Skip to main content

Somaclonal Variation for Sugarcane Improvement

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 1

Abstract

Cell and tissue culture approaches serve as an important and an easily accessible source for the creation and utilization of variability in sugarcane improvement programmes. This variation arising from cell and tissue cultures is called somaclonal variation that can be genetic/epigenetic in nature. Somaclonal variation is considered as a complex phenomenon resulting from various genetic and cellular mechanisms under in vitro conditions. The induction of variation under in vitro conditions either through shock treatment or in stepwise manner generates useful variability without sexual recombination. Due to limited genetic system and/or narrow genetic base, somaclonal variation is more rewarding in sugarcane. During plant propagation process under laboratory conditions, the genomic shock is induced which can result in the activation of various transposons, retrotransposons, chromosomal changes, methylation and demethylation of DNA leading to somaclonal variation. Desirable variants (disease resistant, herbicide resistant, drought tolerant, salt tolerant, antibiotic resistant, etc.) have been isolated in sugarcane through in vitro selection. The frequency of variation can be further enhanced using physical and chemical mutagens. ‘Ono’, ‘Phule Savitri’ and ‘VSI 434’ are the sugarcane varieties released through the process of somaclonal variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, Smiullah, Khan FA et al (2013) Detection of somaclonal variation in micropropagated plants of sugarcane and SCMV screening through ELISA. J Agr Sci 5:199–208

    Google Scholar 

  • Abreu IS, Carvalho CR, Clarindo WR (2014) Massal induction of Carica papaya L. ‘Golden’ somatic embryos and somaclone screening by flow cytometry and cytogenetic analysis. Cytologia 79:475–484

    Article  Google Scholar 

  • Adams RLP (1990) DNA methylation: the effect of minor bases on DNA protein interactions. Biochem J 265:309–320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahloowalia BS, Maretzki A (1983) Plant regeneration via somatic embryogenesis in sugarcane. Plant Cell Rep 2:21–25

    CAS  PubMed  Google Scholar 

  • Ahloowalia BS, Sherington J (1985) Transmission of somaclonal variation in wheat. Euphytica 34:525–537

    Article  Google Scholar 

  • Ahmed EU, Hayashi T, Yazawa S (2004) Auxins increase the occurrence of leaf-colour variants in Caladium regenerated from leaf explants. Sci Hort 100:153–159

    Article  CAS  Google Scholar 

  • Ahuja MR (1998) Somaclonal genetics of forest trees. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic, Dordrecht, pp 105–121

    Chapter  Google Scholar 

  • Ali A, Naz S, Alam S et al (2007) In vitro induced mutation for screening of red rot (Colletotrichum falcatum) resistance in sugarcane (Saccharum officinarum). Pak J Bot 39:1979–1994

    Google Scholar 

  • Araujo LG, Prabhu AS, Filippi MC et al (2001) RAPD analysis of blast resistant somaclones from upland rice cultivar IAC 47 for genetic divergence. Plant Cell Tissue Organ Cult 67:165–172

    Article  CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Cornide MT et al (1999) Somaclonal variation in insect-resistant transgenic sugarcane (Saccharum hybrid) plants produced by cell electroporation. Trans Res 8:349–360

    Article  CAS  Google Scholar 

  • Arnhold-Schmitt B (1993) Rapid changes in amplification and methylation pattern of genomic DNA in cultured carrot root explants (Daucus carota L.) Theor Appl Genet 85:793–800

    Google Scholar 

  • Bairu MW, Aremu AO, Staden JV (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Bajaj YPS (1990) Somaclonal variation-origin, induction, cryopreservation, and implications in plant breeding. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry II. Somaclonal variation in crop improvement. Springer, Berlin, pp 3–35

    Google Scholar 

  • Bouharmont J (1994) Application of somaclonal variation and in vitro selection to plant improvement. Acta Hort 355:213–218

    Article  Google Scholar 

  • Breiman A, Rotem-Abarbanell D, Karp A et al (1987) Heritable somaclonal variation in wild barley (Hordeum spontaneum). Theor Appl Genet 74:104–112

    Article  PubMed  CAS  Google Scholar 

  • Brettell RIS, Dennis ES (1991) Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol Gen Genet 229:365–372

    Article  PubMed  CAS  Google Scholar 

  • Brown DCW, Thorpe TA (1995) Crop improvement through tissue culture. World J Micro Biotech 11:409–415

    Article  CAS  Google Scholar 

  • Brown PTH, Kyozuka J, Sukekiyo Y et al (1990) Molecular changes in protoplast-derived rice plants. Mol Gen Genet 223:324–328

    Article  PubMed  CAS  Google Scholar 

  • Brown PTH, Gobel E, Lorz H (1991) RFLP analysis of Zea mays callus cultures and their regenerated plants. Theor Appl Genet 81:227–232

    Article  PubMed  CAS  Google Scholar 

  • Bryant JA (1976) The cell cycle. In: Bryant JA (ed) Molecular aspect of gene expression in plants. Academic Press, New York, pp 117–216

    Google Scholar 

  • Burner DM, Grisham MP (1994) Induction and stability of phenotypic variation in sugarcane as affected by propagation procedure. Crop Sci 35:875–880

    Article  Google Scholar 

  • Butterfield MK, D’Hont A, Berding N (2001) The sugarcane genome: a synthesis of current understanding and lessons for breeding and biotechnology. Proc S Afr Sug Technol Ass 75:1–5

    Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157

    Article  CAS  Google Scholar 

  • Chen WH, Chen TM, Fu YM et al (1998) Studies on somaclonal variation in Phalaenopsis. Plant Cell Rep 18:7–13

    Article  Google Scholar 

  • Chourey PS, Kemble RJ (1982) Transposition events in tissue cultured cells of maize. In: 5th Int Congr Plant Tissue Cell Culture, Tokyo, pp 425–426

    Google Scholar 

  • Coggins LW, O’Prey M (1989) DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences. Nucleic Acids Res 17:7417–7426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Constantin MJ (1984) Potential of in vitro mutation breeding for improvement of vegetatively propagated crop plants. In: Induced mutation for crop improvement in Latin America, Proceedings FAO/IAEA, Vienna, pp 305:59–78

    Google Scholar 

  • Cooper C, Crowther T, Smith BM et al (2006) Assessment of the response of carrot somaclones to Pythium violae, causal agent of cavity spot. Plant Pathol 55:427–432

    Article  Google Scholar 

  • Currais L, Loureiro J, Santos C, Canhoto JM (2013) Ploidy stability in embryogenic cultures and regenerated plantlets of tamarillo. Plant Cell Tissue Organ Cult 114:149–159

    Article  Google Scholar 

  • Czene M, Harms-Ringdahl M (1995) Detection of single-strand breaks and formamidopyrimidine-DNA glycosylase-sensitive sites in DNA of cultured human fibroblasts. Mutat Res 336:235–242

    Article  PubMed  CAS  Google Scholar 

  • D’Amato F (1977) Cytogenetics of differentiation in tissue and cell culture. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer, New York, pp 343–464

    Google Scholar 

  • Dalvi SG, Vasekar VC, Yadav A et al (2012) Screening of promising sugarcane somaclones for agronomic traits, and smut resistance using PCR amplification of inter transcribed region (ITS) of Sporisorium scitamineum. Sugar Tech 14:68–75

    Article  Google Scholar 

  • Daub ME (1986) Tissue culture and the selection of resistance to pathogens. Annu Rev Phytopathol 24:159–186

    Article  Google Scholar 

  • Dhumale DB, Ingole GL, Durge DV (1994) Variation for morphological and quality attributes in clones of callus regenerants in sugarcane cv. COC-671. Indian J Genet Pl Br 54:317–320

    Google Scholar 

  • Dolezel J, Bartos JAN (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolezel J, Valarik M, Vrana J et al (2004) Molecular cytogenetics and cytometry of bananas (Musa spp). In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations. Science Publishers, Inc, Enfield, pp 229–244

    Google Scholar 

  • Doule RB (2006) Cane yield and quality characters of some promising somaclonal variants of sugarcane. Sugar Tech 8:191–193

    Article  Google Scholar 

  • Doule RB, Kawar PG, Devarumath RM et al (2008) Field performance and RAPD analysis for assessment of genetic variation in sugarcane somaclones. Indian J Gen 68:301–306

    CAS  Google Scholar 

  • Duncan RR (1997) Tissue culture-induced variation and crop improvement. Adv Agron 58:201–240

    Article  CAS  Google Scholar 

  • Duncan DR, Widholm JM (1990) Measurements of viability suitable for plant tissue cultures. In: Pollard JW (ed) Plant cell and tissue culture. Humana Press, Clifton, pp 29–37

    Chapter  Google Scholar 

  • Eftekhari M, Alizadeh M, Mashayekhi K et al (2012) In vitro propagation of four Iranian grape varieties: influence of genotype and pretreatment with arbuscular mycorrhiza. Vitis 51:175–182

    CAS  Google Scholar 

  • El-Geddawy DIH, Azzam CR, Khalil SM (2008) Somaclonal variation in sugarcane through tissue culture and subsequent screening for molecular polymorphisms. Egypt J Genet Cytol 37:335–358

    Google Scholar 

  • Evans DA, Sharp WR (1983) Single gene mutations in tomato plants regenerated from tissue culture. Science 221:949–951

    Article  PubMed  CAS  Google Scholar 

  • Evans DA, Sharp WR, Medina-Filho HP (1984) Somaclonal and gametoclonal variation. Am J Bot 71:759–774

    Article  Google Scholar 

  • Fahmy FG (1990) Sugarcane subclones resistant to mosaic virus (MV) from callus tissue culture. Assiut J Agric Sci 21:59–73

    Google Scholar 

  • Fluminhan A, Kameya T (1996) Behaviour of chromosomes in anaphase cells in embryogenic callus cultures of maize (Zea mays L.) Theor Appl Genet 92:982–990

    Article  PubMed  CAS  Google Scholar 

  • Freeling M (1984) Plant transposable elements and insertion sequences. Ann Rev Plant Physiol 35:277–298

    Article  CAS  Google Scholar 

  • Gandonou CB, Errabii T, Abrini J et al (2006) Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell Tissue Organ Cult 87:9–16

    Article  CAS  Google Scholar 

  • Gavazzi G, Tonelli C, Todesco G et al (1987) Somaclonal variation versus chemically induced mutagenesis in tomato (Lycopersicon esculentum L.) Theor Appl Genet 74:733–738

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach BG, Green CE, Donovan CM (1977) Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci U S A 74:5113–5117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • George L, Rao P (1983) Yellow-seeded variants in in vitro regenerants of mustard (Brassica juncea Coss var. Rai-5). Plant Sci Lett 30:327–330

    Article  Google Scholar 

  • Gimenez C, de Garcia E, de Enrech NX et al (2001) Somaclonal variation in banana: cytogenetic and molecular characterization of the somaclonal variant CIEN BTA-03. In Vitro Cell Dev Biol Plant 37:217–222

    Article  CAS  Google Scholar 

  • Groose RW, Bingham ET (1984) Variation in plants regenerated from tissue culture of tetraploid alfalfa heterozygous for several traits. Crop Sci 24:655–658

    Article  Google Scholar 

  • Hartmann HT, Kester DE (1983) Plant propagation principles and practices, 4th edn. Prentice-Hall Inc., Englewood Cliffs. 727 pp

    Google Scholar 

  • Heinz DJ (1973) Sugarcane improvement through induced mutations using vegetative propagules and cell culture techniques. In: Induced mutations in vegetatively propagated plants, Proceedings of a panel, International Atomic Energy Agency, Vienna, pp 53–59

    Google Scholar 

  • Heinz DJ, Mee GWP (1970) Colchicine-induced polyploids from cell suspension cultures of sugarcane. Crop Sci 10:696–699

    Article  Google Scholar 

  • Heinz DJ, Mee GWP (1971) Morphologic, cytogenetic, and enzymatic variation in Saccharum species hybrid clones derived from callus tissue. Am J Bot 58:257–262

    Article  Google Scholar 

  • Heinz DJ, Mee GWP, Nickell LG (1969) Chromosome numbers of some Saccharum species hybrids and their cell suspension cultures. Am J Bot 56:450–456

    Article  Google Scholar 

  • Heinz DJ, Krishnamurthi M, Nickell LG et al (1977) Cell, tissue and organ culture in sugarcane improvement. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Spinger, Berlin Heidelberg/New York, pp 3–17

    Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y et al (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93:7783–7788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoy JW, Bischoff KP, Milligan SB et al (2003) Effect of tissue culture explant source on sugarcane yield components. Euphytica 129:237–240

    Article  CAS  Google Scholar 

  • Israeli Y, Reuveni O, Lahav E (1991) Qualitative aspects of somaclonal variations in banana propagated by in vitro techniques. Sci Hort 48:71–88

    Article  Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290

    Article  Google Scholar 

  • Jackson JA, Lyndon RF (1990) Habituation: Cultural curiosity or developmental determinant? Physiol Planta 79:579–583

    Article  CAS  Google Scholar 

  • Jalaja NC, Sreenivasan TV, Pawar SM et al (2006) Co 94012 – a new sugarcane variety through somaclonal variation. Sugar Tech 8:132–136

    Article  Google Scholar 

  • James G (2004) Sugarcane. Blackwell Publishing, Oxford, p 214

    Book  Google Scholar 

  • Jones H, Karp A, Jones MGK (1989) Isolation, culture and regeneration of plants from potato tuber protoplasts. Plant Cell Rep 8:307–311

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler S, Phillips R (1993) DNA methylation and tissue culture induced variation in plants. In Vitro Cell Dev Biol Plant 29:125–130

    Article  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Karp A (1992) The role of growth regulators in somaclonal variation. Br Soc Plant Growth Regul Ann Bull 2:1–9

    Google Scholar 

  • Karp A (1993) Mechanisms of somaclonal variation. Biotechnol Biotec Eq 7:20–25

    Article  Google Scholar 

  • Karp A (1994) Origins, causes and uses of variation in plant tissue cultures. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer Academic Publishers, Dordrecht, pp 139–152

    Google Scholar 

  • Karp A (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85:295–302

    Article  Google Scholar 

  • Karp A, Wu QS, Steele SH et al (1987) Chromosome variation in dividing protoplasts and cell suspensions of wheat. Theor Appl Genet 74:140–146

    Article  PubMed  CAS  Google Scholar 

  • Kaur A, Gosal SS (2009) Optimization of gamma radiation dose for induction of genetic variation in sugarcane (Saccharum spp) callus and regenerated shoot cultures. J Plant Biochem Biotechnol 18:117–120

    Article  Google Scholar 

  • Kaur A, Gosal SS, Gill R et al (2001) Induction of plant regeneration and somaclonal variation for some agronomic traits in sugarcane (Saccharum officinarum L.) Crop Improv 28:167–172

    Google Scholar 

  • Kenganal M, Hanchinal RR, Nadaf HL (2008) Ethyl methanesulfonate (EMS) induced mutation and selection for salt tolerance in sugarcane in vitro. Indian J Plant Physiol 13:405–410

    CAS  Google Scholar 

  • Khan IA, Khatri A, Ahmad M et al (1998) In vitro mutagenesis in sugarcane. Pak J Bot 30:253–261

    Google Scholar 

  • Khan SJ, Khan HU, Khan RD et al (2000) Development of sugarcane mutants through in vitro mutagenesis. Pak J Biol Sci 3:1123–1125

    Article  Google Scholar 

  • Khan SJ, Khan MA, Ahmed HK (2004) Somaclonal variation in sugarcane through tissue culture and subsequent screening for salt tolerance. Asian J Plant Sci 3:330–334

    Article  Google Scholar 

  • Khan IA, Dahot MU, Seema N et al (2009) Variability in sugarcane plantlets developed through in vitro mutagenesis. Pak J Bot 41:153–166

    CAS  Google Scholar 

  • Koch AC, Ramgareeb S, Snyman SJ et al (2010) An in vitro induced mutagenesis protocol for the production of sugarcane tolerant to imidazolinone herbicides. Proc Int Soc Sugar Cane Technol 27:1–5

    Google Scholar 

  • Krikorian AD, Irizarry H, Cronauer-Mitra SS et al (1993) Clonal fidelity and variation in plantain (Musa AAB) regenerated from vegetative stem and floral axis tips in vitro. Ann Bot 71:519–535

    Article  Google Scholar 

  • Krishna H, Singh D (2013) Micropropagation of lasora (Cordia myxa Roxb.) Indian J Hortic 70:323–327

    Google Scholar 

  • Krishna H, Sairam RK, Singh SK et al (2008) Mango explants browning: effect of ontogenic age: mycorrhization and pre-treatments. Sci Hortic 118:132–138

    Article  Google Scholar 

  • Krishna H, Alizadeh M, Singh D et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthi M, Tlaskal J (1974) Fiji disease resistant Saccharum officinarum var. Pindar sub-clones from tissue cultures. Proc Int Soc Sugar Cane Technol 15:130–137

    Google Scholar 

  • Kumar P, Agarwal A, Tiwari AK et al (2012) Possibilities of development of red rot resistance in sugarcane through somaclonal variation. Sugar Tech 14:192–194

    Article  CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS et al (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    Article  CAS  Google Scholar 

  • Larkin PJ (1985) Case histories of genetic variability in vitro: wheat and triticale. In: Vasil IK (ed) Cell culture and somatic cell genetics in plants, vol 3, plant regeneration and genetic variability. Academic Press, Orlando, pp 367–383

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60:197–214

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1983) Somaclonal variation and eyespot toxin tolerance in sugarcane. Plant Cell Tissue Organ Cult 2:111–121

    Article  CAS  Google Scholar 

  • Larkin PJ, Ryan SA, Brettell RIS et al (1984) Heritable somaclonal variation in wheat. Theor Appl Genet 67:443–455

    Article  PubMed  CAS  Google Scholar 

  • Laurens AG, Martin FA (1986) Evaluation of in vitro propagated sugarcane hybrids for somaclonal variation. Crop Sci 27:793–796

    Article  Google Scholar 

  • Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol 39:413–437

    Article  Google Scholar 

  • Letham D, Gollnow B (1985) Regulators of cell division in plant tissues. XXX. Cytokinin metabolism in relation to radish cotyledon expansion and senescence. J Plant Growth Regul 4:129–145

    Article  CAS  Google Scholar 

  • Liu MC, Chen WH (1976) Tissue and cell culture as aids to sugarcane breeding. I. Creation of genetic variation through callus culture. Euphytica 25:393–402

    Article  Google Scholar 

  • Liu MC, Chen WH (1978) Tissue and cell culture as aids to sugarcane breeding. II. Performance and yield potential of callus derived lines. Euphytica 27:273–282

    Article  CAS  Google Scholar 

  • Liu MC, Chen WH (1981) Sugarcane breeding by the use of cell culture techniques. Proc Pl Breeding Symp, SABRAO, Taichung, Taiwan, pp 189–199

    Google Scholar 

  • Liu LJ, Marquez ER, Biascoechea ML (1983) Variation in degree of rust resistance among plantlets derived from callus cultures of sugarcane in Puerto Rico. Phytopathology 73:797

    Google Scholar 

  • Liu MC, Yeh HS, Chen WH (1984) A high sucrose and vigorously growing calliclone 71-4829. Rep Taiwan Sugar Res Inst 102:1–11

    Google Scholar 

  • Lorz H, Scowcroft WR (1983) Variability among plants and their progeny regenerated from protoplasts of Su/su heterozygotes of Nicotiana tabaccum. Theor Appl Genet 66:67–75

    Article  PubMed  CAS  Google Scholar 

  • Lorz H, Gobel E, Brown P (1988) Advances in tissue culture and progress towards genetic transformation of cereals. Plant Breed 100:1–25

    Article  Google Scholar 

  • LoSchiavo F, Pitto L, Giuliano G et al (1989) DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77:325–331

    Article  PubMed  CAS  Google Scholar 

  • Mahmud K, Nasiruddin KM, Hossain MA et al (2015a) Screening sugarcane somaclones and their parent varieties against red rot (Colletotrichum falcatum) and assessment of variability by RAPD and SSR markers. SAARC J Agric 13:173–182

    Article  Google Scholar 

  • Mahmud K, Nasiruddin KM, Hossain MA et al (2015b) Characterization of induced sugarcane somaclones and their sources varieties using random amplified polymorphic DNA. Plant Tissue Cult & Biotech 25:223–229

    Article  Google Scholar 

  • Mahmud K, Nasiruddin KM, Hossain MA et al (2016) Development of mutants in sugarcane through callus culture. Plant Tiss Cult Biotech 26:123–130

    Article  Google Scholar 

  • Maluszynski M, Ahloowalia BS, Sigurbjörnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85:303–315

    Article  Google Scholar 

  • Manchanda P, Gosal SS (2012) Effect of activated charcoal, carbon sources and gelling agents on direct somatic embryogenesis and regeneration in sugarcane via leaf roll segments. Sugar Tech 14:168–173

    Article  CAS  Google Scholar 

  • Maretzki A (1987) Tissue culture: its prospects and problems. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 343–384

    Chapter  Google Scholar 

  • Mascarenhas AF (1991) Hand book of plant tissue culture. ICAR Publications, New Delhi

    Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Micke A, Donani B, Maluszynski M (1990) Induced mutations for crop improvement. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna

    Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    Article  PubMed  CAS  Google Scholar 

  • Mohamed MAH, Harris PJC, Henderson J (2000) In vitro selection and characterisation of a drought tolerant clone of Tagetes minuta. Plant Sci 159:213–222

    Article  PubMed  CAS  Google Scholar 

  • Mohanty S, Panda M, Subudhi E et al (2008) Plant regeneration from callus culture of Curcuma aromatica and in vitro detection of somaclonal variation through cytophotometric analysis. Biol Plant 52:783–786

    Article  Google Scholar 

  • Moore PP, Robbins JA, Sjulin JM (1991) Field performance of ‘Olympus’ strawberry subclones. Hort Sci 26:192–194

    Google Scholar 

  • Muller E, Brown PTH, Hartke S et al (1990) DNA variation in tissue-culture-derived rice plants. Theor Appl Genet 80:673–679

    Article  PubMed  CAS  Google Scholar 

  • Nagai C, Ahloowalia BS, Jheinz D et al (1986) Colchicine-induced aneuploids from cell culture of sugarcane. Euphytica 35:1029–1038

    Article  Google Scholar 

  • Nagai C, Ahloowalia BS, Tew TL (1991) Somaclonal variants from an intergeneric hybrid: Saccharum spp. hybrid x Erianthus arundinaceum. Euphytica 53:193–199

    Article  Google Scholar 

  • Nehra NS, Kartha KK, Stushnoff C et al (1992) The influence of plant growth regulator concentrations and callus age on somaclonal variation in callus culture regenerants of strawberry. Plant Cell Tissue Organ Cult 29:257–268

    Article  CAS  Google Scholar 

  • Nickell LG (1964) Tissue and cell culture of sugarcane – another research tool. Hawaii Plant Rec 57:223–229

    Google Scholar 

  • Nikam AA, Devarumath RM, Ahuja A et al (2015) Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.) The Crop J 3:46–56

    Article  Google Scholar 

  • Novak EJ (1991) In vitro mutation system for crop improvement. In: Plant mutation breeding for crop improvement, vol 2. IAEA, Vienna, pp 327–342

    Google Scholar 

  • Nwauzoma AB, Jaja ET (2013) A review of somaclonal variation in plantain (Musa spp): mechanisms and applications. J Appl Biosci 67:5252–5260

    Article  Google Scholar 

  • Oloriz MI, Gil V, Rojas L et al (2011) Selection and characterisation of sugarcane mutants with improved resistance to brown rust obtained by induced mutation. Crop Pasture Sci 62:1037–1044

    Article  Google Scholar 

  • Oropeza M, Guevara P, de García E et al (1995) Identification of somaclonal variants of sugarcane (Saccharum spp.) resistant to sugarcane mosaic virus via RAPD markers. Plant Mol Biol Rep 13:182–191

    Article  CAS  Google Scholar 

  • Pandey RN, Singh SP, Rastogi J et al (2012) Early assessment of genetic fidelity in sugarcane (Saccharum officinarum) plantlets regenerated through direct organogenesis with RAPD and SSR markers. Aust J Crop Sci 6:618–624

    CAS  Google Scholar 

  • Patade VY, Suprasanna P (2009) An in vitro radiation induced mutagenesis-selection system for salinity tolerance in sugarcane. Sugar Tech 11:246

    Article  CAS  Google Scholar 

  • Patade VY, Suprasanna P, Bapat VA et al (2006) Selection for abiotic (salinity and drought) stress tolerance and molecular characterization of tolerant lines in sugarcane. BARC News Lett 27:244–257

    Google Scholar 

  • Patade VY, Suprasanna P, Bapat VA (2008) Gamma irradiation of embryogenic callus cultures and in vitro selection for salt tolerance in sugarcane (Saccharum officinarum L.) Agric Sci China 7:1147–1152

    Article  CAS  Google Scholar 

  • Peros JP, Bonnel E, Roques D et al (1994) Effect of in vitro culture on rust resistance and yield in sugarcane. Field Crops Res 37:113–119

    Article  Google Scholar 

  • Peschke VM, Phillips RL (1992) Genetic implications of somaclonal variation in plants. Adv Genet 30:41–75

    CAS  Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci U S A 91:5222–5226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poehlman JM, Sleper DA (1995) Breeding field crops. Panima Publishing Corporation, New Delhi

    Google Scholar 

  • Predieri S (2001) Mutation induction and tissue culture in improving fruits. Plant Cell Tissue Organ Cult 64:185–210

    Article  CAS  Google Scholar 

  • Purnamaningsih R, Hutami S (2016) Increasing Al-tolerance of sugarcane using ethyl methane sulphonate and in vitro selection in the low pH media. HAYATI J Biosci 23:1–6

    Article  Google Scholar 

  • Purohit M, Srivastava S, Srivastava PS (1998) Stress tolerant plants through tissue culture. In: Srivastava PS (ed) Plant tissue culture and molecular biology: application and prospects. Narosa Publishing House, New Delhi, pp 554–578

    Google Scholar 

  • Rai MK, Kalia RK, Singh R et al (2011) Developing stress tolerant plants through in vitro selection – an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Rajeswari S, Thirugnanakumar S, Anandan A et al (2009) Somaclonal variation in sugarcane through tissue culture and evaluation for quantitative and quality traits. Euphytica 168:71–80

    Article  Google Scholar 

  • Ramos Leal MA, Maribona RH, Ruiz A et al (1996) Somaclonal variation as a source of resistance to eyespot disease of sugarcane. Plant Breed 115:37–42

    Article  Google Scholar 

  • Rani V, Raina S (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In Vitro Cell Dev Biol Plant 36:319–330

    Article  CAS  Google Scholar 

  • Ravindra NS, Ramesh SI, Gupta MK et al (2012) Evaluation of somaclonal variation for genetic improvement of patchouli (Pogostemon patchouli), an exclusively vegetatively propagated aromatic plant. J Crop Sci Biotechnol 15:33–39

    Article  Google Scholar 

  • Raza S, Qamarunnisa S, Jamil I et al (2014) Screening of sugarcane somaclones of variety BL4 for agronomic characteristics. Pak J Bot 46:1531–1535

    Google Scholar 

  • Reisch B, Stanley HD, Bingham ET (1981) Selection and characterization of ethionine resistant alfalfa (Medicago sativa L.) cell lines. Theor Appl Genet 59:89–94

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez AJ, Perez A, Martin AM (1984) Adaptation to environmental conditions and characterization of sugarcane plants obtained by tissue culture. In: Novak FJ, Havel L, Dolezel J (eds) Plant tissue and cell culture application to crop improvement. Czechoslovakia Academy of Sciences, Prague, Czechoslovakia, pp 283–284

    Google Scholar 

  • Rodriguez PHV, Tulmann Neto A, Cassieri Neto P et al (1998) Influence of the number of subcultures on somaclonal variation in micropropagated Nanico (Musa spp., AAA group). Acta Hortic 490:469–473

    Article  Google Scholar 

  • Sahijram L, Soneji J, Bollamma K (2003) Analyzing somaclonal variation in micropropagated bananas (Musa spp.) In Vitro Cell Dev Biol Plant 39:551–556

    Article  Google Scholar 

  • Samad MA, Begum S, Majid MA (2001) Somaclonal variation and irradiation in sugarcane calli for selection against red rot, waterlogged conditions and delayed or non-flowering characters. IAEA-TECDOC 1227:45–50

    Google Scholar 

  • Saravanan S, Sarvesan R, Vinod MS (2011) Identification of DNA elements involved in somaclonal variants of Rauvolfia serpentina (L.) arising from indirect organogenesis as evaluated by ISSR analysis. Indian J Sci Technol 4:1241–1245

    Google Scholar 

  • Scowcroft WR (1985) Somaclonal variation: the myth of clonal uniformity. In: Hohn B, Dennis ES (eds) Genetic flux in plants. Springer, Berlin Heidelberg/New York, pp 217–245

    Chapter  Google Scholar 

  • Secor GA, Shepard JF (1981) Variability of protoplast derived potato clones. Crop Sci 21:102–105

    Article  Google Scholar 

  • Seema N, Khan IA, Raza S et al (2014) Assessment of genetic variability in somaclonal variation in sugarcane. Pak J Bot 46:2107–2111

    Google Scholar 

  • Selker EU, Stevens JN (1985) DNA methylation at asymmetric sites is associated with numerous transition mutations. Proc Natl Acad Sci U S A 82:8114–8118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selman-Housein G, Lopez MA, Ramos O et al (2000) Towards the improvement of sugarcane bagasse as raw material for the production of paper pulp and animal feed. Dev Plant Genet Breed 5:189–193

    CAS  Google Scholar 

  • Sengar A, Thind K, Kumar B et al (2009) In vitro selection at cellular level for red rot resistance in sugarcane (Saccharum sp.) Plant Growth Regul 58:201–209

    Article  CAS  Google Scholar 

  • Shahid MT, Khan FA, Saeed A et al (2011) Variability of red rot-resistant somaclones of sugarcane genotype S97US297 assessed by RAPD and SSR. Genet Mol Res 10:1831–1849

    Article  PubMed  CAS  Google Scholar 

  • Shahid MTH, Khan FA, Saeed A (2012) Development of somaclones in sugarcane genotype BF-162 and assessment of variability by random amplified polymorphic DNA (RAPD) and simple sequence repeats (SSR) markers in selected red rot resistant somaclones. Afr J Biotech 11:3502–3513

    CAS  Google Scholar 

  • Shepard JF, Bidney D, Shahin E (1980) Potato protoplasts in crop improvement. Science 208:17–24

    Article  PubMed  CAS  Google Scholar 

  • Shepherd K, Dos Santos JA (1996) Mitotic instability in banana varieties. I. Plants from callus and shoot tip cultures. Fruits 51:5–11

    Google Scholar 

  • Shomeili M, Nabipour M, Meskarbashee M et al (2011) Evaluation of sugarcane (Saccharum officinarum L.) somaclonals tolerance to salinity via in vitro and in vivo. HAYATI J Biosci 18:91–96

    Article  Google Scholar 

  • Sibi M (1976) La notion de programme genétique chez les vegetaux superieurs II. Aspect experimental: Obtention de variants par culture de tissus in vitro sur Lactuca sativa L. Apparition de vigueur chez les croisements. Annl’Amelior Plantes 26:523–547

    Google Scholar 

  • Singh A, Lai M, Singh MP et al (2000) Variations for red rot resistance in somaclones of sugarcane. Sugar Tech 2:56–58

    Article  Google Scholar 

  • Singh G, Sandhu S, Meeta M et al (2008) In vitro induction and characterization of somaclonal variation for red rot and other agronomic traits in sugarcane. Euphytica 160:35–47

    Article  Google Scholar 

  • Skirvin RM (1978) Natural and induced variation in tissue culture. Euphytica 27:241–266

    Article  Google Scholar 

  • Skirvin RM, Janick J (1976) Tissue culture-induced variation in scented Pelargonium spp. J Amer Soc Hort Sci 101:281–290

    Google Scholar 

  • Smith MK, Drew RA (1990) Current applications of tissue culture in plant propagation and improvement. Aust J Plant Physiol 17:267–289

    Article  Google Scholar 

  • Sobhakumari VP (2012) Assessment of somaclonal variation in sugarcane. Afr J Biotech 11:15303–15309

    Google Scholar 

  • Sreenivasan TV, Jalaja NC (1981) Sugarcane varietal improvement through tissue culture. Proc Symp Pl Cell Culture in Crop Improv, Bose Institute, Calcutta

    Google Scholar 

  • Sreenivasan J, Sreenivasan TV (1984a) In vitro propagation of Saccharum officinarum (L.) and Sclerostachya fusca (Roxb.) A. Camus hybrid. Theor Appl Genet 67:171–174

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasan J, Sreenivasan TV (1984b) Tissue culture of species and species hybrids for creating genetic variability. Annual Report, Sugarcane Breeding Institute, Coimbatore, pp 61–62

    Google Scholar 

  • Sreenivasan J, Sreenivasan TV, Alexander KC (1987a) Somaclonal variation for rust resistance in sugarcane. Indian J Genet 472:109–114

    Google Scholar 

  • Sreenivasan J, Sreenivasan TV, Alexander KC et al (1987b) Somaclonal variation for smut disease (Ustilago scitaminea Syd.) resistance in sugarcane. In: Reddy GM (ed) Proc symp plant cell and tissue culture of economically important plants, Hyderabad, pp 259–264

    Google Scholar 

  • Srinivasan C, Vasil IK (1985) Callus formation and plantlet regeneration from sugarcane protoplasts isolated from embryogenic cell suspension cultures. Am J Bot 72:833

    Google Scholar 

  • Sun Z, Zhao C, Zheng K et al (1983) Somaclonal genetics of rice, Oryza sativa L. Theor Appl Genet 67:67–73

    Article  Google Scholar 

  • Suprasanna P, Rupali C, Desai NS et al (2008) Partial desiccation augments plant regeneration from irradiated embryogenic cultures of sugarcane. Plant Cell Tissue Organ Cult 92:101

    Article  Google Scholar 

  • Tal M (1994) In vitro selection for salt tolerance in crop plants: theoretical and practical considerations. In Vitro Cell Dev Biol Plant 30:175–180

    Article  Google Scholar 

  • Tanurdzic M, Vaughn MW, Jiang H et al (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:2880–2895

    Article  PubMed  CAS  Google Scholar 

  • Tawar PN, Sawant RA, Dalvi SG et al (2008) An assessment of somaclonal variation in micropropagated plants of sugarcane by RAPD markers. Sugar Tech 10:124

    Article  CAS  Google Scholar 

  • Tawar PN, Sawant RA, Sushir KV et al (2016) VSI 434: new sugarcane variety obtained through somaclonal variation. Agric Res 5:127

    Article  Google Scholar 

  • Taylor PWJ, Geijskes JR, Ko HL et al (1995) Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theor Appl Genet 90:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Tiwari JK, Chandel P, Gupta S et al (2013) Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers. Physiol Mol Biol Plants 19:587–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vazquez AM (2001) Insight into somaclonal variation. Plant Biosyst 135:57–62

    Article  Google Scholar 

  • Wacksman JT (1997) DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res 375:1–8

    Article  Google Scholar 

  • Wagih ME, Ala A, Musa Y (2004) Regeneration and evaluation of sugarcane somaclonal variants for drought tolerance. Sugar Tech 6:35–40

    Article  Google Scholar 

  • Weising K, Nybom H, Wolff K et al (2005) DNA fingerprinting in plants: principles, methods, and applications. CRC Press, New York

    Book  Google Scholar 

  • Yadav PV, Suprasanna P, Gopalrao KU et al (2006) Molecular profiling using RAPD technique of salt and drought tolerant regenerants of sugarcane. Sugar Tech 8:63–68

    Article  CAS  Google Scholar 

  • Yasmin S, Khan IA, Khatri A et al (2011) Plant regeneration from irradiated embryogenic callus of sugarcane. Pak J Bot 43:2423–2426

    CAS  Google Scholar 

  • Yusnita Y, Widodo W, Sudarsono S (2005) In vitro selection of peanut somatic embryos on medium containing culture filtrate of Sclerotium rolfsii and plantlet regeneration. HAYATI J Biosci 12:50–56

    Article  Google Scholar 

  • Zambrano AY, Demey JR, Gonzalez V (2003a) In vitro selection of a glyphosate-tolerant sugarcane cellular line. Plant Mol Biol Report 21:365–373

    Article  CAS  Google Scholar 

  • Zambrano AY, Demey JR, Fuchs M et al (2003b) Selection of sugarcane plants resistant to SCMV. Plant Sci J 165:221–225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manchanda, P., Kaur, A., Gosal, S.S. (2018). Somaclonal Variation for Sugarcane Improvement. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_9

Download citation

Publish with us

Policies and ethics