Skip to main content

Mode of Action on Trypanosoma and Leishmania spp.

  • Chapter
  • First Online:

Abstract

In this chapter, the most common molecular targets and mechanisms of action of anti-trypanosomatid drugs are described: biosynthesis of sterols, trypanothione pathway, purine salvage pathway, cysteine proteinases, trans-sialidase, metallocarboxypeptidases, tubulin, calcium homeostasis and pyrophosphate metabolism, heme uptake and degradation, glycolytic pathway, DNA interaction, oxidative stress and apoptosis. Interaction of the sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of enzymes as cruzipain and trypanothione reductase, the apoptosis induction and the ability of this type of compounds to inhibit sterol biosynthesis will be also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez VE, Niemirowicz GT, Cazzulo JJ (2012) The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochim Biophys Acta 1824:195–206

    Article  CAS  PubMed  Google Scholar 

  • Alvarez VE, Niemirowicz GT, Cazzulo JJ (2013) Metacaspases, autophagins and metallocarboxypeptidases: potential new targets for chemotherapy of the trypanosomiases. Curr Med Chem 20:3069–3077. Review

    Article  CAS  PubMed  Google Scholar 

  • Amin D, Cornell SA, Gustafson SK et al (1992) Bisphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis. J Lipid Res 33:1657–1663

    PubMed  CAS  Google Scholar 

  • Assíria Fontes Martins T, de Figueiredo Diniz L, Mazzeti AL et al (2015) Benznidazole/itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas disease. PLoS One 10:e0128707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babokhov P, Sanyaolu AO, Oyibo WA et al (2013) A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog Glob Health 107:242–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrera P, Sülsen VP, Lozano E et al (2013) Natural sesquiterpene lactones induce oxidative stress in Leishmania mexicana. Evid Based Complement Alternat Med 2013:163404

    Article  PubMed  PubMed Central  Google Scholar 

  • Baum SG, Wittner M, Nadler JP et al (1981) Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi. Proc Natl Acad Sci U S A 78:4571–4575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benaim B, Garcia CR (2011) Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis – a review. Trop Biomed 28:471–481

    PubMed  Google Scholar 

  • Benaim G, Paniz Mondolfi AE (2012) The emerging role of amiodarone and dronedarone in Chagas disease. Nat Rev Cardiol 9:605–609

    Article  CAS  PubMed  Google Scholar 

  • Benaim G, Hernandez-Rodriguez V, Mujica-Gonzalez S et al (2012) In vitro anti-Trypanosoma cruzi activity of dronedarone, a novel amiodarone derivative with an improved safety profile. Antimicrob Agents Chemother 56:3720–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benaim G, Casanova P, Hernandez-Rodriguez V et al (2014) Dronedarone, an amiodarone analog with improved anti-Leishmania mexicana efficacy. Antimicrob Agents Chemother 58:2295–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brener Z, Cançado JR, Galvão LM et al (1993) An experimental and clinical assay with ketoconazole in the treatment of Chagas disease. Mem Inst Oswaldo Cruz 88:149–153

    Article  CAS  PubMed  Google Scholar 

  • Brengio S, Belmonte S, Guerreiro E et al (2000) The sesquiterpene lactone dehydroleucodine (DhL) affects the growth of cultured epimastigotes of Trypanosoma cruzi. J Parasitol 86:407–412

    Article  CAS  PubMed  Google Scholar 

  • Bryson K, Besteiro S, McGachy HA et al (2009) Overexpression of the natural inhibitor of cysteine peptidases in Leishmania mexicana leads to reduced virulence and a Th1 response. Infect Immun 77:2971–2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckner FS (2008) Sterol 14-demethylase inhibitors for Trypanosoma cruzi infections. Adv Exp Med Biol 625:61–80

    Article  CAS  PubMed  Google Scholar 

  • Burtoloso AC, de Albuquerque S, Furber M et al (2017) Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors. PLoS Negl Trop Dis 11:e0005343

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos-Salinas J, Cabello-Donayre M, García-Hernández R et al (2011) A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol Microbiol 79:1430–1444

    Article  CAS  PubMed  Google Scholar 

  • Caputto ME, Fabian LE, Benítez D et al (2011) Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents. Bioorg Med Chem 19:6818–6826

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti S, Das L, Kapoor N et al (2011) Curcumin recognizes a unique binding site of tubulin. J Med Chem 54:6183–6196

    Article  CAS  PubMed  Google Scholar 

  • Chatelain E (2015) Chagas disease drug discovery: toward a new era. J Biomol Screen 20:22–35

    Article  CAS  PubMed  Google Scholar 

  • Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciccarelli A, Araujo L, Batlle A et al (2007) Effect of haemin on growth, protein content and the antioxidant defence system in Trypanosoma cruzi. Parasitology 134:959–965

    Article  CAS  PubMed  Google Scholar 

  • Ciccarelli AB, Frank FM, Puente V et al (2012) Antiparasitic effect of vitamin B12 on Trypanosoma cruzi. Antimicrob Agents Chemother 56:5315–5320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cupello MP, Souza CF, Buchensky C et al (2011) The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters. Acta Trop 120:211–218

    Article  CAS  PubMed  Google Scholar 

  • Dc-Rubin SS, Schenkman S (2012) Trypanosoma crWuzi trans-sialidase as a multifunctional enzyme in Chagas’ disease. Cell Microbiol 14:1522–1530

    Article  CAS  PubMed  Google Scholar 

  • Fernandes Rodrigues JC, Concepcion JL, Rodrigues C et al (2008) In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects. Antimicrob Agents Chemother 52:4098–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira RS, Simeonov A, Jadhav A et al (2010) Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J Med Chem 53:4891–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frasch AP, Carmona AK, Juliano L et al (2012) Characterization of the M32 metallocarboxypeptidase of Trypanosoma brucei: differences and similarities with its orthologue in Trypanosoma cruzi. Mol Biochem Parasitol 184:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freire-de-Lima L, Ribeiro TS, Rocha GM et al (2011) The toxic effects of piperine against Trypanosoma cruzi: ultrastructural alterations and reversible blockage of cytokinesis in epimastigote forms. Parasitol Res 102:1059–1067

    Article  Google Scholar 

  • Galaka T, Ferrer Casal M, Storey M et al (2017) Antiparasitic activity of sulfur- and fluorine-containing bisphosphonates against trypanosomatids and apicomplexan parasites. Molecules 22(1):82. https://doi.org/10.3390/molecules22010082

    Article  CAS  Google Scholar 

  • Heby O, Persson L, Rentala M (2007) Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis. Amino Acids 33:359–366

    Article  CAS  PubMed  Google Scholar 

  • Huynh C, Yuan X, Miguel DC et al (2012) Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog 8:e1002795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Zhou Y (2005) Using bioinformatics for drug target identification from the genome. Am J Pharmacogenomics 5:387–396. Review

    Article  CAS  PubMed  Google Scholar 

  • Jimenez V, Kemmerling U, Paredes R et al (2014) Natural sesquiterpene lactones induce programmed cell death in Trypanosoma cruzi: a new therapeutic target? Phytomedicine 21:1411–1418

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Ortiz V, Brengio SD, Giordano O et al (2005) The trypanocidal effect of sesquiterpene lactones helenalin and mexicanin on cultured epimastigotes. J Parasitol 91:170–174

    Article  CAS  PubMed  Google Scholar 

  • Karioti A, Skaltsa H, Kaiser M et al (2009) Trypanocidal, leishmanicidal and cytotoxic effects of anthecotulide-type linear sesquiterpene lactones from Anthemis auriculata. Phytomedicine 16:783–787

    Article  CAS  PubMed  Google Scholar 

  • Katsila T, Spyroulias GA, Patrinos GP et al (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavanagh KL, Guo K, Dunford JE et al (2006) The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci 103:7829–7834

    Article  CAS  PubMed  Google Scholar 

  • Kerr ID, Lee JH, Farady CJ et al (2009) Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem 284:25697–25703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr ID, Wu P, Marion-Tsukamaki R et al (2010) Crystal structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei. PLoS Negl Trop Dis 4:e701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechuga GC, Borges JC, Calvet CM et al (2016) Interactions between 4-aminoquinoline and heme: promising mechanism against Trypanosoma cruzi. Int J Parasitol Drugs Drug Resist 6:154–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Leroux AE, Krauth-Siegel RL (2016) Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol Biochem Parasitol 206:67–74

    Article  CAS  PubMed  Google Scholar 

  • Manta B, Comini M, Medeiros A et al (2013) Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta 1830:3199–3216

    Article  CAS  PubMed  Google Scholar 

  • Maya JD, Cassels BK, Iturriaga-Vásquez P et al (2007) Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol A Mol Integr Physiol 146:601–620

    Article  CAS  PubMed  Google Scholar 

  • McCabe R (1988) Failure of ketoconazole to cure chronic murine Chagas’ disease. J Infect Dis 158:1408–1409

    Article  CAS  PubMed  Google Scholar 

  • McCall LI, El Aroussi A, Choi JY et al (2015) Targeting ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alpha-demethylase. PLoS Negl Trop Dis 9:e0003588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merli ML, Pagura L, Hernández J et al (2016) The Trypanosoma cruzi protein TcHTE is critical for heme uptake. PLoS Negl Trop Dis 10:e0004359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller BR, Roitberg AE (2013) Trypanosoma cruzi trans-sialidase as a drug target against Chagas disease (American trypanosomiasis). Future Med Chem 5:1889–1900

    Article  CAS  PubMed  Google Scholar 

  • Moreira AA, de Souza HB, Amato Neto V et al (1992) Evaluation of the therapeutic activity of itraconazole in chronic infections, experimental and human, by Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 34:177–180

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Huang C, Guerra F et al (2009) Thermodynamics of bisphosphonates binding to human bone: a two-site model. J Am Chem Soc 131:8374–8375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowicki MW, Tulloch LB, Worralll L et al (2008) Design, synthesis and trypanocidal activity of lead compounds based on inhibitors of parasite glycolysis. Bioorg Med Chem 16:5050–5061

    Article  CAS  PubMed  Google Scholar 

  • Paniz-Mondolfi AE, Pérez-Alvarez AM, Lanza G et al (2009) Amiodarone and itraconazole: a rational therapeutic approach for the treatment of chronic Chagas’ disease. Chemotherapy 55:228–233

    Article  CAS  PubMed  Google Scholar 

  • Proto WR, Coombs GH, Mottram JC (2013) Cell death in parasitic protozoa: regulated or incidental? Nat Rev Microbiol 11:58–66

    Article  CAS  PubMed  Google Scholar 

  • Raviolo MA, Solana ME, Novoa MM et al (2013) Synthesis, physicochemical properties of allopurinol derivatives and their biological activity against Trypanosoma cruzi. Eur J Med Chem 69:455–464

    Article  CAS  PubMed  Google Scholar 

  • Rodenko B, van der Burg AM, Wanner MJ et al (2007) 2,N 6-disubstituted adenosine analogs with antitrypanosomal and antimalarial activities. Antimicrob Agents Chemother 51:3796–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Francisco J, Barría I, Gutiérrez B et al (2017) Decreased cruzipain and gp85/trans-sialidase family protein expression contributes to loss of Trypanosoma cruzi trypomastigote virulence. Microbes Infect 19:55–61

    Article  CAS  PubMed  Google Scholar 

  • Saúde-Guimarães DA, Perry KS, Raslan DS et al (2007) Complete assignments of 1H and 13C NMR data for trypanocidal eremantholide C oxide derivatives. Magn Reson Chem 45:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Sbaraglini ML, Bellera CL, Fraccaroli L et al (2016) Novel cruzipain inhibitors for the chemotherapy of chronic Chagas disease. Int J Antimicrob Agents 48:91–95

    Article  CAS  PubMed  Google Scholar 

  • Schmidt TJ, Brun R, Willuhn G et al (2002) Anti-trypanosomal activity of helenalin and some structurally related sesquiterpene lactones. Planta Med 68:750–751

    Article  CAS  PubMed  Google Scholar 

  • Schmidt TJ, Khalid SA, Romanha AJ et al (2012) The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part I. Curr Med Chem 19:2128–2175

    Article  CAS  PubMed  Google Scholar 

  • Scory S, Stierhof YD, Caffrey CR et al (2007) The cysteine proteinase inhibitor Z-Phe-Ala-CHN2 alters cell morphology and cell division activity of Trypanosoma brucei bloodstream forms in vivo. Kinetoplastid Biol Dis 6:2. https://doi.org/10.1186/1475-9292-6-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serrano-Martín X, García-Marchan Y, Fernandez A et al (2009) Amiodarone destabilizes intracellular Ca2+ homeostasis and biosynthesis of sterols in Leishmania mexicana. Antimicrob Agents Chemother 53:1403–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang N, Li Q, Ko TP et al (2014) Squalene synthase as target for Chagas disease therapeutics. PLoS Pathog 10:e1004114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Jardim I, Thiemann OH, Anibal F de F (2014) Leishmaniasis and Chagas disease chemotherapy: a critical review. J Braz Chem Soc 25:1810–1823

    CAS  Google Scholar 

  • Smirlis D, Duszenko M, Ruiz AJ (2010) Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 3:107. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenkamp DJ (2002) Thiol metabolism of the trypanosomatids as potential drug targets. IUBMB Life 53:243–248

    Article  CAS  PubMed  Google Scholar 

  • Sueth-Santiago V, Moraes JB, Sobral Alves ES et al (2016) The effectiveness of natural diarylheptanoids against Trypanosoma cruzi: cytotoxicity, ultrastructural alterations and molecular modeling studies. PLoS One 11:e0162926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sueth-Santiago V, Decote-Ricardo D, Morrot A et al (2017) Challenges in the chemotherapy of Chagas disease: looking for possibilities related to the differences and similarities between the parasite and host. World J Biol Chem 8:57–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Sülsen VP, Frank FM, Cazorla SI et al (2008) Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae). Antimicrob Agents Chemother 52:2415–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sülsen VP, Frank FM, Cazorla SI et al (2011) Psilostachyin C: a natural compound with trypanocidal activity. Int J Antimicrob Agents 37:536–543

    Article  CAS  PubMed  Google Scholar 

  • Sülsen VP, Cazorla SI, Frank FM et al (2013) Natural terpenoids from Ambrosia species are active in vitro and in vivo against human pathogenic trypanosomatids. PLoS Negl Trop Dis 7:e2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sülsen VP, Puente V, Papademetrio D et al (2016) Mode of action of the sesquiterpene lactones psilostachyin and psilostachyin C on Trypanosoma cruzi. PLoS One 11:e0150526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripodi KE, Menendez Bravo SM, Cricco JA (2011) Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res 201:873230. https://doi.org/10.4061/2011/87323

    Article  Google Scholar 

  • Turrens JF (2004) Oxidative stress and antioxidant defences: a target for the treatment of diseases caused by parasitic protozoa. Mol Asp Med 25:211–220

    Article  CAS  Google Scholar 

  • Urbina JA (2001) Specific treatment of Chagas disease: current status and new developments. Curr Opin Infect Dis 14:733–741

    Article  CAS  PubMed  Google Scholar 

  • Urbina JA (2010) Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115:55–68

    Article  PubMed  Google Scholar 

  • Urbina JA, Concepcion JL, Caldera A et al (2004) In vitro and in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi. Antimicrob Agents Chemother 48:2379–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannier-Santos MA, Urbina JA, Martiny A et al (1995) Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania. J Eukaryot Microbiol 42:337–346

    Article  CAS  PubMed  Google Scholar 

  • Veiga-Santos P, Barrias ES, Santos JF et al (2012) Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi. Int J Antimicrob Agents 40:61–71

    Article  CAS  PubMed  Google Scholar 

  • Vieira PM, Francisco AF, Machado EM et al (2012) Different infective forms trigger distinct immune response in experimental Chagas disease. PLoS One 7:e32912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María E. Lombardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lombardo, M.E., Batlle, A. (2018). Mode of Action on Trypanosoma and Leishmania spp.. In: Sülsen, V., Martino, V. (eds) Sesquiterpene Lactones. Springer, Cham. https://doi.org/10.1007/978-3-319-78274-4_10

Download citation

Publish with us

Policies and ethics