Skip to main content

Endogenous DAMPs, Category II: Constitutively Expressed, Injury-Modified Molecules (Cat. II DAMPs)

  • Chapter
  • First Online:
Book cover Damage-Associated Molecular Patterns in Human Diseases

Abstract

This chapter presents a collection of endogenous DAMPs in terms of constitutively expressed injury-modified molecules. The first class of this category refers to DAMPs released from the extracellular matrix. These molecules are defined to operate as bona fide DAMPs in the form of proteolytically cleaved fragments released as soluble modified proteins into the circulation. They include subclasses such as proteoglycans, glycosaminoglycans, and glycoproteins. The second class of this category refers to molecules, which act as cell-extrinsically expressed modified DAMPs. Subclasses of this class include membrane-bound oxidation-specific epitopes, which act as both antigens to be recognized by host T cells and DAMPs sensed by various pattern recognition molecules to promote innate immune responses, membrane-bound modified structural sugar patterns, and plasma-derived modified soluble molecules such as oxidized low-density lipoprotein. The third class refers to molecules, which operate as cell-intrinsically expressed modified DAMPs. Subclasses include nuclear DNA breaks, cytosolic mislocated/dislocated nuclear and mitochondrial DNA, cytosolic abnormally accumulating RNA, dyshomeostasis-associated perturbed molecular patterns such as reflected by intracellular potassium efflux, and accumulating metabolic molecules such as succinate.

All these DAMPs are of different structure, localization, and function and are sensed by various pattern recognition receptors. It is concluded that evolution, from the very beginning, has apparently taken care to furnish damaged mammalian cells with clear-cut stigmatic markers which enable the sensing molecules to properly recognize them. Such markers act as DAMPs to signal any infectious or sterile intracellular perturbation, cell stress, and tissue injury, wheresoever they are located and whatsoever their distinct nature is.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26163349

    Article  CAS  PubMed  Google Scholar 

  2. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of PGs. Matrix Biol. 2015;42:11–55. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0945053X15000402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Schaefer L, Schaefer RM. PGs: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339:237–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19513755

    Article  CAS  PubMed  Google Scholar 

  4. Frey H, Schroeder N, Manon-Jensen T, Iozzo RV, Schaefer L. Biological interplay between PGs and their innate immune receptors in inflammation. FEBS J. 2013;280:2165–79. Available from: http://doi.wiley.com/10.1111/febs.12145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Schaefer L, Tredup C, Gubbiotti MA, Iozzo RV. Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J. 2017;284:10–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27860287

    Article  CAS  PubMed  Google Scholar 

  6. Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem. 2009;284:24035–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19605353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nandadasa S, Foulcer S, Apte SS. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biol. 2014;35:34–41. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0945053X14000067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Andersson-Sjöland A, Hallgren O, Rolandsson S, Weitoft M, Tykesson E, Larsson-Callerfelt A-K, et al. Versican in inflammation and tissue remodeling: the impact on lung disorders. Glycobiology. 2015;25:243–51. Available from: https://academic.oup.com/glycob/article-lookup/doi/10.1093/glycob/cwu120

    Article  CAS  PubMed  Google Scholar 

  9. Wight TN. Provisional matrix: a role for versican and hyaluronan. Matrix Biol. 2017;60–61:38–56. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0945053X16303092

    Article  CAS  PubMed  Google Scholar 

  10. Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem. 2014;289:35237–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25391648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Almond A. Hyaluronan Cell Mol Life Sci. 2007;64:1591–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17502996

    Article  CAS  PubMed  Google Scholar 

  12. Kogan G, Soltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29:17–25. Available from: http://link.springer.com/10.1007/s10529-006-9219-z

    Article  CAS  PubMed  Google Scholar 

  13. Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol. 2007;23:435–61. Available from: http://www.annualreviews.org/doi/10.1146/annurev.cellbio.23.090506.123337

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg R, Meirovitz A, Hirshoren N, Bulvik R, Binder A, Rubinstein AM, et al. Versatile role of heparanase in inflammation. Matrix Biol. 2013;32:234–40. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0945053X13000279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Brennan TV, Lin L, Huang X, Cardona DM, Li Z, Dredge K, et al. Heparan sulphate, an endogenous TLR4 agonist, promotes acute GVHD after allogeneic stem cell transplantation. Blood. 2012;120:2899–908. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2011-07-368720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Goodall KJ, Poon IKH, Phipps S, Hulett MD. Soluble heparan sulphate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One. 2014;e109596:9. Available from: http://dx.plos.org/10.1371/journal.pone.0109596

    Google Scholar 

  17. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115:3861–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12244123

    Article  CAS  PubMed  Google Scholar 

  18. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2001;276:10229–33. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M100099200

    Article  CAS  PubMed  Google Scholar 

  19. Kelsh-Lasher RM, Ambesi A, Bertram C, McKeown-Longo PJ. Integrin α4β1 and TLR4 cooperate to induce fibrotic gene expression in response to fibronectin’s EDA domain. J Invest Dermatol. 2017;137:2505–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28842322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009;15:774–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19561617

    Article  CAS  PubMed  Google Scholar 

  21. Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal. 2009;3:287–310. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19838819

    Article  PubMed Central  PubMed  Google Scholar 

  22. Midwood KS, Hussenet T, Langlois B, Orend G. Advances in tenascin-C biology. Cell Mol Life Sci. 2011;68:3175–99. Available from: http://link.springer.com/10.1007/s00018-011-0783-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol. 2001;167:2887–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11509636

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Zheng C, Xu X, Zhao Y, Lu Y, Liu Z. Fibrinogen links podocyte injury with Toll-like receptor 4 and is associated with disease activity in FSGS patients. Nephrology. 2017;PMID:28407405. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28407405

    Google Scholar 

  25. Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci. 2008;121:255–64. Available from: http://jcs.biologists.org/cgi/doi/10.1242/jcs.006064

    Article  CAS  PubMed  Google Scholar 

  26. Mecham RP. Overview of extracellular matrix. Curr Protoc Cell Biol. 2012;10:1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23208544

    PubMed  Google Scholar 

  27. Hynes RO, Naba A. Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4:a004903. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21937732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Schaefer L. Personal communication.

    Google Scholar 

  29. Nastase MV, Young MF, Schaefer L. Biglycan. J Histochem Cytochem. 2012;60:963–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22821552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Merline R, Moreth K, Beckmann J, Nastase MV, Zeng-Brouwers J, Tralhão JG, et al. Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21. Sci Signal. 2011;4:ra75. Available from: http://stke.sciencemag.org/cgi/doi/10.1126/scisignal.2001868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nastase MV, Iozzo RV, Schaefer L. Key roles for the small leucine-rich PGs in renal and pulmonary pathophysiology. Biochim Biophys Acta. 2014;1840:2460–70. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304416514000464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wang W, Xu G-L, Jia W-D, Ma J-L, Li J-S, Ge Y-S, et al. Ligation of TLR2 by versican: a link between inflammation and metastasis. Arch Med Res. 2009;40:321–3. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0188440909000605

    Article  CAS  PubMed  Google Scholar 

  33. Kim S, Takahashi H, Lin W-W, Descargues P, Grivennikov S, Kim Y, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457:102–6. Available from: http://www.nature.com/doifinder/10.1038/nature07623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral MS. Toll-like receptor 2 activation promotes tumor dendritic cell dysfunction by regulating IL-6 and IL-10 receptor signaling. Cell Rep. 2015;13:2851–64. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211124715013844

    Article  CAS  PubMed  Google Scholar 

  35. Mitsui Y, Shiina H, Kato T, Maekawa S, Hashimoto Y, Shiina M, et al. Versican promotes tumor progression, metastasis and predicts poor prognosis in renal carcinoma. Mol Cancer Res. 2017;15:884–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28242813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Maishi N, Hida K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 2017;108:1921–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28763139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 2012;279:1177–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22333131

    Article  CAS  PubMed  Google Scholar 

  38. Tesar BM, Jiang D, Liang J, Palmer SM, Noble PW, Goldstein DR. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6:2622–35. Available from: http://doi.wiley.com/10.1111/j.1600-6143.2006.01537.x

    Article  CAS  PubMed  Google Scholar 

  39. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91:221–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21248167

    Article  CAS  PubMed  Google Scholar 

  40. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195:99–111. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11781369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev. 2016;97:186–203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26541745

    Article  CAS  PubMed  Google Scholar 

  42. Bishop JR, Schuksz M, Esko JD. Heparan sulphate PGs fine-tune mammalian physiology. Nature. 2007;446:1030–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17460664

    Article  CAS  PubMed  Google Scholar 

  43. Linhardt RJ. 2003 Claude S. Hudson Award address in carbohydrate chemistry. heparin: structure and activity. J Med Chem. 2003;46:2551–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12801218

    Article  CAS  PubMed  Google Scholar 

  44. Kahn SR, Lim W, Dunn AS, Cushman M, Dentali F, Akl EA, et al. Prevention of VTE in Nonsurgical Patients. Chest. 2012;141:e195S–226S. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22315261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Liu J, Linhardt RJ. Chemoenzymatic synthesis of heparan sulphate and heparin. Nat Prod Rep. 2014;31:1676–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25197032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulphate by Toll-like receptor 4. J Immunol. 2002;168:5233–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11994480

    Article  CAS  PubMed  Google Scholar 

  47. Land W. Allograft injury mediated by reactive oxygen species: from conserved proteins of drosophila to acute and chronic rejection of human transplants. Part III: interaction of (oxidative) stress-induced heat shock proteins with toll-like receptor-bearing cells. Transplant Rev. 2003;17:67–86. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0955470X0380006X

    Article  Google Scholar 

  48. Goodall KJ, Poon IKH, Phipps S, Hulett MD. Soluble heparan sulphate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. Srinivasula SM, editor. PLoS One. 2014;e109596:9. Available from: http://dx.plos.org/10.1371/journal.pone.0109596

    Google Scholar 

  49. Platt JL, Wrenshall LE, Johnson GB, Cascalho M. Heparan sulphate proteoglycan metabolism and the fate of grafted tissues. Adv Exp Med Biol. 2015;865:123–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26306447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Thakkar N, Yadavalli T, Jaishankar D, Shukla D. Emerging roles of heparanase in viral pathogenesis. Pathogens. 2017;6:43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28927006

    Article  PubMed Central  Google Scholar 

  51. Gamblin DP, Scanlan EM, Davis BG. Glycoprotein synthesis: an update. Chem Rev. 2009;109:131–63. Available from: http://pubs.acs.org/doi/abs/10.1021/cr078291i

    Article  CAS  PubMed  Google Scholar 

  52. George J, Wang SS, Sevcsik AM, Sanicola M, Cate RL, Koteliansky VE, et al. Transforming growth factor-beta initiates wound repair in rat liver through induction of the EIIIA-fibronectin splice isoform. Am J Pathol. 2000;156:115–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10623659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Liao Y-F, Gotwals PJ, Koteliansky VE, Sheppard D, Van De Water L. The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem. 2002;277:14467–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11839764

    Article  CAS  PubMed  Google Scholar 

  54. Rybak J-N, Roesli C, Kaspar M, Villa A, Neri D. The extra-domain A of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res. 2007;67:10948–57. Available from: http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-07-1436

    Article  CAS  PubMed  Google Scholar 

  55. Turner NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol. 2016;94:189–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26542796

    Article  CAS  PubMed  Google Scholar 

  56. Julier Z, de Titta A, Grimm AJ, Simeoni E, Swartz MA, Hubbell JA. Fibronectin EDA and CpG synergize to enhance antigen-specific Th1 and cytotoxic responses. Vaccine. 2016;34:2453–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27016652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lemańska-Perek A, Krzyżanowska-Gołąb D, Pupek M, Klimeczek P, Witkiewicz W, Kątnik-Prastowska I. Analysis of soluble molecular fibronectin-fibrin complexes and EDA-fibronectin concentration in plasma of patients with atherosclerosis. Inflammation. 2016;39:1059–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27022744

    PubMed  Google Scholar 

  58. Bhattacharyya S, Midwood KS, Yin H, Varga J. Toll-like receptor-4 signaling drives persistent fibroblast activation and prevents fibrosis resolution in scleroderma. Adv Wound Care. 2017;6:356–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29062592

    Article  Google Scholar 

  59. Gubán B, Vas K, Balog Z, Manczinger M, Bebes A, Groma G, et al. Abnormal regulation of fibronectin production by fibroblasts in psoriasis. Br J Dermatol. 2016;174:533–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26471375

    Article  CAS  PubMed  Google Scholar 

  60. Bhattacharyya S, Varga J. Endogenous ligands of TLR4 promote unresolving tissue fibrosis: implications for systemic sclerosis and its targeted therapy. Immunol Lett. 2018;195:9–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28964818

    Article  CAS  PubMed  Google Scholar 

  61. Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci. 2016;129:4321–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27875272

    Article  CAS  PubMed  Google Scholar 

  62. Piccinini AM, Zuliani-Alvarez L, Lim JMP, Midwood KS. Distinct microenvironmental cues stimulate divergent TLR4-mediated signaling pathways in macrophages. Sci Signal. 2016;9:ra86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27577261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Bergler T, Hoffmann U, Bergler E, Jung B, Banas MC, Reinhold SW, et al. Toll-like receptor 4 in experimental kidney transplantation: early mediator of endogenous danger signals. Nephron Exp Nephrol. 2012;121:e59–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23171961

    Article  CAS  PubMed  Google Scholar 

  64. Wang H, Zheng C, Xu X, Zhao Y, Lu Y, Liu Z. Fibrinogen links podocyte injury with Toll-like receptor 4 and is associated with disease activity in FSGS patients. Nephrology. 2017;2017:PMID: 28407405. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28407405

    Google Scholar 

  65. Mercer PF, Chambers RC. Coagulation and coagulation signalling in fibrosis. Biochim Biophys Acta Mol basis Dis. 2013;1832:1018–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23298546

    Article  CAS  Google Scholar 

  66. Papac-Milicevic N, Busch CJ-L, Binder CJ. Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis. Adv Immunol. 2016;131:1–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27235680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Weismann D, Binder CJ. The innate immune response to products of phospholipid peroxidation. Biochim Biophys Acta. 2012;1818:2465–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22305963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Tsiantoulas D, Perkmann T, Afonyushkin T, Mangold A, Prohaska TA, Papac-Milicevic N, et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J Lipid Res. 2015;56:440–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25525116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Binder CJ, Papac-Milicevic N, Witztum JL. Innate sensing of oxidation-specific epitopes in health and disease. Nat Rev Immunol. 2016;16:485–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27346802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bae YS, Oh H, Rhee SG, Do YY. Regulation of reactive oxygen species generation in cell signaling. Mol Cells. 2011;32:491–509. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22207195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24845678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1937131

    Article  CAS  PubMed  Google Scholar 

  73. Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338:668–76. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X05017766

    Article  CAS  PubMed  Google Scholar 

  74. Bochkov VN, Oskolkova OV, Birukov KG, Levonen A-L, Binder CJ, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal. 2010;12:1009–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19686040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA. Role of phospholipid oxidation products in atherosclerosis. Circ Res. 2012;111:778–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22935534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111:5944–72. Available from: http://pubs.acs.org/doi/abs/10.1021/cr200084z

    Article  CAS  PubMed  Google Scholar 

  77. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. 2014;2014:360438. Available from: http://www.hindawi.com/journals/omcl/2014/360438/

    Article  CAS  Google Scholar 

  78. Salomon RG. Structural identification and cardiovascular activities of oxidized phospholipids. Circ Res. 2012;111:930–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22982874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med. 2017;111:6–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28027924

    Article  CAS  PubMed  Google Scholar 

  80. Thomas CP, O’Donnell VB. Oxidized phospholipid signaling in immune cells. Curr Opin Pharmacol. 2012;12:471–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471489212000367

    Article  CAS  PubMed  Google Scholar 

  81. O’Donnell VB, Murphy RC. New families of bioactive oxidized phospholipids generated by immune cells: identification and signaling actions. Blood. 2012;120:1985–92. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2012-04-402826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Miller YI, Choi S-H, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res. 2011;108:235–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21252151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Chou M-Y, Fogelstrand L, Hartvigsen K, Hansen LF, Woelkers D, Shaw PX, et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J Clin Invest. 2009;119:1335–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19363291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001;13:114–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11154927

    Article  CAS  PubMed  Google Scholar 

  85. Shi T, Moulton VR, Lapchak PH, Deng G-M, Dalle Lucca JJ, Tsokos GC. Ischemia-mediated aggregation of the actin cytoskeleton is one of the major initial events resulting in ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2009;296:G339–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19095765

    Article  CAS  PubMed  Google Scholar 

  86. Chang M-K, Binder CJ, Miller YI, Subbanagounder G, Silverman GJ, Berliner JA, et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med. 2004;200:1359–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15583011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhang M, Alicot EM, Chiu I, Li J, Verna N, Vorup-Jensen T, et al. Identification of the target self-antigens in reperfusion injury. J Exp Med. 2006;203:141–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16390934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Zhang M, Carroll MC. Natural IgM-mediated innate autoimmunity: a new target for early intervention of ischemia-reperfusion injury. Expert Opin Biol Ther. 2007;7:1575–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17916049

    Article  CAS  PubMed  Google Scholar 

  89. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21088683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277:49982–8. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M209649200

    Article  CAS  PubMed  Google Scholar 

  91. Boullier A, Gillotte KL, Hörkkö S, Green SR, Friedman P, Dennis EA, et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J Biol Chem. 2000;275:9163–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10734051

    Article  CAS  PubMed  Google Scholar 

  92. Boullier A, Friedman P, Harkewicz R, Hartvigsen K, Green SR, Almazan F, et al. Phosphocholine as a pattern recognition ligand for CD36. J Lipid Res. 2005;46:969–76. Available from: http://www.jlr.org/lookup/doi/10.1194/jlr.M400496-JLR200

    Article  CAS  PubMed  Google Scholar 

  93. Kim Y-W, Yakubenko VP, West XZ, Gugiu GB, Renganathan K, Biswas S, et al. Receptor-mediated mechanism controlling tissue levels of bioactive lipid oxidation products. Circ Res. 2015;117:321–32. Available from: http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.305925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Duryee MJ, Freeman TL, Willis MS, Hunter CD, Hamilton BC, Suzuki H, et al. Scavenger receptors on sinusoidal liver endothelial cells are involved in the uptake of aldehyde-modified proteins. Mol Pharmacol. 2005;68:1423–30. Available from: http://molpharm.aspetjournals.org/cgi/doi/10.1124/mol.105.016121

    Article  CAS  PubMed  Google Scholar 

  95. Shechter I, Fogelman AM, Haberland ME, Seager J, Hokom M, Edwards PA. The metabolism of native and malondialdehyde-altered low density lipoproteins by human monocyte-macrophages. J Lipid Res. 1981;22:63–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6260883

    CAS  PubMed  Google Scholar 

  96. Kadl A, Sharma PR, Chen W, Agrawal R, Meher AK, Rudraiah S, et al. Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2. Free Radic Biol Med. 2011;51:1903–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0891584911005399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11:155–61. Available from: http://www.nature.com/doifinder/10.1038/ni.1836

    Article  CAS  PubMed  Google Scholar 

  98. Seimon TA, Nadolski MJ, Liao X, Magallon J, Nguyen M, Feric NT, et al. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 2010;12:467–82. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413110003463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Litvack ML, Palaniyar N. Review: soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: implications on exacerbating or resolving inflammation. Innate Immun. 2010;16:191–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20529971

    Article  CAS  PubMed  Google Scholar 

  100. Chang M-K, Binder CJ, Torzewski M, Witztum JL. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci U S A. 2002;99:13043–8. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.192399699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HPN, Charbel Issa P, et al. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature. 2011;478:76–81. Available from: http://www.nature.com/doifinder/10.1038/nature10449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Veneskoski M, Turunen SP, Kummu O, Nissinen A, Rannikko S, Levonen A-L, et al. Specific recognition of malondialdehyde and malondialdehyde acetaldehyde adducts on oxidized LDL and apoptotic cells by complement anaphylatoxin C3a. Free Radic Biol Med. 2011;51:834–43. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0891584911003455

    Article  CAS  PubMed  Google Scholar 

  103. Chou M-Y, Hartvigsen K, Hansen LF, Fogelstrand L, Shaw PX, Boullier A, et al. Oxidation-specific epitopes are important targets of innate immunity. J Intern Med. 2008;263:479–88. Available from: http://doi.wiley.com/10.1111/j.1365-2796.2008.01968.x

    Article  CAS  PubMed  Google Scholar 

  104. Lee H, Ko EH, Lai M, Wei N, Balroop J, Kashem Z, et al. Delineating the relationships among the formation of reactive oxygen species, cell membrane instability and innate autoimmunity in intestinal reperfusion injury. Mol Immunol. 2014;58:151–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24365749

    Article  CAS  PubMed  Google Scholar 

  105. Elvington A, Atkinson C, Kulik L, Zhu H, Yu J, Kindy MS, et al. Pathogenic natural antibodies propagate cerebral injury following ischemic stroke in mice. J Immunol. 2012;188:1460–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22198950

    Article  CAS  PubMed  Google Scholar 

  106. Atkinson C, Qiao F, Yang X, Zhu P, Reaves N, Kulik L, et al. Targeting pathogenic postischemic self-recognition by natural IgM to protect against posttransplantation cardiac reperfusion injury. Circulation. 2015;131:1171–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25825397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Sihag S, Haas MS, Kim KM, Guerrero JL, Beaudoin J, Alicot EM, et al. Natural IgM blockade limits infarct expansion and left ventricular dysfunction in a swine myocardial infarct model. Circ Cardiovasc Interv. 2016;9:e002547. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26671971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Marshall K, Jin J, Atkinson C, Alawieh A, Qiao F. Lei B, et al. Hepatology: Natural IgM initiates an inflammatory response important for both hepatic ischemia reperfusion injury and regeneration; 2017. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28880403

    Google Scholar 

  109. Farrar CA, Asgari E, Schwaeble WJ, Sacks SH. Which pathways trigger the role of complement in ischaemia/reperfusion injury? Front Immunol. 2012;3:341. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23181062

    Article  PubMed Central  PubMed  Google Scholar 

  110. Sheen JH, Heeger PS. Effects of complement activation on allograft injury. Curr Opin Organ Transplant. 2015;20:468–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26132735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Ryan BJ, Nissim A, Winyard PG. Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases. Redox Biol. 2014;2:715–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24955328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Napoletano C, Rughetti A, Agervig Tarp MP, Coleman J, Bennett EP, Picco G, et al. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Res. 2007;67:8358–67. Available from: http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-07-1035

    Article  CAS  PubMed  Google Scholar 

  113. van Vliet SJ, Saeland E, van Kooyk Y. Sweet preferences of MGL: carbohydrate specificity and function. Trends Immunol. 2008;29:83–90. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471490607003146

    Article  CAS  PubMed  Google Scholar 

  114. Franz S, Frey B, Sheriff A, Gaipl US, Beer A, Voll RE, et al. Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis. Cytom Part A. 2006;69A:230–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16498674

    Article  CAS  Google Scholar 

  115. Zizzari IG, Napoletano C, Battisti F, Rahimi H, Caponnetto S, Pierelli L, et al. MGL receptor and immunity: when the ligand can make the difference. J Immunol Res. 2015;2015:450695. Available from: http://www.hindawi.com/journals/jir/2015/450695/

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Harkewicz R, Hartvigsen K, Almazan F, Dennis EA, Witztum JL, Miller YI. Cholesteryl ester hydroperoxides are biologically active components of minimally oxidized low density lipoprotein. J Biol Chem. 2008;283:10241–51. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M709006200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Steinberg D, Witztum JL. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:2311–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21084697

    Article  CAS  PubMed  Google Scholar 

  118. Blatt AZ, Pathan S, Ferreira VP. Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev. 2016;274:172–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27782331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediat Inflamm. 2013;2013:1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23935243

    Article  CAS  Google Scholar 

  120. Kataoka H, Kume N, Miyamoto S, Minami M, Moriwaki H, Murase T, et al. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation. 1999;99:3110–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10377073

    Article  CAS  PubMed  Google Scholar 

  121. Gao S, Liu J. Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chron Dis Transl Med. 2017;3:89–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29063061

    Google Scholar 

  122. Cortes C, Ohtola JA, Saggu G, Ferreira VP. Local release of properdin in the cellular microenvironment: role in pattern recognition and amplification of the alternative pathway of complement. Front Immunol. 2012;3:412. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2012.00412/abstract

    PubMed  Google Scholar 

  123. Ferreira VP, Cortes C, Pangburn MK. Native polymeric forms of properdin selectively bind to targets and promote activation of the alternative pathway of complement. Immunobiology. 2010;215:932–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20382442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Xu W, Berger SP, Trouw LA, de Boer HC, Schlagwein N, Mutsaers C, et al. Properdin binds to late apoptotic and necrotic cells independently of C3b and regulates alternative pathway complement activation. J Immunol. 2008;180:7613–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18490764

    Article  CAS  PubMed  Google Scholar 

  125. Kemper C, Mitchell LM, Zhang L, Hourcade DE. The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis. Proc Natl Acad Sci U S A. 2008;105:9023–8. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.0801015105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017;31(4):213–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28215731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Roers A, Hiller B, Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity. 2016;44:739–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27096317

    Article  CAS  PubMed  Google Scholar 

  128. Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 2014;15:585–98. Available from: http://www.nature.com/doifinder/10.1038/nrg3729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Watts F. Repair of DNA double-strand breaks in heterochromatin. Biomol Ther. 2016;6:47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27999260

    Google Scholar 

  130. Härtlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U, Anugula S, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity. 2015;42:332–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25692705

    Article  CAS  PubMed  Google Scholar 

  131. Le Bert N, Lam AR, Ho SS, Shen YJ, Liu MM, Gasser S. STING-dependent cytosolic DNA sensor pathways regulate NKG2D ligand expression. Oncoimmunology. 2014;3:e29259. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25114832

    Article  PubMed Central  PubMed  Google Scholar 

  132. Mackenzie KJ, Carroll P, Martin C-A, Murina O, Fluteau A, Simpson DJ, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28738408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Rongvaux A, Jackson R, Harman CCD, Li T, West AP, de Zoete MR, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 2014;159:1563–77. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867414015141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553–7. Available from: http://www.nature.com/doifinder/10.1038/nature14156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Harrington JS, Choi AMK, Nakahira K. Mitochondrial DNA in sepsis. Curr Opin Crit Care. 2017;23:284–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28562385

    Article  PubMed Central  PubMed  Google Scholar 

  136. Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell. 2017;21:319–331.e8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28803918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. George CX, Ramaswami G, Li JB, Samuel CE. Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses. J Biol Chem. 2016;291:6158–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26817845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Miyake K, Shibata T, Ohto U, Shimizu T. Emerging roles of the processing of nucleic acids and Toll-like receptors in innate immune responses to nucleic acids. J Leukoc Biol. 2017;101:135–42. Available from: http://www.jleukbio.org/lookup/doi/10.1189/jlb.4MR0316-108R

    Article  CAS  PubMed  Google Scholar 

  139. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20192758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Wang Q, Li X, Qi R, Billiar T. RNA editing, ADAR1, and the innate immune response. Genes (Basel). 2017;8:41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28106799

    Article  CAS  Google Scholar 

  141. Rice GI, Kasher PR, Forte GMA, Mannion NM, Greenwood SM, Szynkiewicz M, et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet. 2012;44:1243–8. Available from: http://www.nature.com/doifinder/10.1038/ng.2414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Busoni VB, Lemale J, Dubern B, Frangi F, Bourgeois P, Orsi M, et al. IBD-like features in syndromic diarrhea/trichohepatoenteric syndrome. J Pediatr Gastroenterol Nutr. 2017;64:37–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28027214

    Article  CAS  PubMed  Google Scholar 

  143. Walkley CR, Li JB. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol. 2017;18:205. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29084589

    Article  PubMed Central  PubMed  Google Scholar 

  144. Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol. 2013;4:138. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23772226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Land WG. The role of damage-associated molecular patterns in human diseases: part I – promoting inflammation and immunity. Sultan Qaboos Univ Med J. 2015;15:e9–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25685392

    PubMed Central  PubMed  Google Scholar 

  146. Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol. 2017;17(3):208–14. Available from: http://www.nature.com/doifinder/10.1038/nri.2016.151

    Article  CAS  PubMed  Google Scholar 

  147. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23809161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Kim JH, Park JH, Eisenhut M, Yu JW, Shin JI. Inflammasome activation by cell volume regulation and inflammation-associated hyponatremia: a vicious cycle. Med Hypotheses. 2016;93:117–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27372869

    Article  CAS  PubMed  Google Scholar 

  149. van Vliet AR, Martin S, Garg AD, Agostinis P. The PERKs of damage-associated molecular patterns mediating cancer immunogenicity: from sensor to the plasma membrane and beyond. Semin Cancer Biol. 2015;33:74–85. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1044579X15000255

    Article  CAS  PubMed  Google Scholar 

  150. van Vliet AR, Agostinis P. When under pressure, get closer: PERKing up membrane contact sites during ER stress. Biochem Soc Trans. 2016;44:499–504. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27068961

    Article  CAS  PubMed  Google Scholar 

  151. Sihvola V, Levonen A-L. Keap1 as the redox sensor of the antioxidant response. Arch Biochem Biophys. 2017;617:94–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27769838

    Article  CAS  PubMed  Google Scholar 

  152. Kelly B, O’Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26045163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. O’Neill LAJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. 2016;213:15–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26694970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496:238–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23535595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Corcoran SE, O’Neill LAJ. HIF1α and metabolic reprogramming in inflammation. J Clin Invest. 2016;126(10):3699–707. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27571407

    Article  PubMed Central  PubMed  Google Scholar 

  156. Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J, Carballido-Perrig N, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008;9:1261–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18820681

    Article  CAS  PubMed  Google Scholar 

  157. Littlewood-Evans A, Sarret S, Apfel V, Loesle P, Dawson J, Zhang J, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med. 2016;213:1655–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27481132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Ariza AC, Deen PMT, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol. 2012;3:22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22649411

    Article  Google Scholar 

  159. de Castro Fonseca M, Aguiar CJ, da Rocha Franco JA, Gingold RN, Leite MF. GPR91: expanding the frontiers of Krebs cycle intermediates. Cell Commun Signal. 2016;14:3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26759054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Gilissen J, Jouret F, Pirotte B, Hanson J. Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther. 2016;159:56–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26808164

    CAS  PubMed  Google Scholar 

  161. Geubelle P, Gilissen J, Dilly S, Poma L, Dupuis N, Laschet C, et al. Identification and pharmacological characterization of succinate receptor agonists. Br J Pharmacol. 2017;174:796–808. Available from: http://doi.wiley.com/10.1111/bph.13738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Singh V, Sharma RK, Athilingam T, Sinha P, Sinha N, Thakur AK. NMR spectroscopy-based metabolomics of Drosophila model of Huntington’s disease suggests altered cell energetics. J Proteome Res. 2017;16:3863–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28871787

    Article  CAS  PubMed  Google Scholar 

  163. Guo Y, Xie C, Li X, Yang J, Yu T, Zhang R, et al. Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis. Nat Commun. 2017;8:15621. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28561074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Chen J, Saxena G, Mungrue IN, Lusis AJ, Shalev A. Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes. 2008;57:938–44. Available from: http://diabetes.diabetesjournals.org/cgi/doi/10.2337/db07-0715

    Article  CAS  PubMed  Google Scholar 

  165. Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem. 2004;279:30369–74. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M400549200

    Article  CAS  PubMed  Google Scholar 

  166. Monteiro HP, Ogata FT, Stern A. Thioredoxin promotes survival signaling events under nitrosative/oxidative stress associated with cancer development. Biom J. 2017;40:189–99. Available from: http://linkinghub.elsevier.com/retrieve/pii/S231941701730046X

    Google Scholar 

  167. Spindel ON, World C, Berk BC. Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxid Redox Signal. 2012;16:587–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21929372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Nakka VP, Prakash-babu P, Vemuganti R. Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries. Mol Neurobiol. 2016;53:532–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25482050

    Article  CAS  PubMed  Google Scholar 

  169. Lerner AG, Upton J-P, Praveen PVK, Ghosh R, Nakagawa Y, Igbaria A, et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012;16:250–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22883233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Oslowski CM, Hara T, O’Sullivan-Murphy B, Kanekura K, Lu S, Hara M, et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab. 2012;16:265–73. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413112002823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Anthony TG, Wek RC. TXNIP switches tracks toward a terminal UPR. Cell Metab. 2012;16:135–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550413112002896

    Article  CAS  PubMed  Google Scholar 

  172. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20023662

    Article  CAS  PubMed  Google Scholar 

  173. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science. 2010;327:296–300. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1184003

    Article  CAS  PubMed  Google Scholar 

  174. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 2010;11:897–904. Available from: http://www.nature.com/doifinder/10.1038/ni.1935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Hou Y, Wang Y, He Q, Li L, Xie H, Zhao Y, et al. Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res. 2018;336:32–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28851669

    Article  CAS  PubMed  Google Scholar 

  176. Li X, Kover KL, Heruth DP, Watkins DJ, Guo Y, Moore WV, et al. Thioredoxin-interacting protein promotes high-glucose-induced macrovascular endothelial dysfunction. Biochem Biophys Res Commun. 2017;493:291–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28890350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Wang X, Han Y, Zhang S, Cui N, Liu Z, Huang Z, et al. Associations of polymorphisms in TXNIP and gene-environment interactions with the risk of coronary artery disease in a Chinese Han population. J Cell Mol Med. 2016;20:2362–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27470124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Wang BF, Yoshioka J. The emerging role of thioredoxin-interacting protein in myocardial ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2017;22:219–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27807222

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Land, W.G. (2018). Endogenous DAMPs, Category II: Constitutively Expressed, Injury-Modified Molecules (Cat. II DAMPs). In: Damage-Associated Molecular Patterns in Human Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-78655-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78655-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78654-4

  • Online ISBN: 978-3-319-78655-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics