Skip to main content

Zero Viscosity Boundary Effect Limit and Turbulence

  • Chapter
  • First Online:
Book cover Contributions to Partial Differential Equations and Applications

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 47))

  • 986 Accesses

Abstract

This contribution is based on a theorem of Kato which relates for time dependent problems the appearance of turbulence with the anomalous energy dissipation, giving for the Cauchy problem an avatar of a basic idea of the statistical theory of turbulence. Some variant of this theorem are given and then it is shown how this point of view is in full agreement with several issues of fluid mechanic ranging from Prandtl’s problem to Kutta-Jukowsky’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asano A (1991) Zero-viscosity limit of the incompressible Navier-Stokes equations. In: Fourth workshop on mathematical aspects of fluid and plasma dynamics. Kyoto

    Google Scholar 

  2. Bardos C, Nguyen TN (2016) Remarks on the inviscid limit for the compressible flows. In: Radulescu D, Sequeira A, Solonnikov VA (eds) Recent advances in partial differential equations and applications, volume 666 of Contemp. Math. Providence, RI. AMS, pp 55–67

    Google Scholar 

  3. Bardos C, Titi ES (2013) Mathematics and turbulence: where do we stand? J Turbul 14(3):42–76

    Article  MathSciNet  Google Scholar 

  4. Bardos C, Titi ES, Wiedemann E (2012) The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow. CR Math Acad Sci Paris 350(15–16):757–760

    Article  MathSciNet  Google Scholar 

  5. Bardos K Jr, Sekelikhidi L, Videmann E (2014) On the absence of uniqueness for the Euler equations: the effect of the boundary. Uspekhi Mat Nauk 69(2(416)):3–22. Translation in Russian Math Surv 69(2):189–207

    Google Scholar 

  6. Buckmaster T, De Lellis C, Székelyhidi L Jr (2016) Dissipative Euler flows with Onsager-critical spatial regularity

    Google Scholar 

  7. Cheskidov A, Constantin P, Friedlander S, Shvydkoy R (2008) Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6):1233–1252

    Article  MathSciNet  Google Scholar 

  8. Constantin P, Weinan E, Titi ES (1994) Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm Math Phys 165(1):207–209

    Article  MathSciNet  Google Scholar 

  9. Constantin P, Elgindi T, Ignatova M, Vicol V (2017) Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields. SIAM  J  Math  Anal 49(3):1932–1946

    Google Scholar 

  10. Constantin P, Kukavica I, Vicol V (2015) On the inviscid limit of the Navier-Stokes equations. Proc Amer Math Soc 143(7):3075–3090

    Article  MathSciNet  Google Scholar 

  11. De Lellis C, Székelyhidi L Jr (2009) The Euler equations as a differential inclusion. Ann Math (2) 170(3):1417–1436

    Google Scholar 

  12. Frisch U (1995) Turbulence. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Gerard-Varet D, Masmoudi N (2015) Well-posedness for the Prandtl system without analyticity or monotonicity. Ann Sci Éc Norm Supér (4) 48(6):1273–1325, 2015

    Google Scholar 

  14. Kato T (1984) Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Seminar on nonlinear partial differential equations (Berkeley, CA, 1983), volume 2 of Math Sci Res Inst Publ. Springer, New York

    Google Scholar 

  15. Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, London

    Google Scholar 

  16. Lebeau G (2002) Régularité du problème de Kelvin-Helmholtz pour l’équation d’Euler 2d. ESAIM Control Optim Calc Var 8:801–825

    Article  MathSciNet  Google Scholar 

  17. Marchioro C, Pulvirenti M (1994) Mathematical theory of incompressible nonviscous fluids, vol 96 of Applied Mathematical Sciences. Springer, New York

    Google Scholar 

  18. Mohammadi B, Pironneau O (1994) Analysis of the \(k\)-epsilon turbulence model. Wiley, Chichester

    Google Scholar 

  19. Onsager L (1949) Statistical hydrodynamics. Nuovo Cimento (9) 6(2):279–287

    Google Scholar 

  20. Periaux J (1975) Three dimensional analysis of compressible potential flows with the finite element method. Int J Numer Methods Eng 9(4):775–831

    Article  Google Scholar 

  21. Prandtl L (1904) Uber flüssigkeits-bewegung bei sehr kleiner reibung. Actes du 3ème Congrès international des Mathématiciens (Heidelberg). Teubner, Leipzig, pp 484–491

    Google Scholar 

  22. Sammartino M, Caflisch RE (1998) Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm Math Phys 192(2):433–461

    Google Scholar 

  23. Scheffer V (1993) An inviscid flow with compact support in space-time. J Geom Anal 3(4):343–401

    Article  MathSciNet  Google Scholar 

  24. Shnirelman A (1997) On the nonuniqueness of weak solution of the Euler equation. Comm Pure Appl Math 50(12):1261–1286

    Article  MathSciNet  Google Scholar 

  25. Shvydkoy R Private communication

    Google Scholar 

  26. Stewartson K (1974) Multistructured boundary layers on flat plates and related bodies. Adv Appl Mech 14:145–239

    Article  Google Scholar 

  27. Wu S (2002) Recent progress in mathematical analysis of vortex sheets. In: Proceedings of the international congress of mathematicians, vol III. Beijing, Higher Ed. Press, pp 233–242

    Google Scholar 

Download references

Acknowledgements

Warm thanks to the organizers of the International Workshop on Applied and Computational Mathematics, Houston, February 2016 for their invitation to give a talk and to propose an article in the present volume, giving me an opportunity to congratulate Olivier Pironneau for his 70th birthday and to express my gratitude for his everlasting friendship and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Bardos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bardos, C. (2019). Zero Viscosity Boundary Effect Limit and Turbulence. In: Chetverushkin, B., Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Periaux, J., Pironneau, O. (eds) Contributions to Partial Differential Equations and Applications. Computational Methods in Applied Sciences, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-78325-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78325-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78324-6

  • Online ISBN: 978-3-319-78325-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics