Skip to main content

Applications of Remote Sensing in Land Resource Inventory and Mapping

  • Chapter
  • First Online:
Geospatial Technologies in Land Resources Mapping, Monitoring and Management

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 21))

Abstract

Comprehensive information on soil resources in terms of type, extent, physical and chemical properties and limitations/capabilities is required for optimal management of land resources and monitoring changes in land qualities. The technological advancements in the remote sensing have revolutionized the land resource inventory and mapping process. The advantage of remote sensing data is that it provides synoptic view of the terrain, which enables to understand the relief, land use and drainage conditions for better delineation of landform-soil units. Further, digital elevation models (DEMs) have facilitated surface parameterization by attributes such as elevation, slope, aspect, flow accumulation, plan and profile curvature to obtain relief or surface topography units. Hyperspectral remote sensing and soil spectroscopy data can be analysed using statistical and chemometric techniques to derive information about wide variety of soil attributes, which can be used for digital soil mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballantine JAC, Okin GS, Prentiss DE, Roberts DA (2005) Mapping North African landforms using continental scale unmixing of MODIS imagery. Remote Sens Environ 97(4):470–483

    Article  Google Scholar 

  • Bartholomeus H, Epema G, Schaepman ME (2007) Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy. Int J Appl Earth Obs Geoinf 9(2):194–203

    Article  Google Scholar 

  • Ben-dor E, Banin A (1995) Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J 59:364–372

    Article  Google Scholar 

  • Ben-Dor E, Patkin K, Banin A, Karnieli A (2002) Mapping of several soil properties using DAIS-7915 hyperspectral scanner data — a case study over clayey soil in Israel. Int J Remote Sens 23(6):1043–1062

    Article  Google Scholar 

  • Ben-Dor E, Taylor RG, Hill J, Demattê JAM, Whiting ML, Chabrillat S, Sommer S (2008) Imaging spectrometry for soil applications. In: Sparks DL (ed) Advances in agronomy, vol 97. Academic Press, Elsevier, pp 321–392

    Google Scholar 

  • Carré F, McBratney AB, Mayr T, Montanarella L (2007) Digital soil assessments: beyond DSM. Geoderma 142(1–2):69–79

    Article  Google Scholar 

  • Chang CW, Laird DA (2002) Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci 167(2):110–116

    Article  Google Scholar 

  • Chattaraj S, Srivastava R, Barthwal AK, Giri JD, Mohekar DS, Reddy GPO, Daripa A, Chatterji S, Singh SK (2017) Semi-automated object-based landform classification modelling in a part of the Deccan Plateau of Central India. Int J Remote Sens 38(17):4855–4867

    Article  Google Scholar 

  • Clark RN (1999) Spectroscopy of rocks & minerals, & principles of spectroscopy. In: Rencz AN (ed) Manual of remote sensing, volume 3, remote sensing for the earth sciences. Wiley, New York, pp 3–58

    Google Scholar 

  • Dalal RC, Henry RJ (1986) Simultaneous determination of moisture, organic carbon, & total nitrogen by near infrared reflectance spectrophotometry. Soil Sci Soc Am J 50:120–123

    Article  Google Scholar 

  • Dobos E, Micheli E, Baumgardner MF, Biehl L, Helt T (2000) Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma 97(3–4):367–391

    Article  Google Scholar 

  • Farifteh J, Farshad A, George RJ (2006) Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 130(3–4):191–206

    Article  Google Scholar 

  • Farr TG (2000) The shuttle radar topography mission. In: IEEE aerospace conference proceedings, p 63

    Google Scholar 

  • Genú AM, Demattê JAM (2006) Determination of soil attribute contents by means of reflected electromagnetic energy. Int J Remote Sens 27(21):4807–4818

    Article  Google Scholar 

  • Giri JD, Nagaraju MSS, Srivastava R, Singh DS, Nasre RA, Barthwal AK, Mohekar DS (2016) Accuracy assessment of large-scale soil map prepared by remote sensing approach. Int J Agric Stat Sci 12(1):229–237

    Google Scholar 

  • Gomez C, Viscarra Rossel RA, McBratney AB (2008) Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study. Geoderma 146(3–4):403–411

    Article  Google Scholar 

  • Hahn C, Gloaguen R (2008) Estimation of soil types by non linear analysis of remote sensing data. Nonlinear Process Geophys 15(1):115–126

    Article  Google Scholar 

  • Hewitt AE (1993) Predictive modelling in soil survey. Soils Fertilizers 56(3):10

    Google Scholar 

  • Hudson BD (1992) The soil survey as paradigm-based science. Soil Sci Soc Am J 56(3):836–841

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • ICAR-NBSS&LUP (2005) Reflectance libraries for development of soil sensor for periodic assessment of state of soil resources. NATP Project Report (NBSS No. 835), National Bureau of Soil Survey & Land Use Planning, Nagpur

    Google Scholar 

  • Jenny H (1941) Factors of soil formation, a system of quantitative pedology. McGraw-Hill, New-York

    Google Scholar 

  • Kriebel KT (1978) Average variability of the radiation reflected by vegetated surfaces due to differing irradiations. Remote Sens Environ 7(1):81–83

    Article  Google Scholar 

  • Lagacherie P, McBratney AB, Voltz M (2007) Digital soil mapping: an introductory perspective. Developments in soil science, 31. Elsevier, Amsterdam

    Google Scholar 

  • Lozano-Garcia DF, Fernandez RN, Johannsen CJ (1991) Assessment of regional biomass–soil relationships using vegetation indexes. IEEE Trans Geosci Remote Sens 29(2):331–339

    Article  Google Scholar 

  • Manchanda ML, Kudrat M, Tiwari AK (2002) Soil survey and mapping using remote sensing. Trop Ecol 43(1):61–74

    Google Scholar 

  • McBratney AB, Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117(1–2):3–52

    Article  Google Scholar 

  • McKenzie NJ, Ryan PJ (1999) Spatial prediction of soil properties using environmental correlation. Geoderma 89(1–2):67–94

    Article  Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57(2):443–452

    Article  Google Scholar 

  • Nagaraju MSS, Kumar N, Srivastava R, Das SN (2014) Cadastral-level soil mapping in basaltic terrain using Cartosat-1-derived products. Int J Remote Sens 35:3764–3781

    Article  Google Scholar 

  • Nanni MR, Demattê JAM (2006) Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci Soc Am J 70(2):393–407

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48(2):119–126

    Article  Google Scholar 

  • Ravisankar T, Srivastava R (2009) Satellite imagery- their interpretation and applications in soil survey and mapping. In: Bhattacharyya, T. Sarkar, D. & Pal, D.K. (Eds), Soil Survey Manual, NBSS Pub 146, ICAR-National Bureau of Soil Survey & Land Use Planning, Nagpur, India, pp 59–71

    Google Scholar 

  • Richter R, Schläpfer D (2002) Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction. Int J Remote Sens 23(13):2631–2649

    Article  Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55(2):95–107

    Article  Google Scholar 

  • Rossel RAV, McBratney AB (1998) Laboratory evaluation of a proximal sensing technique for simultaneous measurement of soil clay and water content. Geoderma 85:19–39

    Article  Google Scholar 

  • Salisbury JW, D’Aria DM (1992) Infrared (8–14 μm) remote sensing of soil particle size. Remote Sens Environ 42(2):157–165

    Article  Google Scholar 

  • Saxena RK, Verma KS, Chary GR, Srivastava R, Barthwal AK (2000) IRS-1C data application in watershed characterization and management. Int J Remote Sens 21(17):3197–3208

    Article  Google Scholar 

  • Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66:988–998

    Article  Google Scholar 

  • Singh D, Herlin I, Berroir JP, Silva EF, Simoes MM (2004) An approach to correlate NDVI with soil colour for erosion process using NOAA/AVHRR data. Adv Space Res 33(3):328–332

    Article  Google Scholar 

  • Sommer M, Wehrhan M, Zipprich M, Weller U, Castell W z, Ehrich S, Tandler B, Selige T (2003) Hierarchical data fusion for mapping soil units at field scale. Geoderma 112(3–4):179–196

    Article  Google Scholar 

  • Srivastava R, Saxena RK (2004) Technique of large-scale soil mapping in basaltic terrain using satellite remote sensing. Int J Remote Sens 25(4):679–688

    Article  Google Scholar 

  • Srivastava R, Sarkar D, Mukhopadhayay SS, Sood A, Singh M, Nasre RA, Dhale SA (2015) Development of hyperspectral model for rapid monitoring of soil organic carbon under precision farming in the indo-gangetic plains of Punjab, India. J Indian Soc Remote Sens 43(4):751–759

    Article  Google Scholar 

  • Srivastava R, Sethi M, Yadav RK, Bundela DS, Singh M, Chattaraj S, Singh SK, Nasre RA, Bishnoi SR, Dhale S, Mohekar DS, Barthwal AK (2017) Visible-near infrared reflectance spectroscopy for rapid characterization of salt-affected soil in the indo-Gangetic Plains of Haryana, India. J Indian Soc Remote Sens 45(2):307–315

    Article  Google Scholar 

  • Stoner ER, Baumgardner MF (1981) Characteristic variations in reflectance of surface soils. Soil Sci Soc Am J 45(6):5

    Article  Google Scholar 

  • Sumfleth K, Duttmann R (2008) Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecol Indic 8(5):485–501

    Article  Google Scholar 

  • Tucker CJ, Vanpraet CL, Sharman MJ, van Ittersum G (1985) Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens Environ 17(3):233–249

    Article  Google Scholar 

  • Verma KS, Saxena RK, Barthwal AK, Deshmukh SN (1994) Remote sensing technique for mapping salt affected soils. Int J Remote Sens 9:1901–1914

    Article  Google Scholar 

  • Wang X, Xie H, Guan H, Zhou X (2007) Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. J Hydrol 340(1–2):12–24

    Article  Google Scholar 

  • Wilson JP, Gallant JC (2000) Digital terrain analysis. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 1–27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, R. (2018). Applications of Remote Sensing in Land Resource Inventory and Mapping. In: Reddy, G., Singh, S. (eds) Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-78711-4_16

Download citation

Publish with us

Policies and ethics