Skip to main content

Stochastic Geometry for Automatic Assessment of Ki-67 Index in Breast Cancer Preparations

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10814))

Included in the following conference series:

  • 1594 Accesses

Abstract

Proliferative activity of cells is one of the most critical factors in breast cancer diagnosis. It is used to evaluate tumor cell progression and to predict treatment responses in chemotherapy. Ki-67 is a nuclear biomarker commonly used to measure cellular proliferation rate. The ratio between the number of Ki-67 positive tumor nuclei and all tumor nuclei defines Ki-67 index. However, manual cell counting is tedious and time consuming because hundreds of nuclei must be labeled. To speed up the analysis process, nuclei can be segmented automatically and then classified based on staining color. Unfortunately, segmentation of individual nuclei is a big challenge because they often create complex clusters comprised of many touching and overlapping nuclei. To deal with complexities and ambiguities of cytological material we propose a generative model which approximates nuclei using ellipses. We assume that the process of generating a cytological sample has stochastic nature. Therefore it is possible to reconstruct this process using marked point process tuned according to observed cytological sample. To verify the potential of the proposed method, we applied it to determine Ki-67 index in breast cancer immunochemistry samples. The results of experiments have shown that Ki-67 indices determined by proposed approach correlate well with those computed manually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abubakar, M., et al.: High-throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium. J. Pathol: Clin. Res. 2(3), 138–153 (2016)

    Google Scholar 

  2. Baddeley, A.J., van Lieshout, M.N.M.: ICM for object recognition. In: Dodge, Y., Whittaker, J. (eds.) Computational Statistics, vol. 2, pp. 271–286. Physica-Verlag HD, Heidelberg (1992). https://doi.org/10.1007/978-3-642-48678-4_34

    Chapter  Google Scholar 

  3. Baddeley, A.J., van Lieshout, M.N.M.: Stochastic geometry models in high-level vision. In: Mardia, K.V., Kanji, G.K. (eds.) Advances in Applied Statistics, Statistics and Images, vol. 1, pp. 231–256. Carfax Publishing, Abingdon (1993)

    Google Scholar 

  4. Bembenik, R., Jóźwicki, W., Protaziuk, G.: Methods for mining co-location patterns with extended spatial objects. Int. J. Appl. Math. Comput. Sci. 27(4), 681–695 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheang, M.C., Chia, S.K., Voduc, D., Leung, S., Snider, J.: Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst. 101(10), 736–750 (2009)

    Article  Google Scholar 

  6. Descombes, X.: Stochastic Geometry for Image Analysis. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  7. Descombes, X.: Multiple objects detection in biological images using a marked point process framework. Methods 115(Suppl. C), 2–8 (2017)

    Article  Google Scholar 

  8. Kowal, M., Filipczuk, P.: Nuclei segmentation for computer-aided diagnosis of breast cancer. Int. J. Appl. Math. Comput. Sci. 24(1), 19–31 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. van Lieshout, M.N.M.: Markov point processes and their applications in high-level imaging. Bull. Int. Stat. Inst. 56, 559–576 (1995)

    MATH  Google Scholar 

  10. Markowsky, P., Reith, S., Zuber, T.E., König, R., Rohr, K., Schnörr, C.: Segmentation of cell structures using model-based set covering with iterative reweighting. In: 2017 IEEE 14th International Symposium Biomedical Imaging (ISBI 2017), pp. 392–396, April 2017

    Google Scholar 

  11. Mazurek, P., Oszutowska-Mazurek, D.: From the slit-island method to the Ising model: analysis of irregular grayscale objects. Int. J. Appl. Math. Comput. Sci. 24(1), 49–63 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)

    Google Scholar 

  13. Saha, M., Chakraborty, C., Arun, I., Ahmed, R., Chatterjee, S.: An advanced deep learning approach for Ki-67 stained hotspot detection and proliferation rate scoring for prognostic evaluation of breast cancer. Sci. Rep. 7(1), 3213 (2017)

    Article  Google Scholar 

  14. Strauss, D.J.: A model for clustering. Biometrika 62(2), 467–475 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tuominen, V.J., Ruotoistenmäki, S., Viitanen, A., Jumppanen, M., Isola, J.: ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 12(4), R56 (2010). https://doi.org/10.1186/bcr2615

    Article  Google Scholar 

  16. Vörös, A., Csörgő, E., Nyári, T., Cserni, G.: An intra- and interobserver reproducibility analysis of the Ki-67 proliferation marker assessment on core biopsies of breast cancer patients and its potential clinical implications. Pathobiology 80, 111–118 (2013). https://doi.org/10.1159/000343795

    Article  Google Scholar 

  17. Xing, F., Su, H., Neltner, J., Yang, L.: Automatic Ki-67 counting using robust cell detection and online dictionary learning. IEEE Trans. Biomed. Eng. 61(3), 859–870 (2014)

    Article  Google Scholar 

  18. Yeo, M.K., Kim, H.E., Kim, S.H., Chae, B.J., Song, B.J., Lee, A.: Clinical usefulness of the free web-based image analysis application ImmunoRatio for assessment of Ki-67 labelling index in breast cancer. J. Clin. Pathol. 70(8), 715–719 (2017). http://jcp.bmj.com/content/70/8/715

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by National Science Centre, Poland (2015/17/B/ST7/03704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Kowal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kowal, M., Skobel, M., Korbicz, J., Monczak, R. (2018). Stochastic Geometry for Automatic Assessment of Ki-67 Index in Breast Cancer Preparations. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10814. Springer, Cham. https://doi.org/10.1007/978-3-319-78759-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78759-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78758-9

  • Online ISBN: 978-3-319-78759-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics