Skip to main content

Tissue Culture Approaches in Relation to Medicinal Plant Improvement

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 1

Abstract

The medicinal and aromatic plant species owe their importance to the production of secondary metabolites. These species with worldwide highest volume of business for phytopharmaceuticals, herbal supplements and functional food ordered by size are ginseng (Panax ginseng C.A. Mey.), ginkgo or maidenhair tree (Ginkgo biloba L.), noni or Indian mulberry (Morinda citrifolia L.), saw palmetto (Serenoa repens [W. Bartram] Small), coneflower (Echinacea spp. Moench), valerian or all-heal (Valeriana officinalis L.), green tea (Camellia sinensis [L.] Kuntze), garlic (Allium sativum L.), Saint John’s wort (Hypericum perforatum L.), black cohosh, black snakeroot (Actaea racemosa L., syn. Cimicifuga racemosa [L.] Nutt.), great nettle (Urtica dioica L.), horse chestnut (Aesculus hippocastanum L.), hawthorn (Crataegus spp.) and apricot vine or maypop (Passiflora incarnata L.) (Hoppe (2013) Handbuch des Arznei- und Gewürzpflanzenbaus (book in German), vol 1. Saluplanta, Bernburg, pp 509–513). Plant tissue and protoplast culture/somatic hybridization methods offer a huge scope for creation and conservation of genetic variability for the improvement of a wide variety of medicinal plants. In addition to this, tissue culture methods are now being used for the production of secondary metabolites in vitro. The micropropagation is the best example of the commercial application of tissue culture technology. Meristem-tip culture helps in developing disease-free plants. Development of efficient methods for somatic embryogenesis and embryo desiccation and encapsulation technology may lead to the production of ‘synthetic seeds’ for mass cloning of plants. Somatic embryogenesis in plants further helps in cloning and genetic transformation. Production of haploids anther/pollen culture from wide hybrids has been exploited for the early release of varieties. Embryo culture is very useful technique to obtain interspecific and intergeneric hybrids among otherwise difficult to cross parents. Protoplast culture and somatic cell hybridization help in combining characteristics even from otherwise sexually incompatible plant species and to obtain cytoplasmic hybrids (cybrids). In vitro freeze-storage and cryopreservation in liquid nitrogen at ultra-low temperature of –196 °C (−320 °F) are very important methods for germplasm conservation especially of the vegetatively propagated crops. Since the possibility of producing useful secondary products in plant cell cultures was first recognized in the 1970s, significant progress has been made, and a number of plant species have been found to produce secondary products such as capsaicin, shikonin, diosgenin, caffeine, glutathione and anthraquinone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Kamal Uddin M, Alam MZ, Latif MA (2014) Genetic improvement of Purslane (Portulaca oleracea L.) and its future prospects. Mol Biol Rep 41:7395. https://doi.org/10.1007/s11033-014-3628-1

    Article  PubMed  CAS  Google Scholar 

  • Amoo SO, Aremu AO, van Staden J (2012) In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell Tissue Organ Cult 111(3):345–358

    Article  CAS  Google Scholar 

  • Amoo SO, Aremu AO, van Staden J (2013) Shoot proliferation and rooting treatments influence secondary metabolite production and antioxidant activity in tissue culture derived Aloe arborescens grown ex vitro. Plant Growth Regul 70(2):115–122

    Article  CAS  Google Scholar 

  • Carlen C, Schaller M, Carron CA, Vouillamoz JF, Baroffino CA (2010) The new Thymus vulgaris L. hybrid cultivar ‘Varico 3’ compared to five established cultivars from Germany, France and Switzerland. Acta Hortic 860:161–166

    Article  CAS  Google Scholar 

  • ChengMin Y, YuKai Z, JianHe W, LiZi Z, Chun S, Zheng Z, LuYing C (2011) Factors affecting embryogenic callus production and plant regeneration in anther culture of Bupleurum chinense. Chin Herbal Med 3:214–220

    Google Scholar 

  • Ferrie AMR (2007) Doubled haploid production in nutraceutical species: a review. Euphytica 158:347–357. https://doi.org/10.1007/s10681-006-9242-0

    Article  Google Scholar 

  • Ferrie AMR, Bethune TD, Mykytyshyn M (2011a) Microspore embryogenesis in Apiaceae. Plant Cell Tissue Organ Cult 104:399–406. https://doi.org/10.1007/s11240-010-9770-0

    Article  Google Scholar 

  • Ferrie AMR, Bethune TD, Arganosa GC, Waterer D (2011b) Field evaluation of doubled haploid plants in the Apiaceae: dill (Anethum graveolens L.), caraway (Carum carvi L.), and fennel (Foeniculum vulgare Mill.) Plant Cell Tissue Organ Cult 104:407–413. https://doi.org/10.1007/s11240-010-9821-6

    Article  Google Scholar 

  • Fischer R, Emans N, Schuster F, Hellwig S, Drossard J (1999) Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol Appl Biochem 30:109–112

    PubMed  CAS  Google Scholar 

  • Gantait S, Kundu S (2017) In vitro biotechnological approaches on Vanilla planifolia Andrews: advancements and opportunities. Acta Physiol Plant 39:196. https://doi.org/10.1007/s11738-017-2462-1

    Article  CAS  Google Scholar 

  • Gayathri B, Archana G (2012) Production of medicinally important secondary metabolites (stigmasterol and hecogenin) from root cultures of Chlorophytum borivilianum (Safed musli). Recent Res Sci Technol 4(5):45–48

    Google Scholar 

  • Gonçalves S, Romano A (2013) In vitro culture of lavenders (Lavandula spp.)and the production of secondary metabolites. Biotechnol Adv 31(2):166–174

    Article  CAS  PubMed  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2010) Biotechnology and crop improvement. J Crop Improv 24:153–217. https://doi.org/10.1080/15427520903584555

    Article  CAS  Google Scholar 

  • Hadian J, Afzalifar M, Mirjalili MH, Shariatpanahi ME, Esmaili A (2012) Embryogenesis from isolated microspore cultures of Satureja khuzistanica and Satureja rechingeri (Lamiaceae). In: Breedmap 5. International symposium breeding research on medicinal and aromatic plants, Vienna, June 18–20, p 37

    Google Scholar 

  • Havkin-Frenkel D, Dorn R, Leustek T (1997) Plant tissue culture for production of secondary metabolites. Food Technol 51:56–61

    CAS  Google Scholar 

  • Helal NAS (2011) The green revolution via synthetic (artificial) seeds: a review. Res J Agric Biol Sci 7(6):464–477

    Google Scholar 

  • Hoppe B (2013) Handbuch des Arznei- und Gewürzpflanzenbaus (book in German), vol 1. Saluplanta, Bernburg, pp 509–513

    Google Scholar 

  • Jassim EH, Ameen SKM (2014) Influence of L-Tryptophan and salicylic acid on secondary metabolites production from leaves induced callus of Catharanthus roseus L.G. Don in vitro. J Biotechnol Res Cent 8(2):35–43

    Google Scholar 

  • Kästner U, Kittler J, Marthe F (2016) Comparison of in vitro haploid induction in balm (Melissa officinalis). Plant Cell Tissue Organ Cult (PCTOC) 126(3):561–566. https://doi.org/10.1007/s11240-016-1007-4

    Article  CAS  Google Scholar 

  • Klocke E, Matasyho LG, Budahn H, Kästner U (2016) Biotechnological tools for improvement of black night shade (Solanum nigrum L. complex), valuable medicinal and vegetable plants in Kenya. Julius-Kuhn-Archiv 453:22–25

    Google Scholar 

  • Lambert E, Geelen D (2010) High efficiency protoplast isolation from in vitro cultures and hairy roots of Maesa lanceolata. Afr J Biotechnol 9:7071–7078

    CAS  Google Scholar 

  • Liu F, Ryschka U, Marthe F, Klocke E, Schumann G, Zhao H (2007) Culture and fusion of pollen protoplasts of Brassica oleracea L. var. italica with haploid mesophyll protoplasts of B. rapa L. ssp. pekinensis. Protoplasma 231:89–97

    Article  PubMed  Google Scholar 

  • Manan AA, Taha RM, Mubarak EE, Elias H (2016) In vitro flowering, glandular trichomes ultrastructure, and essential oil accumulation in micropropagated Ocimum basilicum L. In vitro Cell Dev Biol Plant 52:303–314. https://doi.org/10.1007/s11627-016-9755-8

    Article  CAS  Google Scholar 

  • Misic D, Grubisic D, Konjevic R (2006) Micropropagation of Salvia brachyodon through nodal explants. Biol Plant 50:473–476. https://doi.org/10.1007/s10535-006-0074-5

    Article  Google Scholar 

  • Mizukami H, Ohbayashi K, Kitamura Y, Ikenaga T (1993) Restriction-fragment-length-polymorphisms (RFLPS) of medicinal-plants and crude drugs. 1. RFLP probes allow clear identification of Duboisia interspecific hybrid genotypes in both fresh and dried tissues. Biol Pharm Bull 16:388–390

    Article  CAS  PubMed  Google Scholar 

  • Morel G, Martin C (1952) Guerison de dahlias atteints d’une maladie a virus. Comptes Rendus Hebdomadaires des Séances de I’Academie des Sciences(Paris) 234: 1324–1325

    Google Scholar 

  • Mori K, Hosokawa D (1977) Localization of viruses in apical meristem and production of virus-free plants by means of meristem and tissue culture. Acta Hortic 78:389–396

    Article  Google Scholar 

  • Nataraj M, Kher MM, da Silva JAT (2016) Micropropagation of Clerodendrum L. species: a review. Rendicontilincei-Scienze Fisiche e Naturali 27:169–179. https://doi.org/10.1007/s12210-015-0484-4

    Article  Google Scholar 

  • Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult 81:287–300

    Article  Google Scholar 

  • Pandhair V, Vandana V, Gosal SS (2006) Biosynthesis of capsaicin in callus cultures derieved from explants of Capsicum annuum L.fruits. Plant Cell Biotechnol Mol Biol 7:35–40

    CAS  Google Scholar 

  • Panis B, Swennen R, Engelmann F (2001) Cryopreservation of plant germplasm. Acta Hortic 560:79–86

    Article  CAS  Google Scholar 

  • Patel AK, Agarwal T, Phulwaria M, Kataria V, Shekhawat NS (2014) An efficient in vitro plant regeneration system from leaf of mature plant of Leptadenia reticulata (Jeewanti): a life giving endangered woody climber. Ind Crop Prod 52:499–505. https://doi.org/10.1016/j.indcrop.2013.11.025

    Article  CAS  Google Scholar 

  • Prasad A, Shukla SP, Mathur A, Chanotiya CS, Mathur AK (2015) Genetic fidelity of long-term micropropagated Lavandula officinalis Chaix.: an important aromatic medicinal plant. Plant Cell Tissue Organ Cult 120:803–811. https://doi.org/10.1007/s11240-014-0637-7

    Article  CAS  Google Scholar 

  • Rameshkumar R, Largia MJV, Satish L, Shilpha J, Ramesh M (2017) In vitro mass propagation and conservation of Nilgirianthus ciliatus through nodal explants: a globally endangered, high trade medicinal plant of Western Ghats. Plant Biosyst 151:204–211

    Article  Google Scholar 

  • Sandhu R, Varindra S, Sidhu P, Goyal M, Mann APS, Gosal SS (2003) In vitro production of capsaicin by cell and tissue culture of Capsicum annuum. Plant Cell Biotechnol Mol Biol 4(1–2):63–68

    CAS  Google Scholar 

  • Sangwan NS, Sabir F, Mishra S, Bansal S, Sangwan RS (2014) Withanolides from Withania somnifera Dunal: development of cellular technology and their production. Recent Pat Biotechnol 8(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Sharma DR, Kaur R, Kumar K (1996) Embryo rescue in plants – a review. Euphytica 89:325–337

    Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  CAS  PubMed  Google Scholar 

  • Tu YQ, Sun J, Liu Y, Ge XH, Zhao ZG, Yao XC, Li ZY (2008) Production and characterization of intertribal somatic hybrids of Raphanus sativus and Brassica rapa with dye and medicinal plant Isatis indigotica. Plant Cell Rep 27:873–883. https://doi.org/10.1007/s00299-008-0513-1

    Article  PubMed  CAS  Google Scholar 

  • Varindra RR, Bajaj KL, Gosal SS (1997) Capsaicin accumulation in callus culture and whole fruits of Capsicum annum. Plant Tissue Cult 7:47–51

    Google Scholar 

  • Varindra SS, Sandhu RA, Gosal SS (2000) Effect of nutrient limitation on capsaicin production in callus cultures derived from pericarp and seedling explants of C. annum L. varieties. Plant Tissue Cult 10:9–16

    Google Scholar 

  • Wang J, Gao WY, Zhang J, Zuo BM, Zhang LM, Huang LQ (2012) Production of ginsenoside and polysaccharide by two stage cultivation of Panax quinquefolium L. cells. In Vitro Cell Dev Biol Plant 48(1):107–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Marthe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marthe, F. (2018). Tissue Culture Approaches in Relation to Medicinal Plant Improvement. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_15

Download citation

Publish with us

Policies and ethics