Skip to main content

Respiratory System and Mechanical Ventilation in Patients with CHD

  • Chapter
  • First Online:
  • 1367 Accesses

Abstract

To manage pediatric ventilation in children with congenital heart disease, the knowing of the many differences from adult respiratory system is not enough.

In fact, into the wide contest of pediatric cardiac defect, lung and cardiac systems work affecting continuously their function. Any interventions designed to improve the function of one system may lead to unwanted effects on another. For these reasons, to have an optimal manage on this interaction, a thorough understanding of respiratory mechanics, patient-ventilator interactions, intrapulmonary gas exchange mechanisms, hemodynamics under physiologic and pathophysiologic conditions, and a complete knowledge of the procedures are therefore required and mandatory.

In this chapter are summarized the bases of the respiratory system in pediatric patients, the physiology of cardiopulmonary interaction, the principal respiratory support methods, and finally the specific considerations for each pathological cardiopulmonary interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Inspiration time (IT) sec: neonates, 0.4; infants, 0.6; child, 0.7; adolescent and adult, 0.9.

References

  1. Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4:282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shekerdemian L, Bohn D. Cardiovascular effects of mechanical ventilation. Arch Dis Child. 1999;80:475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pinsky MR. Determinant of pulmonary flow variation during respiration. J Appl Physiol. 1984;56:1237–45.

    Article  CAS  PubMed  Google Scholar 

  4. Venus B, Cohen LE, Smith RA. Hemodynamics and intrathoracic pressure transmission during controlled mechanical ventilation and positive end-expiratory pressure in normal and low compliant lungs. Crit Care Med. 1988;16:686–90.

    Article  CAS  PubMed  Google Scholar 

  5. West J, Dollery C, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.

    Article  CAS  PubMed  Google Scholar 

  6. Sommer N, Dietrich A, Schermuly RT, Ghofrani HA, Gudermann T, Schulz R, Seeger W, Grimminger F, Weissmann N. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J. 2008;32:1639–51.

    Article  CAS  PubMed  Google Scholar 

  7. Thiene G, Frescura C. Anatomical and pathophysiological classification of congenital heart disease. Cardiovasc Pathol. 2010;19:259–74.

    Article  PubMed  Google Scholar 

  8. Mayfield S, Jauncey-Cooke J, Hough JL, Schibler A, Gibbons K, Bogossian F. High-flow nasal cannula therapy for respiratory support in children. Cochrane Database Syst Rev. 2014;(3):CD009850.

    Google Scholar 

  9. Lee JH, Rehder KJ, Williford L, Cheifetz IM, Turner DA. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med. 2013;39:247–57.

    Article  PubMed  Google Scholar 

  10. Caliumi-Pellegrini G, Agostino R, Orzalesi M, Nodari S, Marzetti G, Savignoni PG, Bucci G. Twin nasal cannula for administration of continuous positive airway pressure to newborn infants. Arch Dis Child. 1974;49:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rotta AT, de Carvalho WB. Mechanical ventilation following cardiac surgery in children. Curr Respir Med Rev. 2012;8(1):44–52.

    Article  Google Scholar 

  12. Bradley SM, Simsic JM, Mulvihill DM. Hyperventilation impairs oxygenation after bidirectional superior cavopulmonary connection. Circulation. 1998;98:II372–6; discussion II6–7

    CAS  PubMed  Google Scholar 

  13. Bradley SM, Simsic JM, Mulvihill DM. Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection. J Thorac Cardiovasc Surg. 2003;126:1033–9.

    Article  PubMed  Google Scholar 

  14. Gamillscheg A, Zobel G, Urlesberger B, et al. Inhaled nitric oxide in patients with critical pulmonary perfusion after Fontan-type procedures and bidirectional Glenn anastomosis. J Thorac Cardiovasc Surg. 1997;113:435–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Isgrò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isgrò, G., Silvetti, S. (2019). Respiratory System and Mechanical Ventilation in Patients with CHD. In: Flocco, S., Lillo, A., Dellafiore, F., Goossens, E. (eds) Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-78423-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78423-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78421-2

  • Online ISBN: 978-3-319-78423-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics