Skip to main content

Adjunctive Pharmacological Therapies in the Management of Proliferative Vitreoretinopathy

  • Chapter
  • First Online:
Book cover Retinal Detachment Surgery and Proliferative Vitreoretinopathy

Abstract

Proliferative vitreoretinopathy (PVR) is considered the major culprit of failed retinal detachment (RD) surgery, complicating 5–10% of RD repairs [1, 2]. PVR is an abnormal healing response, analogous to exaggerated scar formation [3]. It is characterized by membrane formation and contraction on both sides of the retinal surfaces or within the vitreous cavity, resulting in traction over the retina and recurrent RD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Claes C, Lafetá AP, Williamson TH. Proliferative vitreoretinopathy. In: Developments in ophthalmology, vol. 54. Berlin: Karger Publishers; 2014. p. 188–95. https://doi.org/10.1159/000360466.

    Chapter  Google Scholar 

  2. Pastor JC, Abrams G, Glazer L, et al. Proliferative vitreoretinopathy: an overview. Surv Ophthalmol. 1993;43(1):3–18. https://doi.org/10.1016/S0039-6257(98)00023-X.

    Article  Google Scholar 

  3. Banerjee PJ, Charteris DG, Wong D, Iv F. Pharmacotherapy of proliferative vitreoretinopathy. In: Sebag J, editor. Vitreous. New York: Springer; 2014. p. 523–36. https://doi.org/10.1007/978-1-4939-1086-1.

    Chapter  Google Scholar 

  4. Charteris DG. Proliferative vitreoretinopathy: pathobiology, surgical management, and adjunctive treatment. Br J Ophthalmol. 1995;79(10):953–60. https://doi.org/10.1136/bjo.79.10.953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patel NN, Bunce C, Asaria RH, Charteris DG. Resources involved in managing retinal detachment complicated by proliferative vitreoretinopathy. Retina. 2004;24(6):883–7.

    Article  PubMed  Google Scholar 

  6. Williamson TH. Proliferative vitreoretinopathy. In: Vitreoretinal surgery. Berlin: Springer; 2013. p. 189–208. https://doi.org/10.1007/978-3-642-31872-6_8.

    Chapter  Google Scholar 

  7. Banerjee PJ, Bunce C, Charteris DG. Ozurdex(registered trademark) (a slow-release dexamethasone implant) in proliferative vitreoretinopathy: study protocol for a randomised controlled trial. Trials. 2013;14(1):1–8. https://doi.org/10.1186/1745-6215-14-358.

    Article  CAS  Google Scholar 

  8. Banerjee PJ, Quartilho A, Bunce C, et al. Slow-release dexamethasone in proliferative vitreoretinopathy. Ophthalmology. 2017;124(6):757–67. https://doi.org/10.1016/j.ophtha.2017.01.021.

    Article  PubMed  Google Scholar 

  9. Wickham L, Bunce C, Wong D, McGurn D, Charteris DG. Randomized controlled trial of combined 5-fluorouracil and low-molecular-weight heparin in the management of unselected rhegmatogenous retinal detachments undergoing primary vitrectomy. Ophthalmology. 2007;114(4):698–704. https://doi.org/10.1016/j.ophtha.2006.08.042.

    Article  CAS  PubMed  Google Scholar 

  10. Barsam A, Sundaram V. Intravitreal low molecular weight heparin and 5-Fluorouracil for the prevention of proliferative vitreoretinopathy following retinal reattachment surgery. Cochrane Database Syst Rev. 2007;1:3–5. https://doi.org/10.1002/14651858.CD006421.

    Article  Google Scholar 

  11. Kumar A, Nainiwal S, Choudhary I, Tewari HK, Verma LK. Role of daunorubicin in inhibiting proliferative vitreoretinopathy after retinal detachment surgery. Clin Exp Ophthalmol. 2002;30(5):348–51. https://doi.org/10.1046/j.1442-9071.2002.00554.x.

    Article  PubMed  Google Scholar 

  12. Sadaka A, Giuliari GP, Press D. Proliferative vitreoretinopathy: current and emerging treatments. Clin Ophthalmol. 2012;6:1325–33. https://doi.org/10.2147/OPTH.S27896.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Charteris DG. Prevention of proliferative vitreoretinopathy. In: Kirchhof B, Wong D, editors. Vitreo retinal surgery, Essentials in ophthalmology, vol. 1. Berlin: Springer; 2005. p. 135–45. https://doi.org/10.1007/b138684.

    Chapter  Google Scholar 

  14. Khan MA, Brady CJ, Kaiser RS. Clinical management of proliferative vitreoretinopathy. Retina. 2015;35(2):165–75. https://doi.org/10.1097/IAE.0000000000000447.

    Article  PubMed  Google Scholar 

  15. Tousi A, Hasanpour H, Soheilian M. Intravitreal injection of bevacizumab in primary vitrectomy to decrease the rate of retinal redetachment: a randomized pilot study. J Ophthalmic Vis Res. 2016;11(3):271. https://doi.org/10.4103/2008-322X.188390.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hsu J, Khan MA, Shieh WS, et al. Effect of serial intrasilicone oil bevacizumab injections in eyes with recurrent proliferative vitreoretinopathy retinal detachment. Am J Ophthalmol. 2016;161:65–70e2. https://doi.org/10.1016/j.ajo.2015.09.029.

    Article  CAS  PubMed  Google Scholar 

  17. Pennock S, Kim D, Mukai S, et al. Ranibizumab is a potential prophylaxis for proliferative vitreoretinopathy, a nonangiogenic blinding disease. Am J Pathol. 2013;182(5):1659–70. https://doi.org/10.1016/j.ajpath.2013.01.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pennock S, Kazlauskas A. Vascular endothelial growth factor A competitively inhibits platelet-derived growth factor (PDGF)-dependent activation of PDGF receptor and subsequent signaling events and cellular responses. Mol Cell Biol. 2012;32(10):1955–66. https://doi.org/10.1128/MCB.06668-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheema RA, Peyman GA, Fang T, Jones A, Lukaris AD, Lim K. Triamcinolone acetonide as an adjuvant in the surgical treatment of retinal detachment with proliferative vitreoretinopathy. Ophthalmic Surg Lasers Imaging. 2007;38(5):365–70.

    PubMed  Google Scholar 

  20. Munir WM, Pulido JS, Sharma MC, Buerk BM. Intravitreal triamcinolone for treatment of complicated proliferative diabetic retinopathy and proliferative vitreoretinopathy. Can J Ophthalmol. 2005;40(5):598–604. https://doi.org/10.1016/S0008-4182(05)80052-3.

    Article  PubMed  Google Scholar 

  21. Rubsamen PE, Cousins SW. Therapeutic effect of periocular corticosteroids in experimental proliferative vitreoretinopathy. Retina. 1997;17(1):44–50. http://www.ncbi.nlm.nih.gov/pubmed/9051842

    Article  CAS  PubMed  Google Scholar 

  22. Koerner F, Merz A, Gloor B, Wagner E. Postoperative retinal fibrosis—a controlled clinical study of systemic steroid therapy. Graefes Arch Clin Exp Ophthalmol. 1982;219(6):268–71.

    Article  CAS  PubMed  Google Scholar 

  23. Ahmadieh H, Feghhi M, Tabatabaei H, Shoeibi N, Ramezani A, Mohebbi MR. Triamcinolone acetonide in silicone-filled eyes as adjunctive treatment for proliferative vitreoretinopathy. A randomized clinical trial. Ophthalmology. 2008;115(11):1938–43. https://doi.org/10.1016/j.ophtha.2008.05.016.

    Article  PubMed  Google Scholar 

  24. Yamakiri K, Sakamoto T, Noda Y, et al. One-year results of a multicenter controlled clinical trial of triamcinolone in pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol. 2008;246:959–66. https://doi.org/10.1007/s00417-008-0829-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dehghan MH, Ahmadieh H, Soheilian M, et al. Effect of oral prednisolone on visual outcomes and complications after scleral buckling. Eur J Ophthalmol. 2010;20(2):419–23.

    Article  PubMed  Google Scholar 

  26. Koerner F, Koerner-Stiefbold U, Garweg JG. Systemic corticosteroids reduce the risk of cellophane membranes after retinal detachment surgery: a prospective randomized placebo-controlled double-blind clinical trial. Graefes Arch Clin Exp Ophthalmol. 2012;250(7):981–7. https://doi.org/10.1007/s00417-011-1919-y.

    Article  CAS  PubMed  Google Scholar 

  27. Williams RG, Chang S, Comaratta MR, Simoni G. Does the presence of heparin and dexamethasone in the vitrectomy infusate reduce reproliferation in proliferative vitreoretinopathy? Graefes Arch Clin Exp Ophthalmol. 1996;234(8):496–503.

    Article  CAS  PubMed  Google Scholar 

  28. Bali E, Feron EJ, Peperkamp E, Veckeneer M, Mulder PG, Van Meurs JC. The effect of a preoperative subconjunctival injection of dexamethasone on blood-retinal barrier breakdown following scleral buckling retinal detachment surgery: a prospective randomized placebo-controlled double blind clinical trial. Graefes Arch Clin Exp Ophthalmol. 2010;248(7):957–62. https://doi.org/10.1007/s00417-010-1319-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuo HK, Chen YH, Wu PC, Kuo YH. The effects of Ozurdex® (dexamethasone intravitreal implant) on experimental proliferative vitreoretinopathy. Ophthalmologica. 2015;233:198–203. https://doi.org/10.1159/000371901.

    Article  CAS  PubMed  Google Scholar 

  30. Reibaldi M, Russo A, Longo A, et al. Rhegmatogenous retinal detachment with a high risk of proliferative vitreoretinopathy treated with episcleral surgery and an intravitreal dexamethasone 0.7-mg implant. Case Rep Ophthalmol. 2013;4(1):79–83. https://doi.org/10.1159/000351176.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sherif M, Wolfensberger TJ. Intraocular dexamethasone implant as adjunct to silicone oil tamponade for proliferative vitreoretinopathy. Klin Monatsbl Augenheilkd. 2017. https://doi.org/10.1055/s-0042-122384.

    Article  CAS  PubMed  Google Scholar 

  32. Feller DB, Weinreb RN. Breakdown and reestablishment of blood-aqueous barrier with laser trabeculoplasty. Arch Ophthalmol. 1984;102(4):537–8. https://doi.org/10.1001/archopht.1984.01040030415013.

    Article  CAS  PubMed  Google Scholar 

  33. Green E, Wilkins M, Bunce C, Wormald R. 5-Fluorouracil for glaucoma surgery. In: Wormald R, editor. Cochrane database of systematic reviews. Chichester, UK: Wiley; 2014. https://doi.org/10.1002/14651858.CD001132.pub2.

    Chapter  Google Scholar 

  34. Stern WH, Guerin CJ, Erickson PA, Lewis GP, Anderson DH, Fisher SK. Ocular toxicity of fluorouracil after vitrectomy. Am J Ophthalmol. 1983;96(1):43–51. https://doi.org/10.1016/0002-9394(83)90453-1.

    Article  CAS  PubMed  Google Scholar 

  35. Blumenkranz MS, Ophir A, Claflin AJ, Hajek A. Fluorouracil for the treatment of massive periretinal proliferation. Am J Ophthalmol. 1982;94(4):458–67. https://doi.org/10.1016/0002-9394(82)90239-2.

    Article  CAS  PubMed  Google Scholar 

  36. Kon CH, Occleston NL, Foss A, Sheridan C, Aylward GW, Khaw PT. Effects of single, short-term exposures of human retinal pigment epithelial cells to thiotepa or 5-fluorouracil: implications for the treatment of proliferative vitreoretinopathy. Br J Ophthalmol. 1998;82(5):554–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khaw PT, Sherwood MB, MacKay SL, Rossi MJ, Schultz G. Five-minute treatments with fluorouracil, floxuridine, and mitomycin have long-term effects on human Tenon’s capsule fibroblasts. Arch Ophthalmol. 1992;110(8):1150–4. https://doi.org/10.1001/archopht.1992.01080200130040.

    Article  CAS  PubMed  Google Scholar 

  38. Araie M, Nakano Y, Akahoshi T. Effects of subconjunctival 5-fluorouracil injections on the corneal endothelium and ciliary epithelium. Graefes Arch Clin Exp Ophthalmol. 1990;228(6):573–81.

    Article  CAS  PubMed  Google Scholar 

  39. Levy J, Tessler Z, Rosenthal G, et al. Toxic effects of subconjunctival 5-fluorouracil and mitomycin C on ciliary body of rats. Int Ophthalmol. 2001;24(4):199–203. https://doi.org/10.1023/A:1022591113520.

    Article  CAS  PubMed  Google Scholar 

  40. Blankenship GW. Evaluation of a single intravitreal injection of 5-fluorouracil in vitrectomy cases. Graefes Arch Clin Exp Ophthalmol. 1989;227(6):565–8. http://www.ncbi.nlm.nih.gov/pubmed/2696670

    Article  CAS  PubMed  Google Scholar 

  41. Blumenkranz MS, Hartzer MK, Iverson D. An overview of potential applications of heparin in vitreoretinal surgery. Retina. 1992;12(3 Suppl):S71–4.

    Article  CAS  PubMed  Google Scholar 

  42. Johnson RN, Blankenship G. A prospective, randomized, clinical trial of heparin therapy for postoperative intraocular fibrin. Ophthalmology. 1988;95(3):312–7. https://doi.org/10.1016/S0161-6420(88)33181-7.

    Article  CAS  PubMed  Google Scholar 

  43. Kondo H, Hayashi H, Oshima K. Fibrin prophylaxis with low molecular weight heparin during intraocular surgery. Jpn J Ophthalmic Surg. 1993;6:597.

    Google Scholar 

  44. Iverson DA, Katsura H, Hartzer MK, Blumenkranz MS. Inhibition of intraocular fibrin formation following infusion of low-molecular-weight heparin during vitrectomy. Arch Ophthalmol (Chicago, Ill 1960). 1991;109(3):405–9. https://doi.org/10.1001/archopht.1991.01080030107048.

    Article  CAS  Google Scholar 

  45. Yamashita Y, Mochizuki K, Sakai H, Torisaki M, Tanabe J. Retinal tolerance of intravitreal low-molecular-weight heparin, colchicine or interferon {β} determined by eye-cup ERG in albino rabbits. In: Ocular toxicology. Berlin: Springer; 1995. p. 85–91.

    Chapter  Google Scholar 

  46. Asaria RH. Adjuvant 5-fluorouracil and heparin prevents proliferative vitreoretinopathy. Ophthalmology. 2001;6420(1):1179–83.

    Article  Google Scholar 

  47. Shinohara K, Tanaka M, Sakuma T, Kobayashi Y. Efficacy of daunorubicin encapsulated in liposome for the treatment of proliferative vitreoretinopathy. Ophthal Surg Lasers Imaging. 2003;34(4):299–305.

    Google Scholar 

  48. Raczyńska K, Gebka A, Iwaszkiewicz-Bilikiewicz B, Ciechanowski C. Vitrectomy with daunorubicin. Klin Ocz. 2004;106(3 Suppl):481–4.

    Google Scholar 

  49. Wiedemann P, Hilgers RD, Bauer P, Heimann K. Adjunctive daunorubicin in the treatment of proliferative vitreoretinopathy: results of a multicenter clinical trial. Am J Ophthalmol. 1998;126(4):550–9. https://doi.org/10.1016/S0002-9394(98)00115-9.

    Article  CAS  PubMed  Google Scholar 

  50. Moysidis SN, Thanos A, Vavvas DG. Mechanisms of inflammation in proliferative vitreoretinopathy: from bench to bedside. Mediat Inflamm. 2012. https://doi.org/10.1155/2012/815937.

    Article  Google Scholar 

  51. Ghasemi Falavarjani K, Modarres M, Hadavandkhani A, Karimi Moghaddam A. Intra-silicone oil injection of methotrexate at the end of vitrectomy for advanced proliferative diabetic retinopathy. Eye. 2015;29(9):1199–203. https://doi.org/10.1038/eye.2015.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hardwig PW, Pulido JS, Bakri SJ. The safety of intraocular methotrexate in silicone-filled eyes. Retina. 2008;28(8):1082–6. https://doi.org/10.1097/IAE.0b013e3181754231.

    Article  PubMed  Google Scholar 

  53. Hardwig PW, Pulido JS, Erie JC, Baratz KH, Buettner H. Intraocular methotrexate in ocular diseases other than primary central nervous system lymphoma. Am J Ophthalmol. 2006;142(5):883–5.

    Article  CAS  PubMed  Google Scholar 

  54. Sadaka A, Sisk R, Osher J, Toygar O, Duncan M, Riemann C. Intravitreal methotrexate infusion for proliferative vitreoretinopathy. Clin Ophthalmol. 2016;10(4):1811–7. https://doi.org/10.2147/OPTH.S111893.

    Article  Google Scholar 

  55. Ghasemi Falavarjani K, Modarres M, Parvaresh M, Hashemi M, Naseripour M, Hadavand Khani A. Intra-silicone oil injection of methotrexate at the end of retinal reattachment surgery for severe proliferative vitreoretinopathy. In: Euretina Oral Presentation. Blackrock, Co Dublin: EURETINA; 2014.

    Google Scholar 

  56. Lemor M, Yeo JH, Glaser BM. Oral colchicine for the treatment of experimental traction retinal detachment. Arch Ophthalmol. 1986;104(8):1226–9. https://doi.org/10.1001/archopht.1986.01050200132067.

    Article  CAS  PubMed  Google Scholar 

  57. Berman DH, Gombos GM. Proliferative vitreoretinopathy: does oral low-dose colchicine have an inhibitory effect? A controlled study in humans. Ophthalmic Surg. 1989;20(4):268–72.

    CAS  PubMed  Google Scholar 

  58. Ahmadieh H, Nourinia R, Ragati Haghi A, et al. Oral colchicine for prevention of proliferative vitreoretinopathy: a randomized clinical trial. Acta Ophthalmol. 2015;93(2):e171–2. https://doi.org/10.1111/aos.12429.

    Article  CAS  PubMed  Google Scholar 

  59. Araiz JJ, Refojo MF, Arroyo MH, Leong FL, Albert DM, Tolentino FI. Antiproliferative effect of retinoic acid in intravitreous silicone oil in an animal model of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 1993;34(3):522–30.

    CAS  PubMed  Google Scholar 

  60. Takahashi M, Refojo MF, Nakagawa M, Veloso A, Leong FL. Antiproliferative effect of retinoic acid in 1% sodium hyaluronate in an animal model of PVR. Curr Eye Res. 1997;16(7):703–9.

    Article  CAS  PubMed  Google Scholar 

  61. Veloso AA, Kadrmas EF, Larrosa JM, Sandberg MA, Tolentino FI, Refojo MF. 13-Cis-retinoic acid in silicone-fluorosilicone copolymer oil in a rabbit model of proliferative vitreoretinopathy. Exp Eye Res. 1997;65(3):425–34. https://doi.org/10.1006/exer.1997.0355.

    Article  CAS  PubMed  Google Scholar 

  62. Fekrat S, de Juan E Jr, Campochiaro PA. The effect of oral 13-cis-retinoic acid on retinal redetachment after surgical repair in eyes with proliferative vitreoretinopathy. Ophthalmology. 1995;102(3):412–8. https://doi.org/10.1016/S0161-6420(95)31007-X.

    Article  CAS  PubMed  Google Scholar 

  63. Chang Y-C, Hu D-N, Wu W-C. Effect of oral 13-cis-retinoic acid treatment on postoperative clinical outcome of eyes with proliferative vitreoretinopathy. Am J Ophthalmol. 2008;146(3):440–6. https://doi.org/10.1016/j.ajo.2008.05.002.

    Article  CAS  PubMed  Google Scholar 

  64. Brady CJ, Kaiser RS. PVR: an update on prevention & management. Rev Ophthalmol. 2015;22(10):64.

    Google Scholar 

  65. Khan A, Hsu J. Proliferative vitreoretinopathy: current evidence and clinical pearls. Retin Physician. 2016;13:22–6.

    Google Scholar 

  66. Su CY, Chen MT, Wu WS, Wu WC. Concentration of vascular endothelial growth factor in the subretinal fluid of retinal detachment. J Ocul Pharmacol Ther. 2000;16(5):463–9.

    Article  CAS  PubMed  Google Scholar 

  67. Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M. Inverse levels of pigment epithelium-derived factor and vascular endothelial growth factor in the vitreous of eyes with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Am J Ophthalmol. 2002;133(6):851–2. https://doi.org/10.1016/S0002-9394(02)01406-X.

    Article  CAS  PubMed  Google Scholar 

  68. Rasier R, Gormus U, Artunay O, Yuzbasioglu E, Oncel M, Bahcecioglu H. Vitreous levels of VEGF, IL-8, and TNF-alpha in retinal detachment. Curr Eye Res. 2010;35(6):505–9. https://doi.org/10.3109/02713681003597248.

    Article  CAS  PubMed  Google Scholar 

  69. Ricker LJAG, Dieudonné SC, Kessels AGH, et al. Antiangiogenic isoforms of vascular endothelial growth factor predominate in subretinal fluid of patients with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Retina. 2012;32(1):54–9. https://doi.org/10.1097/IAE.0b013e31821800b9.

    Article  CAS  PubMed  Google Scholar 

  70. Citirik M, Kabatas EU, Batman C, Akin KO, Kabatas N. Vitreous vascular endothelial growth factor concentrations in proliferative diabetic retinopathy versus proliferative vitreoretinopathy. Ophthalmic Res. 2012;47(1):7–12. https://doi.org/10.1159/000324200.

    Article  CAS  PubMed  Google Scholar 

  71. Falavarjani KG, Hashemi M, Modarres M, Khani AH. Intrasilicone oil injection of bevacizumab at the end of retinal reattachment surgery for severe proliferative vitreoretinopathy. Eye. 2014;28(5):576–80. https://doi.org/10.1038/eye.2014.21.

    Article  CAS  Google Scholar 

  72. Zhao X, Xia S, Wang E, Chen Y. Efficacy of intravitreal injection of bevacizumab in vitrectomy for patients with proliferative vitreoretinopathy retinal detachment: a meta-analysis of prospective studies. Retina. 2017;1. https://doi.org/10.1097/IAE.0000000000001584.

    Article  CAS  PubMed  Google Scholar 

  73. Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: a new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res. 2016;51:125–55. https://doi.org/10.1016/j.preteyeres.2015.07.005.

    Article  PubMed  Google Scholar 

  74. Chiba C. The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res. 2014;123:107–14. https://doi.org/10.1016/j.exer.2013.07.009.

    Article  CAS  PubMed  Google Scholar 

  75. Kon CH, Occleston NL, Charteris D, Daniels J, Aylward GW, Khaw PT. A prospective study of matrix metalloproteinases in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 1998;39(8):1524–9.

    CAS  PubMed  Google Scholar 

  76. Ozerdem U, Mach-Hofacre B, Keefe K, et al. The effect of prinomastat (AG3340), a synthetic inhibitor of matrix metalloproteinases, on posttraumatic proliferative vitreoretinopathy. Ophthalmic Res. 2000;33(1):20–3.

    Article  Google Scholar 

  77. Ozerdem U, Mach-Hofacre B, Cheng L, et al. The effect of prinomastat (AG3340), a potent inhibitor of matrix metalloproteinases, on a subacute model of proliferative vitreoretinopathy. Curr Eye Res. 2000;20(6):447–53. https://doi.org/10.1076/0271-3683(200006)2061-YFT447.

    Article  CAS  PubMed  Google Scholar 

  78. Lei H, Velez G, Cui J, et al. N-Acetylcysteine suppresses retinal detachment in an experimental model of proliferative vitreoretinopathy. Am J Pathol. 2010;177(1):132–40. https://doi.org/10.2353/ajpath.2010.090604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Priglinger CS, Obermann J, Szober CM, et al. Epithelial-to-mesenchymal transition of RPE cells in vitro confers increased β1,6-N-glycosylation and increased susceptibility to galectin-3 binding. PLoS One. 2016;11(1):1–25. https://doi.org/10.1371/journal.pone.0146887.

    Article  CAS  Google Scholar 

  80. Ishikawa K, He S, Terasaki H, et al. Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy. Sci Rep. 2015;5:16386. https://doi.org/10.1038/srep16386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li M, Li H, Liu X, Xu D, Wang F. MicroRNA-29b regulates TGF-β1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells by targeting AKT2. Exp Cell Res. 2016;345(2):115–24. https://doi.org/10.1016/j.yexcr.2014.09.026.

    Article  CAS  PubMed  Google Scholar 

  82. Nagasaka Y, Kaneko H, Ye F, et al. Role of caveolin-1 for blocking the epithelial-mesenchymal transition in proliferative vitreoretinopathy. Investig Opthalmol Vis Sci. 2017;58(1):221. https://doi.org/10.1167/iovs.16-20513.

    Article  CAS  Google Scholar 

  83. Tamiya S, Kaplan HJ. Role of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Exp Eye Res. 2016;142:26–31. https://doi.org/10.1016/j.exer.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  84. Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? And gone? Clin Biochem. 1997;30(2):91–113. https://doi.org/10.1016/S0009-9120(96)00155-5.

    Article  CAS  PubMed  Google Scholar 

  85. Frémont L. Biological effects of resveratrol. Life Sci. 2000;66(8):663–73. https://doi.org/10.1016/S0024-3205(99)00410-5.

    Article  PubMed  Google Scholar 

  86. Chen C-L, Chen Y-H, Tai M-C, Liang C-M, Lu D-W, Chen J-T. Resveratrol inhibits transforming growth factor-β2-induced epithelial-to-mesenchymal transition in human retinal pigment epithelial cells by suppressing the Smad pathway. Drug Des Devel Ther. 2017;11:163–73. https://doi.org/10.2147/DDDT.S126743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Khanum BNMK, Guha R, Sur VP, et al. Pirfenidone inhibits post-traumatic proliferative vitreoretinopathy. Eye. 2017. https://doi.org/10.1038/eye.2017.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Szczesniak A-M, Porter RF, Toguri JT, et al. Cannabinoid 2 receptor is a novel anti-inflammatory target in experimental proliferative vitreoretinopathy. Neuropharmacology. 2017;113(Pt B):627–38. https://doi.org/10.1016/j.neuropharm.2016.08.030.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anvari, P., Falavarjani, K.G. (2018). Adjunctive Pharmacological Therapies in the Management of Proliferative Vitreoretinopathy. In: Spandau, U., Tomic, Z., Ruiz-Casas, D. (eds) Retinal Detachment Surgery and Proliferative Vitreoretinopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-78446-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78446-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78445-8

  • Online ISBN: 978-3-319-78446-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics