Skip to main content

On the Sensitivity to the Filtering Radius in Leray Models of Incompressible Flow

  • Chapter
  • First Online:
Contributions to Partial Differential Equations and Applications

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 47))

  • 985 Accesses

Abstract

One critical aspect of Leray models for the Large Eddy Simulation (LES) of incompressible flows at moderately large Reynolds number (in the range of few thousands) is the selection of the filter radius. This drives the effective regularization of the filtering procedure, and its selection is a trade-off between stability (the larger, the better) and accuracy (the smaller, the better). In this paper, we consider the classical Leray-\(\alpha \) and a recently introduced (by one of the authors) Leray model with a deconvolution-based indicator function, called Leray-\(\alpha \)-NL. We investigate the sensitivity of the solutions to the filter radius by introducing the sensitivity systems, analyzing them at the continuous and discrete levels, and numerically testing them on two benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anitescu M, Layton WJ (2007) Sensitivities in large eddy simulation and improved estimates of turbulent flow functionals. SIAM J Sci Comput 29(4):1650–1667

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertagna L, Quaini A, Veneziani A (2016) Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers. Int J Numer Methods Fluids 81(8):463–488

    Article  MathSciNet  Google Scholar 

  3. Borggaard J, Burns J (1995) A sensitivity equation approach to shape optimization in fluid flows. In: Flow control (Minneapolis, MN, 1992), vol 68 of IMA Vol Math Appl, Springer, New York, pp 49–78

    Google Scholar 

  4. Borggaard J, Burns J (1997) A PDE sensitivity equation method for optimal aerodynamic design. J Comput Phys 136(2):366–384

    Article  MathSciNet  MATH  Google Scholar 

  5. Borggaard J, Verma A (2000) On efficient solutions to the continuous sensitivity equation using automatic differentiation. SIAM J Sci Comput 22(1):39–62

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowers AL, Rebholz LG (2012) Increasing accuracy and efficiency in FE computations of the Leray-deconvolution model. Numer Methods Partial Differ Equ 28(2):720–736

    Article  MathSciNet  MATH  Google Scholar 

  7. Bowers AL, Rebholz LG (2013) Numerical study of a regularization model for incompressible flow with deconvolution-based adaptive nonlinear filtering. Comput Methods Appl Mech Engrg 258:1–12

    Article  MathSciNet  MATH  Google Scholar 

  8. Bowers AL, Rebholz LG, Takhirov A, Trenchea C (2012) Improved accuracy in regularization models of incompressible flow via adaptive nonlinear filtering. Internat J Numer Methods Fluids 70(7):805–828

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner SC, Scott LR (2008) The mathematical theory of finite element methods. Springer, New York

    Book  MATH  Google Scholar 

  10. Cao Y, Titi ES (2009) On the rate of convergence of the two-dimensional \(\alpha \)-models of turbulence to the Navier-Stokes equations. Numer Funct Anal Optim 30(11–12):1231–1271

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheskidov A, Holm DD, Olson E, Titi ES (2005) On a Leray-\(\alpha \) model of turbulence. Proc R Soc Lond Ser A Math Phys Eng Sci 461(2055):629–649

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunca A, Epshteyn Y (2006) On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM J Math Anal 37(6):1890–1902

    Article  MathSciNet  MATH  Google Scholar 

  13. Geurts BJ, Holm DD (2002) Leray simulation of turbulent shear layers. In: Castro IP, Hancock PE, Thomas TG (eds), Advances in Turbulence IX: Proceedings of the Ninth European Turbulence Conference (Southampton, 2002), CIMNE, pp 337–340

    Google Scholar 

  14. Geurts BJ, Holm DD (2003) Regularization modeling for large-eddy simulation. Phys Fluids 15(1):L13–L16

    Article  MathSciNet  Google Scholar 

  15. Geurts BJ, Holm DD (2006) Leray and LANS-\(\alpha \) modelling of turbulent mixing. J Turbul 7(10):33

    MathSciNet  MATH  Google Scholar 

  16. Geurts BJ, Kuczaj AK, Titi ES (2008) Regularization modeling for large-eddy simulation of homogeneous isotropic decaying turbulence. J Phys A 41(34):344008 (29p)

    Article  MathSciNet  MATH  Google Scholar 

  17. Godfrey AG, Cliff EM (1998) Direct calculation of aerodynamic force derivatives: a sensitivity equation approach. In: 36th AIAA Aerospace Sciences Meeting and Exhibit. AIAA, Paper 98-0393, 12p

    Google Scholar 

  18. Graham JP, Holm DD, Mininni P, Pouquet A (2011) The effect of subfilter-scale physics on regularization models. J Sci Comput 49(1):21–34

    Article  MathSciNet  MATH  Google Scholar 

  19. Graham JP, Holm DD, Mininni PD, Pouquet A (2008) Three regularization models of the Navier-Stokes equations. Phys Fluids 20:35107 (15p)

    Article  MATH  Google Scholar 

  20. Gunzburger MD (1989) Finite element methods for viscous incompressible flows: a guide to theory, practice, and algorithms. Academic Press, Boston

    Google Scholar 

  21. Gunzburger MD (1999) Sensitivities, adjoints and flow optimization. Int J Numer Methods Fluids 31(1):53–78

    Article  MathSciNet  MATH  Google Scholar 

  22. Hecht F (2012) New development in FreeFem++. J Numer Math 20(3–4):251–265

    MathSciNet  MATH  Google Scholar 

  23. Hecht MW, Holm DD, Petersen MR, Wingate BA (2008) The LANS-\(\alpha \) and Leray turbulence parameterizations in primitive equation ocean modeling. J Phys A 41(34):344009 (23p)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heywood JG, Rannacher R (1990) Finite-element approximation of the nonstationary Navier-Stokes problem. IV: Error analysis for second-order time discretization. SIAM J Numer Anal 27(2):353–384

    Article  MathSciNet  MATH  Google Scholar 

  25. Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int J Numer Methods Fluids 22(5):325–352

    Article  MathSciNet  MATH  Google Scholar 

  26. Layton W (2008) Introduction to the numerical analysis of incompressible viscous flows. SIAM

    Google Scholar 

  27. Layton W, Manica CC, Neda M, Rebholz LG (2008) Helicity and energy conservation and dissipation in approximate deconvolution LES models of turbulence. Adv Appl Fluid Mech 4(1):1–46

    MathSciNet  MATH  Google Scholar 

  28. Layton W, Mays N, Neda M, Trenchea C (2014) Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier-Stokes equations. ESAIM Math Model Numer Anal 48(3):765–793

    Article  MathSciNet  MATH  Google Scholar 

  29. Layton W, Rebholz L (2012) Approximate deconvolution models of turbulence: analysis, phenomenology and numerical analysis. Springer, Heidelberg

    Book  MATH  Google Scholar 

  30. Layton W, Rebholz L, Trenchea C (2012) Modular nonlinear filter stabilization of methods for higher Reynolds numbers flow. J Math Fluid Mech 14(2):325–354

    Article  MathSciNet  MATH  Google Scholar 

  31. Leray J (1934) Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math 63(1):193–248

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu Y, Tucker P, Kerr R (2008) Linear and nonlinear model large-eddy simulations of a plane jet. Comput Fluids 37(4):439–449

    Article  MATH  Google Scholar 

  33. Lunasin E, Kurien S, Titi ES (2008) Spectral scaling of the Leray-\(\alpha \) model for two-dimensional turbulence. J Phys A 41(34):344014 (10p)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pahlevani F (2006) Sensitivity computations of eddy viscosity models with an application in drag computation. Int J Numer Methods Fluids 52(4):381–392

    Article  MathSciNet  MATH  Google Scholar 

  35. Quarteroni A, Sacco R, Saleri F (2007) Numerical mathematics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  36. Sagaut P, Lê T (1997) Some investigations of the sensitivity of large eddy simulation. Technical report, ONERA

    Google Scholar 

  37. Sagaut P, Lê TH (1997) Some investigations on the sensitivity of large eddy simulation. In: Chollet J-P, Voke PR, Kleiser L (eds) Direct and Large-Eddy Simulation II: Proceedings of the ERCOFTAC Workshop (Grenoble, 1996). Springer, Dordrecht, pp 81–92

    Chapter  Google Scholar 

  38. Stanley L, Stewart D (2002) Design sensitivity analysis: computational issues of sensitivity equation methods. Number 25 in Frontiers in Applied Mathematics. SIAM, Philadelphia, PA

    Google Scholar 

  39. Verstappen R (2008) On restraining the production of small scales of motion in a turbulent channel flow. Comput Fluids 37(7):887–897

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research presented in this work was carried out during LR’s visit at the Department of Mathematics and Computer Science at Emory University in the fall semester 2014. This support is gratefully acknowledged. This research has been supported in part by the NSF under grants DMS-1620384/DMS-1620406 (Quaini and Veneziani), DMS-1262385 (Quaini), Emory URC Grant 2015 Numerical Methods for Flows at Moderate Reynolds Numbers in LVAD (Veneziani), and DMS-1522191 (Rebholz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Quaini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertagna, L., Quaini, A., Rebholz, L.G., Veneziani, A. (2019). On the Sensitivity to the Filtering Radius in Leray Models of Incompressible Flow. In: Chetverushkin, B., Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Periaux, J., Pironneau, O. (eds) Contributions to Partial Differential Equations and Applications. Computational Methods in Applied Sciences, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-78325-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78325-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78324-6

  • Online ISBN: 978-3-319-78325-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics