Skip to main content

Spontaneous Incidence of Ocular Abnormalities in Laboratory Animals

  • Chapter
  • First Online:

Abstract

This chapter provides incidence data on spontaneous ophthalmic abnormalities in the most commonly used species in toxicological and pharmacokinetic drug research. This data can be used to better differentiate test article-related ocular findings from background incidental lesions to enhance interpretation of ophthalmic findings, improve speed of drug development, reduce the number of studies that need to be repeated, and thus reduce the overall number of animals used in toxicology research and drug development.

Endorsed by the American College of Veterinary Ophthalmologists (ACVO).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reduce, refine, replace. Nat Immunol. 2010;11(11):971. https://doi.org/10.1038/ni1110-971.

  2. Aldinger KA, Sokoloff G, Rosenberg DM, Palmer AA, Millen KJ. Genetic variation and population substructure in outbred CD-1 mice: implications for genome-wide association studies. PLoS One. 2009;4(3):e4729. https://doi.org/10.1371/journal.pone.0004729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chia R, Achilli F, Festing MFW, Fisher EMC. The origins and uses of mouse outbred stocks. Nat Genet. 2005;37(11):1181–6. https://doi.org/10.1038/ng1665.

    Article  PubMed  CAS  Google Scholar 

  4. Mukaratirwa S, Petterino C, Naylor SW, Bradley A. Incidences and range of spontaneous lesions in the eye of Crl:CD-1(ICR)BR mice used in toxicity studies. Toxicol Pathol. 2014;43:530–5.

    Article  PubMed  Google Scholar 

  5. Hubert M, Gerin G, Durand-cavagna G. Spontaneous ophthalmic lesions in young swiss mice. Lab Anim Sci. 1999;49(3):232–40.

    PubMed  CAS  Google Scholar 

  6. Van Winkle TJ, Balk MW. Spontaneous corneal opacities in laboratory mice. Lab Anim Sci. 1986;36(3):248–55.

    PubMed  Google Scholar 

  7. Williams DL. Ocular disease in rats: a review. Vet Ophthalmol. 2002;5(3):183–91. https://doi.org/10.1046/j.1463-5224.2002.00251.x.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kuno H, Usui T, Eydelloth RS, Wolf ED. Spontaneous ophthalmic lesions in young Sprague-Dawley rats. J Vet Med Sci. 1991;53(4):607–14. https://doi.org/10.1292/jvms.53.607.

    Article  PubMed  CAS  Google Scholar 

  9. Wegener A, Jochims K. Clinical, histological and ultrastructural characteristics of a spontaneous corneal opacity in Sprague-Dawley rats. Ophthalmic Res. 1994;26(5):296–303.

    Article  PubMed  CAS  Google Scholar 

  10. Taradach C, Regnier B, Perraud J. Eye lesions in Sprague-Dawley rats: type and incidence in relation to age. Lab Anim. 1981;15(3):285–7.

    Article  CAS  PubMed  Google Scholar 

  11. Hubert MF, Gillet JP, Durand-Cavagna G. Spontaneous retinal changes in Sprague Dawley rats. Lab Anim Sci. 1994;44(6):561–7.

    PubMed  CAS  Google Scholar 

  12. Lin WL, Essner E. An electron microscopic study of retinal degeneration in Sprague-Dawley rats. Lab Anim Sci. 1987;37(2):180–6.

    PubMed  CAS  Google Scholar 

  13. White WJ, Lee CS. The development and maintenance of the Crl:CD(SD) IGS BR rat breeding system. Charles River Lab. 1998;8:8–14.

    Google Scholar 

  14. Pettersen JC, Morrissey RL, Saunders DR, et al. A 2-year comparison study of Crl:CD BR and Hsd:Sprague-Dawley SD rats. Toxicol Sci. 1996;33(2):196–211. https://doi.org/10.1093/toxsci/33.2.196.

    Article  CAS  Google Scholar 

  15. Wojcinski ZW, Houston B, Gragtmans B, Rogers J, Piscopo I, Baker K. A spontaneous corneal change in juvenile Wistar rats. J Comp Pathol. 1999;120(3):281–94. https://doi.org/10.1053/jcpa.1998.0276.

    Article  PubMed  CAS  Google Scholar 

  16. Eiben R. Frequency of spontaneous opacities in the cornea and lens observed in chronic toxicity studies in Wistar rats: experience with a standardized terminology glossary (Hattersheimer Kreis). Res Commun Pharmacol Toxicol. 2001;6(3-4):238–45.

    CAS  Google Scholar 

  17. Inagaki K, Koga H, Inoue K, Suzuki K, Suzuki H. Spontaneous intraocular hemorrhage in rats during postnatal ocular development. Comp Med. 2014;64(1):34–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Turner PV, Albassam MA. Susceptibility of rats to corneal lesions after injectable anesthesia. Comp Med. 2005;55(2):175–82.

    PubMed  CAS  Google Scholar 

  19. Lavail MM, Sidman RL. C57BL/6J mice with inherited retinal degeneration. Arch Ophthalmol. 1974;91(5):394–400. https://doi.org/10.1001/archopht.1974.03900060406015.

    Article  PubMed  CAS  Google Scholar 

  20. Cook CS, Sulik KK. Sequential scanning electron microscopic analyses of normal and spontaneously occurring abnormal ocular development in C57B1/6J mice. Scan Electron Microsc. 1986;3:1215–27.

    Google Scholar 

  21. Tyndall DA, Cook CS. Spontaneous, asymmetrical microphthalmia in C57Bl/6J mice. J Craniofac Genet Dev Biol. 1990;10(4):353–61.

    PubMed  CAS  Google Scholar 

  22. Smith RS, Roderick TH, Sundberg JP. Microphthalmia and associated abnormalities in inbred black mice. Lab Anim Sci. 1994;44(6):551–60.

    PubMed  CAS  Google Scholar 

  23. Kohale K, Ingle A, Kelkar A, Parab P. Dense cataract and microphthalmia—new spontaneous mutation in BALB/c mice. Comp Med. 2004;54(3):275–9.

    PubMed  CAS  Google Scholar 

  24. Park K, Seo JH. Study on the ophthalmic diseases in ICR mice and BALB/c mice. Exp Anim. 2006;55(2):83–90.

    Article  PubMed  CAS  Google Scholar 

  25. Bakthavachalu B, Kalanke S, Galande S, et al. Dense cataract and microphthalmia (dcm) in BALB/c mice is caused by mutations in the GJA8 locus. J Genet. 2010;89(2):147–54.

    Article  PubMed  CAS  Google Scholar 

  26. Losco PE, Troup CM. Corneal dystrophy in Fischer 344 rats. Lab Anim Sci. 1988;38(6):702–10.

    PubMed  CAS  Google Scholar 

  27. Bruner RH, Keller WF, Stitzel KA, et al. Spontaneous corneal dystrophy and generalized basement membrane changes in Fischer-344 rats. Toxicol Pathol. 1992;20:357–66. https://doi.org/10.1177/019262339202000306.

    Article  PubMed  CAS  Google Scholar 

  28. Okano T, Uga S, Ishikawa S, Shumiya S. Histopathological study of hereditary cataractous lenses in SCR strain rat. Exp Eye Res. 1993;57(5):567–76. https://doi.org/10.1006/exer.1993.1161.

    Article  PubMed  CAS  Google Scholar 

  29. Komich RJ. Anophthalmos: an inherited trait in a new stock of guinea pigs. Am J Vet Res. 1971;32(12):2099–105.

    PubMed  CAS  Google Scholar 

  30. Wander AH, Bubel HC, McDowell SG. The pathogenesis of herpetic ocular disease in the guinea pig. Arch Virol. 1987;95(3-4):197–209. https://doi.org/10.1007/BF01310780.

    Article  PubMed  CAS  Google Scholar 

  31. Williams D, Sullivan A. Ocular disease in the guinea pig (cavia porcellus): a survey of 1000 animals. Vet Ophthalmol. 2010;13(Suppl 1):54–62. https://doi.org/10.1111/j.1463-5224.2010.00812.x.

    Article  PubMed  Google Scholar 

  32. Otto G, Lipman NS, Murphy JC. Corneal dermoid in a hairless guinea pig. Lab Anim Sci. 1991;41(2):171–2.

    PubMed  CAS  Google Scholar 

  33. Wappler O, Allgoewer I, Schaeffer EH. Conjunctival dermoid in two guinea pigs: a case report. Vet Ophthalmol. 2002;5(3):245–8. https://doi.org/10.1046/j.1463-5224.2002.00242.x.

    Article  PubMed  Google Scholar 

  34. Bettelheim FA, Churchill AC, Zigler JS. On the nature of hereditary cataract in strain 13/N guinea pigs. Curr Eye Res. 1997;16(9):917–24. https://doi.org/10.1076/ceyr.16.9.917.5047.

    Article  PubMed  CAS  Google Scholar 

  35. Lu F, Zhou X, Jiang L, et al. Axial myopia induced by hyperopic defocus in guinea pigs: a detailed assessment on susceptibility and recovery. Exp Eye Res. 2009;89(1):101–8. https://doi.org/10.1016/j.exer.2009.02.019.

    Article  PubMed  CAS  Google Scholar 

  36. Brooks DE, McCracken MD, Collins BR. Heterotopic bone formation in the ciliary body of an aged guinea pig. Lab Anim Sci. 1990;40(1):88–90.

    PubMed  CAS  Google Scholar 

  37. Griffith JW, Lang CM. Vitamin E and selenium status of guinea pigs with myocardial necrosis. Lab Anim Sci. 1987;37:776–9.

    PubMed  CAS  Google Scholar 

  38. Schaffer EH, Pfleghaar S. Secondary open angle glaucoma from osseous choristoma of the ciliary body in guinea pigs. Tierarztl Prax. 1995;23(4):410–4.

    PubMed  CAS  Google Scholar 

  39. Racine J, Behn D, Simard E, Lachapelle P. Spontaneous occurrence of a potentially night blinding disorder in guinea pigs. Doc Ophthalmol. 2003;107:59–69. https://doi.org/10.1023/A:1024435911882.

    Article  PubMed  Google Scholar 

  40. Ninomiya H, Inomata T. Microvasculature of the mouse eye: scanning electron microscopy of vascular corrosion casts. J Exp Anim Sci. 2006;43(3):149–59. https://doi.org/10.1016/j.jeas.2006.05.002.

    Article  CAS  Google Scholar 

  41. Schiavo DM. Multifocal retinal dysplasia in the Syrian hamster LAK:LVG (SYR). J Environ Pathol Toxicol. 1980;3(5-6):569–76.

    PubMed  CAS  Google Scholar 

  42. Asher JH, James SC. The primary ultrastructural defect caused by anophthalmic white (Wh) in the Syrian hamster. Proc Natl Acad Sci U S A. 1982;79(14):4371–5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Atkinson M. Suspected keratitis sicca in a Syrian hamster. Vet Rec. 2000;146(23):680.

    PubMed  CAS  Google Scholar 

  44. Rajaei SM, Sadjadi R, Sabzevari A, Ghaffari MS. Results of phenol red thread test in clinically normal Syrian hamsters (Mesocricetus auratus). Vet Ophthalmol. 2013;16(6):436–9. https://doi.org/10.1111/vop.12024.

    Article  PubMed  Google Scholar 

  45. Hausler HR, Sibay TM, Stachowska B. Observations of retinal microaneurysms in a metahypophyseal diabetic Chinese hamster. Am J Ophthalmol. 1963;56(2):242–4. https://doi.org/10.1016/0002-9394(63)91857-9.

    Article  PubMed  CAS  Google Scholar 

  46. Holve DL, Mundwiler KE, Pritt SL. Incidence of spontaneous ocular lesions in laboratory rabbits. Comp Med. 2011;61(5):436–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Jeong MB, Kim NR, Yi NY, et al. N Z White Rabbits. 2005;54:395–402.

    CAS  Google Scholar 

  48. Munger RJ, Langevin N, Podval J. Spontaneous cataracts in laboratory rabbits. Vet Ophthalmol. 2002;5(3):177–81. https://doi.org/10.1046/j.1463-5224.2002.00245.x.

    Article  PubMed  Google Scholar 

  49. Peng X, Roshwalb S, Cooper TK, Zimmerman H, Christensen ND. High incidence of spontaneous cataracts in aging laboratory rabbits of an inbred strain. Vet Ophthalmol. 2015;18(3):186–90. https://doi.org/10.1111/vop.12203.

    Article  PubMed  Google Scholar 

  50. Morishima H, Nonoyama T, Sasaki S, Miyajima H. Spontaneous lesions in beagle dogs used in toxicity studies. Jikken Dobutsu. 1990;39(2):239–48.

    PubMed  CAS  Google Scholar 

  51. Barnes J, Cotton P, Robinson S, Jacobsen M. Spontaneous pathology and routine clinical pathology parameters in aging beagle dogs: a comparison with adolescent and young adults. Vet Pathol. 2016;53(2):447–55. https://doi.org/10.1177/0300985815610390.

    Article  PubMed  CAS  Google Scholar 

  52. Hottendorf GH, Hirth RS. Lesions of spontaneous subclinical disease in beagle dogs. Vet Pathol. 1974;11(3):240–58. https://doi.org/10.1177/030098587401100306.

    Article  PubMed  CAS  Google Scholar 

  53. Loget O. Spontaneous ocular findings and esthesiometry/tonometry measurement in the Göttingen minipig (conventional and microbiologically defined). In: Weisse I, Hockwin O, Green K, Tripathi R, editors. Ocular toxicology. Boston: Springer; 1994. p. 351–402.

    Google Scholar 

  54. McInnes EF, McKeag S. A brief review of infrequent spontaneous findings, peculiar anatomical microscopic features, and potential artifacts in Göttingen minipigs. Toxicol Pathol. 2016;44(3):338–45. https://doi.org/10.1177/0192623315622423.

    Article  PubMed  CAS  Google Scholar 

  55. McInnes EF. Minipigs. In: Background lesions in laboratory animals. Edinburgh: Elsevier; 2011. p. 81–5. https://doi.org/10.1016/B978-0-7020-3519-7.00006-1.

    Chapter  Google Scholar 

  56. Helke KL, Nelson KN, Sargeant AM, et al. Background pathological changes in minipigs. Toxicol Pathol. 2016;44(3):325–37. https://doi.org/10.1177/0192623315611762.

    Article  PubMed  CAS  Google Scholar 

  57. Jeppesen G, Skydsgaard M. Spontaneous background pathology in Göttingen minipigs. Toxicol Pathol. 2015;43(2):257–66. https://doi.org/10.1177/0192623314538344.

    Article  PubMed  CAS  Google Scholar 

  58. Saint-Macary G, Berthoux C. Ophthalmologic observations in the young Yucatan micropig. Lab Anim Sci. 1994;44(4):334–7.

    PubMed  CAS  Google Scholar 

  59. Ito T, Chatani F, Sasaki S, Ando T, Miyajima H. Spontaneous lesions in cynomolgus monkeys used in toxicity studies. Jikken Dobutsu. 1992;41(4):455–69.

    PubMed  CAS  Google Scholar 

  60. Drevon-Gaillot E, Perron-Lepage MF, Clément C, Burnett R. A review of background findings in cynomolgus monkeys (Macaca fascicularis) from three different geographical origins. Exp Toxicol Pathol. 2006;58(2-3):77–88. https://doi.org/10.1016/j.etp.2006.07.003.

    Article  PubMed  CAS  Google Scholar 

  61. Chamanza R, Marxfeld HA, Blanco AI, Naylor SW, Bradley AE. Incidences and range of spontaneous findings in control cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. Toxicol Pathol. 2010;38(4):642–57. https://doi.org/10.1177/0192623310368981.

    Article  PubMed  Google Scholar 

  62. Sato J, Doi T, Kanno T, Wako Y, Tsuchitani M, Narama I. Histopathology of incidental findings in cynomolgus monkeys (Macaca fascicularis) used in toxicity studies. J Toxicol Pathol. 2012;25(1):63–101. https://doi.org/10.1293/tox.25.63.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the following contract research organizations and individuals for assistance in collection of the data for this chapter:

Charles River Laboratories, Wil Research, Ashland, Ohio. Robert Wally, Brian Ronk and Jeanette Howell

Charles River Laboratories, Reno, Nevada. Dr. Margaret Collins

Charles River Laboratories, Horsham, Pennsylvania. Dr. Douglas Learn

Envigo, East Millstone, New Jersey. Christopher Blum

MPI Research, Mattawan, Michigan

Powered Research, Research Triangle Park, North Carolina. Dr. David Culp, Justin Prater

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Gilger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilger, B.C., Brown, M.H., Munger, R.J., Bartoe, J.T., Bussieres, M., Cook, C.S. (2018). Spontaneous Incidence of Ocular Abnormalities in Laboratory Animals. In: Gilger, B., Cook, C., Brown, M. (eds) Standards for Ocular Toxicology and Inflammation. Springer, Cham. https://doi.org/10.1007/978-3-319-78364-2_4

Download citation

Publish with us

Policies and ethics