. https://doi.org/10.1038/ncomms10207.

    Article  PubMed  CAS  Google Scholar 

  177. Baubec T, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015;520:243–7. https://doi.org/10.1038/nature14176.

    Article  CAS  PubMed  Google Scholar 

  178. Li H, et al. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem. 2006;281:19489–500. https://doi.org/10.1074/jbc.M513249200.

    Article  CAS  PubMed  Google Scholar 

  179. Papillon-Cavanagh S, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 2017;49:180–5. https://doi.org/10.1038/ng.3757.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  180. Goffin J, Eisenhauer E. DNA methyltransferase inhibitors-state of the art. Ann Oncol. 2002;13:1699–716.

    Article  CAS  PubMed  Google Scholar 

  181. Plummer R, et al. Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin Cancer Res. 2009;15:3177–83. https://doi.org/10.1158/1078-0432.CCR-08-2859.

    Article  CAS  PubMed  Google Scholar 

  182. Halby L, et al. Rapid synthesis of new DNMT inhibitors derivatives of procainamide. ChemBioChem. 2012;13:157–65. https://doi.org/10.1002/cbic.201100522.

    Article  CAS  PubMed  Google Scholar 

  183. Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res. 2006;66:2794–800. https://doi.org/10.1158/0008-5472.CAN-05-2821.

    Article  CAS  PubMed  Google Scholar 

  184. Esquela-Kerscher A, Slack FJ. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69. https://doi.org/10.1038/nrc1840.

    Article  CAS  PubMed  Google Scholar 

  185. D’Angelo B, Benedetti E, Cimini A, Giordano A. MicroRNAs: a puzzling tool in cancer diagnostics and therapy. Anticancer Res. 2016;36:5571–5. https://doi.org/10.21873/anticanres.11142.

    Article  CAS  PubMed  Google Scholar 

  186. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68:2094–105. https://doi.org/10.1158/0008-5472.CAN-07-5194.

    Article  CAS  PubMed  Google Scholar 

  187. Reis PP, et al. Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol Cancer. 2010;9:238. https://doi.org/10.1186/1476-4598-9-238.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  188. Allegra E, Trapasso S, Pisani D, Puzzo L. The role of BMI1 as a biomarker of cancer stem cells in head and neck cancer: a review. Oncology. 2014;86:199–205. https://doi.org/10.1159/000358598.

    Article  CAS  PubMed  Google Scholar 

  189. An Y, Ongkeko WM. ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol. 2009;5:1529–42. https://doi.org/10.1517/17425250903228834.

    Article  CAS  PubMed  Google Scholar 

  190. Grimm M, et al. ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma. Eur J Cancer. 2012;48:3186–97. https://doi.org/10.1016/j.ejca.2012.05.027.

    Article  CAS  PubMed  Google Scholar 

  191. Hoffmeyer K, et al. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012;336:1549–54. https://doi.org/10.1126/science.1218370.

    Article  CAS  PubMed  Google Scholar 

  192. Momparler RL, Cote S. Targeting of cancer stem cells by inhibitors of DNA and histone methylation. Expert Opin Investig Drugs. 2015;24:1031–43. https://doi.org/10.1517/13543784.2015.1051220.

    Article  CAS  PubMed  Google Scholar 

  193. Naik PP, et al. Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncol. 2016;62:122–35. https://doi.org/10.1016/j.oraloncology.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  194. Shukla S, Meeran SM. Epigenetics of cancer stem cells: pathways and therapeutics. Biochim Biophys Acta. 2014;1840:3494–502. https://doi.org/10.1016/j.bbagen.2014.09.017.

    Article  CAS  PubMed  Google Scholar 

  195. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467:86–90. https://doi.org/10.1038/nature09284.

    Article  CAS  PubMed  Google Scholar 

  196. Gaykalova DA, et al. Outlier analysis defines zinc finger gene family DNA methylation in Tumors and saliva of head and neck Cancer patients. PLoS One. 2015;10:e0142148. https://doi.org/10.1371/journal.pone.0142148.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraj Peri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peri, S., Andrews, A.J., Bhatia, A., Mehra, R. (2018). Epigenetic Changes and Epigenetic Targets in Head and Neck Cancer. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78762-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78762-6_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78761-9

  • Online ISBN: 978-3-319-78762-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics