Skip to main content

Ensemble Interpretation of Quantum Mechanics and the Two-Slit Experiment

  • Chapter
  • First Online:
Contributions to Partial Differential Equations and Applications

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 47))

Abstract

An evolution equation model is provided for the two-slit experiment of quantum mechanics. The state variable of the equation is the probability density function of particle positions. The equation has a local diffusion term corresponding to stochastic variation of particles, and a nonlocal dispersion term corresponding to oscillation of particles in the transverse direction perpendicular to their forward motion. The model supports the ensemble interpretation of quantum mechanics and gives descriptive agreement with the Schrödinger equation model of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allahverdyan AE, Balian R, Nieuwenhuizen TM (2013) Understanding quantum measurement from the solution of dynamical models. Phys Rep 525(1):1–166

    Article  MathSciNet  Google Scholar 

  2. Armstrong NJ, Painter KJ, Sherratt JA (2006) A continuum approach to modelling cell-cell adhesion. J Theoret Biol 243(1):98–113

    Article  MathSciNet  Google Scholar 

  3. Arndt M, Nairz O, Vos-Andreae J, Keller C, van der Zouw G, Zeilinger A (1999) Wave-particle duality of \(C_{60}\) molecules. Nature 401:680–682

    Article  Google Scholar 

  4. Ballentine LE (1970) The statistical interpretation of quantum mechanics. Rev Modern Phys 42(4):358–381

    Article  Google Scholar 

  5. Ballentine LE (1998) Quantum mechanics: a modern development. World Scientific, River Edge, NJ

    Book  Google Scholar 

  6. Barrachina RO, Frémont F, Fossez K, Gruyer D, Helaine V, Lepailleur A, Leredde A, Maclot S, Scamps G, Chesnel J-Y (2010) Linewidth oscillations in a nanometer-size double-slit interference experiment with single electrons. Phys Rev A 81:060702

    Article  Google Scholar 

  7. Bassi A, Ghirardi G (2003) Dynamical reduction models. Phys Rep 379(5–6):257–426

    Article  MathSciNet  Google Scholar 

  8. Born M (1926) Quantenmechanik der Stoßvorgänge (Quantum mechanics of collision). Z Phys A 38(11–12):803–827

    Article  Google Scholar 

  9. Cetto AM, de la Peña L, Valdés-Hernández A (2015) Specificity of the Schrödinger equation. Quantum Stud Math Found 2(3):275–287

    Article  MathSciNet  Google Scholar 

  10. Cresser JD (2011) Quantum physics notes. Macquarie University. http://physics.mq.edu.au/~jcresser/Phys304/Handouts/QuantumPhysicsNotes.pdf

  11. de la Peña L, Cetto AM, Valdés Hernández A (2015) The emerging quantum: the physics behind quantum mechanics, chapter The phenomenological stochastic approach: A short route to quantum mechanics, pp 33–66. Springer, Cham

    Google Scholar 

  12. Dyson J, Gourley SA, Villella-Bressan R, Webb GF (2010) Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell-cell adhesion. SIAM J Math Anal 42(4):1784–1804

    Article  MathSciNet  Google Scholar 

  13. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 41(10):777–780

    Article  Google Scholar 

  14. Feynman RP, Leighton RB, Sands M (1965) The Feynman lectures on physics vol 3: Quantum mechanics. Addison-Wesley, Reading, MA

    Google Scholar 

  15. Ford GW, O’Connell RF (2002) Wave packet spreading: Temperature and squeezing effects with applications to quantum measurement and decoherence. Amer J Phys 70(3):319–324

    Article  Google Scholar 

  16. Friedman A (1969) Partial differential equations. Holt, Rinehart and Winston, New York

    MATH  Google Scholar 

  17. Gisin N, Percival IC (1993) The quantum state diffusion picture of physical processes. J Phys A 26(9):2245–2260

    Article  MathSciNet  Google Scholar 

  18. Goldstein JA (1985) Semigroups of linear operators and applications. Oxford University Press, Oxford

    MATH  Google Scholar 

  19. Hongo H, Miyamoto Y, Furuya K, Suhara M (1997) A 40-nm-pitch double-slit experiment of hot electrons in a semiconductor under a magnetic field. Appl Phys Lett 70(1):93–95

    Article  Google Scholar 

  20. Kato T (1966) Perturbation theory for linear operators. Springer, New York

    Book  Google Scholar 

  21. Kocsis S, Braverman B, Ravets S, Stevens MJ, Mirin RP, Shalm LK, Steinberg AM (2011) Observing the average trajectories of single photons in a two-slit interferometer. Science 332(6034):1170–1173

    Article  Google Scholar 

  22. Landé A (1965) New foundations of quantum mechanics. Cambridge University Press, New York

    MATH  Google Scholar 

  23. Landé A (1973) Quantum mechanics in a new key. Exposition Press, New York

    Google Scholar 

  24. Marcella TV (2002) Quantum interference with slits. Eur J Phys 23(6):615–621

    Article  Google Scholar 

  25. McClendon M, Rabitz H (1988) Numerical simulations in stochastic mechanics. Phys Rev A 37(9):3479–3492

    Article  MathSciNet  Google Scholar 

  26. Nairz O, Arndt M, Zeilinger A (2003) Quantum interference experiments with large molecules. Amer J Phys 71(4):319–325

    Article  Google Scholar 

  27. Painter KJ, Bloomfield JM, Sherratt JA, Gerisch A (2015) A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull Math Biol 77(6):1132–1165

    Article  MathSciNet  Google Scholar 

  28. Percival I (1998) Quantum state diffusion. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Popper KR (1967) Quantum mechanics without “the observer”. In: Bunge M (ed) Quantum Theory and Reality. pp. Springer, Berlin, pp 7–44

    Google Scholar 

  30. Przibram K (ed) (1967) Letters on wave mechanics. Philosophical Library, New York

    Google Scholar 

  31. Schilpp PA (ed) (1970) Albert Einstein: philosopher-scientist. Cambridge University Press, London

    MATH  Google Scholar 

  32. Sherratt JA, Gourley SA, Armstrong NJ, Painter KJ (2009) Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion. European J Appl Math 20(1):123–144

    Article  MathSciNet  Google Scholar 

  33. Skála J, Čižek L, Kapsa V (2011) Quantum mechanics as applied mathematical statistics. Ann Phys 326(5):1174–1188

    Article  MathSciNet  Google Scholar 

  34. Styer DF, Balkin MS, Becker KM, Burns MR, Dudley CE, Forth ST, Gaumer JS, Kramer MA, Oertel DC, Park LH, Rinkoski MT, Smith CT, Wotherspoon TD (2002) Nine formulations of quantum mechanics. Amer J Phys 70(3):288–296

    Article  MathSciNet  Google Scholar 

  35. Thaller B (2000) Visual quantum mechanics: selected topics with computer-generated animations of quantum-mechanical phenomena. Springer, New York

    MATH  Google Scholar 

  36. Tollaksen J, Aharonov Y, Casher A, Kaufherr T, Nussinov S (2010) Quantum interference experiments, modular variables and weak measurements. New J Phys 12:013023

    Article  Google Scholar 

  37. Tonomura A (1998) The quantum world unveiled by electron waves. World Scientific, Singapore

    Book  Google Scholar 

  38. Tonomura A (2005) Direct observation of thitherto unobservable quantum phenomena by using electrons. PNAS 102(42):14952–14959

    Article  Google Scholar 

  39. Tonomura A, Endo J, Matsuda T, Kawasaki T, Ezawa H (1989) Demonstration of single-electron buildup of an interference pattern. Amer J Phys 57(2):117–120

    Article  Google Scholar 

  40. Webb GF (2011) Event based interpretation of Schrödinger’s equation for the two-slit experiment. Int J Theor Phys 50:3571–3601

    Article  Google Scholar 

  41. Yosida K (1968) Functional analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This work is dedicated to William Fitzgibbon and Yuri Kuznetsov in honor of their most valuable contributions to mathematical research and the community of mathematical researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn F. Webb .

Editor information

Editors and Affiliations

Appendix

Appendix

Let \(X = C[-\infty ,\infty ]\), the space of bounded uniformly continuous functions on \((-\infty ,\infty )\) with norm \(\Vert f \Vert = \sup _{-\infty< x < \infty }|f(x)|\). For \(\sigma > 0\) let

$$\begin{aligned}&(T_{\sigma }(t)f)(x) = \nonumber \\&\qquad \frac{1}{2 \sqrt{\sigma t}} \int _{-\infty }^{\infty } \exp \bigg (- \frac{(x - y)^2}{4 \sigma t}\bigg ) f(y) \, dy, \quad f \in X, \ t > 0, \ -\infty< x < \infty . \end{aligned}$$
(13)

Then \(T_{\sigma }(t), t \ge 0\) is a strongly continuous holomorphic semigroup of positive linear operators in X with infinitesimal generator \((A_{\sigma } f)(x) = \sigma d^2 f(x) / d x^2\) satisfying \(| T_{\sigma }(t) | \le 1, t \ge 0\) [41, Chap. IX]. For \(t > 0\), \(A_{\sigma } T_{\sigma }(t)\) is bounded in X, and there exists \(M_{\sigma } > 0\) such that \(| A_{\sigma } T_{\sigma }(t) | \le M_{\sigma } / t, t > 0\) [16, Part 2]. Further, \((T_{\sigma }(t)f)(x)\) is the strong solution in X to the diffusion equation

$$\begin{aligned} \frac{\partial }{\partial x}u(x,t) = \sigma \frac{\partial ^2}{\partial x^2} u(x,t), \quad u(x,0) = f(x), \ t > 0, \ -\infty< x < \infty , \ f \in X. \end{aligned}$$
(14)

For \(\beta > 0\) define the bounded linear operator B in X by

$$ (Bf)(x) = \beta \left( f(x+1) - 2 f(x) + f(x-1) \right) , \quad f \in X, \ -\infty< x < \infty . $$

Define

$$\begin{aligned} (\exp (t B) f )(x) = \bigg ( \sum _{n=0}^{\infty } \frac{(t B)^n}{n!} f \bigg )(x) = e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} f(x +m -n) \end{aligned}$$
(15)

for \(f \in X\), \(t \ge 0\), \(-\infty< x < \infty \). Then \(\exp (t B)\), \(t \ge 0\), is a group of positive linear operators in X with infinitesimal generator B satisfying \(|\exp (t B) | \le 1\), \(t \ge 0\) (see [41, p. 244]).

Theorem 1

Let \(\beta > 0\), \(s = 1\), \(f \in X \cap L_+^1(-\infty ,\infty )\), and let \( \int _{-\infty }^{\infty } f(x) dx = 1\). Then for \(t \ge 0\),

$$\begin{aligned} \int _{-\infty }^{\infty } (\exp (t B)f)(x) dx = \int _{-\infty }^{\infty } f(x) dx = 1. \end{aligned}$$
(16)

If also, \(x^2 f(x) \in L^1(-\infty ,\infty )\), then the mean of \(\exp (t B)f = \) the mean of f and the variance of \(\exp (t B)f = \) the variance of \(f + 2 t \beta \).

Proof

From (15), we obtain (16), since for \(t \ge 0\)

$$ \begin{aligned} \int _{-\infty }^{\infty } (\exp (t B) f)(x) dx&= \int _{-\infty }^{\infty } e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} f(x + m - n) dx \\&= e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} \int _{-\infty }^{\infty } f(x ) dx = \int _{-\infty }^{\infty } f(x) dx. \end{aligned} $$

Let \(\mu _f\) be the mean of f and \(\mu _{\exp (tB) f}\) the mean of \(\exp (tB) f\). Then

$$\begin{aligned} \mu _{\exp (tB) f}&= \int _{-\infty }^{\infty } x (\exp (t B) f)(x) dx \nonumber \\&= \int _{-\infty }^{\infty } e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} x f(x + m - n) dx \nonumber \\&= e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} \int _{-\infty }^{\infty } (x +m -n)f(x ) dx \nonumber \\&= e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} \left( \int _{-\infty }^{\infty } x f(x ) dx +\int _{-\infty }^{\infty } (m-n) f(x ) dx\right) \nonumber \\&= \mu _f + e^{- 2 t \beta } \left( \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} m - \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} n \right) \nonumber \\&= \mu _f + e^{- 2 t \beta } \left( \sum _{n=0}^{\infty } \sum _{m=1}^{\infty } \frac{(t \beta )^{n+m}}{n! (m-1)!} - \sum _{n=1}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{(n-1)! m!} \right) = \mu _f. \end{aligned}$$
(17)

Let \(\nu _f\) be the variance of f and \(\nu _{\exp (tB) f}\) the variance of \(\exp (tB) f\). A calculation similar to (17) yields

$$\begin{aligned}&\nu _{\exp (tB) f} = \int _{-\infty }^{\infty } x^2 (\exp (t B) f)(x) dx \nonumber \\&= \int _{-\infty }^{\infty } e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} x^2 f(x + m - n) dx \nonumber \\&= e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} \int _{-\infty }^{\infty } (x +m -n)^2 f(x) dx \nonumber \\&= e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} \left( \int _{-\infty }^{\infty } x^2 f(x ) dx + 2 (m-n) \int _{-\infty }^{\infty } x f(x ) dx + (m-n)^2 \right) \nonumber \\&= \nu _f + e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} \left( 2 (m - n) \mu _f + (m-n)^2 \right) \nonumber \\&= \nu _f + e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} (m^2 - 2 m n + n^2) = \nu _f + 2 t \beta , \end{aligned}$$
(18)

since

$$ e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} m^2 = \beta t (1 + \beta t), \quad e^{- 2 t \beta } \sum _{n=0}^{\infty } \sum _{m=0}^{\infty } \frac{(t \beta )^{n+m}}{n! m!} 2 m n = 2 (\beta t )^2. $$

\(\square \)

Theorem 2

Let \(\alpha > 0\), \(\beta > 0\), and \(s = 1\). For \(\omega _0 \in X \cap L_+^1(-\infty ,\infty )\) such that \(\int _{-\infty }^{\infty } \omega _0(x) dx = 1\), the unique solution \(\omega (x,z) = \omega (x,t)\) of (9) is

$$ (T_{\alpha }(t) \exp (t B) \omega _0)(x), \quad t > 0, \ -\infty< x < \infty , $$

(where we have identified \(z = t\) in (9)). Further, there exists a constant C such that

$$\begin{aligned} | \omega (x,t) - (T_{\alpha + \beta }(t) \omega _0)(x) | \le \frac{C}{t} \Vert \omega _0 \Vert , \quad t > M_{\alpha }, \ -\infty< x < \infty . \end{aligned}$$
(19)

Remark 1

If \(\omega _0\) also has compact support, then (19) implies that uniformly on bounded sets of \(x \in (-\infty ,\infty )\)

$$ \lim _{t \rightarrow \infty } \sqrt{t} \omega (x,t) = \frac{1}{2 \sqrt{\alpha + \beta }}, \quad \text{ since } \lim _{t \rightarrow \infty } \sqrt{t} (T_{\alpha + \beta }(t) \omega _0)(x) = \frac{1}{2 \sqrt{\alpha + \beta }}. $$

Proof

Since \(A_{\sigma }\) and B commute, \(T_{\sigma }(t)\) and \(\exp (t B)\) commute for \(t \ge 0\), and \(T_{\sigma }(t) \exp (t B), t \ge 0\) is the semigroup of operators for the solutions of (9). Since \(T_{\alpha }(t), t \ge 0\) is a holomorphic semigroup in X, \(T_{\alpha }(t) \exp (t B) \omega _0\) is the unique strong solution of (9) in X for \(t > 0\), \(\omega _0 \in X\). If \(f \in X\) is analytic, then

$$ f(x\pm 1) = f(x) + \sum _{n=1}^{\infty } \frac{(\pm 1)^n}{n!} f^{(n)}(x) $$

and

$$ f(x+1) - 2f(x) + f(x-1) = f^{(2)}(x) + 2 \sum _{n=2}^{\infty } \frac{1}{(2n)!} f^{(2n)}(x). $$

For \(g \in X\), \(t > 0\), \(T_{\alpha }(t) g\) is analytic, and so

$$ B T_{\alpha }(t) g= \beta A_1 T_{\alpha }(t) g + 2 \beta \sum _{n=2}^{\infty } \frac{1}{(2n)!} A_1^{n} T_{\alpha }(t) g $$

Then,

$$\begin{aligned}&\frac{d}{d t} T_{\alpha }(t) \exp (t B) \omega _0 = (A_{\alpha } + B) T_{\alpha }(t) \exp (t B) \omega _0 \\&\qquad \qquad \qquad \quad = (\alpha + \beta ) A_1 T_{\alpha }(t) \exp (t B) \omega _0 + 2 \beta \sum _{n=2}^{\infty } \frac{1}{(2n)!} A_1^{n}T_{\alpha }(t) \exp (t B) \omega _0. \end{aligned}$$

From [20, Chap. 9] the solution of this nonhomogeneous equation satisfies

$$\begin{aligned}&T_{\alpha }(t) \exp (t B) \omega _0 \\&\quad =T_{\alpha + \beta }(t) \omega _0 + 2 \beta \int _0^t T_{\alpha + \beta }(s) \sum _{n=2}^{\infty } \frac{1}{(2n)!} A_1^{n} T_{\alpha }(t-s) \exp ((t-s)B) \omega _0 ds \\&\qquad =T_{\alpha + \beta }(t) \omega _0 + 2 \beta \int _0^t T_{\beta }(s) \sum _{n=2}^{\infty } \frac{1}{(2n)! \alpha ^n} A_{\alpha }^{n} T_{\alpha }(t) \exp ((t-s)B) \omega _0 ds. \end{aligned}$$

Thus, (19) follows, since for \(t \ge M_{\alpha }\),

$$\begin{aligned} \Vert T_{\alpha }(t) \exp (t B) \omega _0&- T_{\alpha + \beta }(t) \omega _0 \Vert \le 2 \beta t \sum _{n=2}^{\infty } \frac{(M_{\alpha } / (\alpha t))^n}{(2n!)} \Vert \omega _0\Vert \\&\qquad \qquad = 2 \beta t \left( \cosh (\sqrt{M_{\alpha } / (\alpha t)}) - 1 - M_{\alpha } / (2 \alpha t) \right) \Vert \omega _0\Vert \end{aligned}$$

and by L’Hospital’s Rule

$$ \lim _{t \rightarrow \infty } \frac{\cosh (\sqrt{M_{\alpha } / (\alpha t)}) - 1 - M_{\alpha } / (2 \alpha t)}{(M_{\alpha } / (\alpha t))^2} = \frac{1}{4!}. $$

\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Webb, G.F. (2019). Ensemble Interpretation of Quantum Mechanics and the Two-Slit Experiment. In: Chetverushkin, B., Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Periaux, J., Pironneau, O. (eds) Contributions to Partial Differential Equations and Applications. Computational Methods in Applied Sciences, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-78325-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78325-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78324-6

  • Online ISBN: 978-3-319-78325-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics