Skip to main content

Characteristics of Ibritumomab as Radionuclide Therapy Agent

  • Chapter
  • First Online:
Resistance to Ibritumomab in Lymphoma

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 18))

Abstract

Ibritumomab tiuxetan was approved by the FDA as the first radiolabeled monoclonal antibody (mAb) for radioimmunotherapy (RIT: a selective internal radiation therapy using radioisotopes conjugated to tumor-directed antibodies or those fragments) in early 2002 and is now widely used for the treatment of B-cell non-Hodgkin’s lymphoma (NHL). This pharmaceutical agent consists of the murine anti-CD20 chimeric IgG1 mAb, ibritumomab, which is covalently conjugated with the chelator tiuxetan, permitting stable binding to metal cations. In the clinic, two kinds of radioisotopes can be coupled to ibritumomab tiuxetan, namely 111In for cancer imaging and 90Y for the targeted cytotoxic therapy. Dual-label protocols (confirmation of the appropriate mAb distribution using 111In-ibritumomab tiuxetan, followed by radiotherapy by 90Y-ibritumomab tiuxetan) can lead to the effective RIT. To better understand how these radiopharmaceuticals achieve “theranostics” (a combination of diagnosis and therapy) against B-cell NHL, the pharmaceutical characteristics of 90Y-/111In-conjugated ibritumomab tiuxetan are outlined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

%ID/g:

% injected dose per gram of tissue

111In:

Indium-111

90Y:

Yttrium-90

ADCC:

Antibody-dependent cellular cytotoxicity

CDC:

Complement-dependent cytotoxicity

DTPA:

Diethylenetriaminepentaacetic acid

HAMA:

Human antimurine antibody

K d :

Dissociation constant

mAb:

Monoclonal antibody

MIRD:

Medical Internal Radiation Dose

NHL:

Non-Hodgkin’s lymphoma

PET:

Positron emission tomography

RIT:

Radioimmunotherapy

SPECT:

Single-photon emission computed tomography

References

  1. Thomas Hodgkin SMJ. Medical immortal and uncompromising idealist. Proc (Bayl Univ Med Cent). 2005;18:368–7.

    Article  Google Scholar 

  2. Küppers R, Hansmann ML. The Hodgkin and reed/Sternberg cell. Int J Biochem Cell Biol. 2005;37(3):511–7.

    Article  PubMed  CAS  Google Scholar 

  3. Bertoni F, Ponzoni M. The cellular origin of mantle cell lymphoma. Int J Biochem Cell Biol. 2007;39(10):1747–53.

    Article  CAS  PubMed  Google Scholar 

  4. Kridel R, Mottok A, Farinha P, Ben-Neriah S, Ennishi D, Zheng Y, Chavez EA, Shulha HP, Tan K, Chan FC, Boyle M, Meissner B, Telenius A, Sehn LH, Marra MA, Shah SP, Steidl C, Connors JM, Scott DW, Gascoyne RD. Cell of origin of transformed follicular lymphoma. Blood. 2015;126(18):2118–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ondrejka SL, Hsi ED. T-cell lymphomas: updates in biology and diagnosis. Surg Pathol Clin. 2016;9(1):131–41.

    Article  PubMed  Google Scholar 

  6. Stat Fact Sheets SEER. Non-Hodgkin lymphoma, surveillance, epidemiology, and end results program, presented by National Cancer Institute. NIH. http://seer.cancer.gov/statfacts/html/nhl.html

  7. Coleman M, Lammers PE, Ciceri F, Jacobs IA. Role of rituximab and rituximab biosimilars in diffuse large B-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2016;16(4):175–81.

    Article  PubMed  Google Scholar 

  8. Karlin L, Coiffier B. Ofatumumab in the treatment of non-Hodgkin’s lymphomas. Expert Opin Biol Ther. 2015;15(7):1085–91.

    Article  CAS  PubMed  Google Scholar 

  9. Gabellier L, Cartron G. Obinutuzumab for relapsed or refractory indolent non-Hodgkin’s lymphomas. Ther Adv Hematol. 2016;7(2):85–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klein C, Lammens A, Schäfer W, Georges G, Schwaiger M, Mössner E, Hopfner KP, Umaña P, Niederfellner G. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5(1):22–33.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hainsworth JD. Monoclonal antibody therapy in lymphoid malignancies. Oncologist. 2000;5(5):376–84.

    Article  CAS  PubMed  Google Scholar 

  12. Tomblyn B. Radioimmunotherapy for B-cell non-Hodgkin lymphomas. Cancer Control. 2012;19(3):196–203.

    Article  PubMed  Google Scholar 

  13. Read ED, Eu P, Little PJ, Piva TJ. The status of radioimmunotherapy in CD20+ non-Hodgkin’s lymphoma. Target Oncol. 2015;10(1):15–26.

    Article  PubMed  Google Scholar 

  14. Skarbnik AP, Smith MR. Radioimmunotherapy in mantle cell lymphoma. Best Pract Res Clin Haematol. 2012;25(2):201–10.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fink-Bennett DM, Thomas K. 90Y-ibritumomab tiuxetan in the treatment of relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Nucl Med Technol. 2003;31(2):61–8.

    CAS  PubMed  Google Scholar 

  16. Karagiannis TC. Comparison of different classes of radionuclides for potential use in radioimmunotherapy. Hell J Nucl Med. 2007;10(2):82–8.

    PubMed  Google Scholar 

  17. Kawashima H. Radioimmunotherapy: a specific treatment protocol for cancer by cytotoxic radioisotopes conjugated to antibodies. Sci World J. 2014;2014:492061.

    Article  CAS  Google Scholar 

  18. Deans JP, Li H, Polyak MJ. CD20-mediated apoptosis: signalling through lipid rafts. Immunology. 2002;107(2):176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125(4):1678–85.

    CAS  PubMed  Google Scholar 

  20. Hanto DW, Frizzera G, Gajl-Peczalska KJ, Sakamoto K, Purtilo DT, Balfour HH Jr, Simmons RL, Najarian JS. Epstein-Barr virus-induced B-cell lymphoma after renal transplantation: acyclovir therapy and transition from polyclonal to monoclonal B-cell proliferation. N Engl J Med. 1982;306(15):913–8.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF, Nadler LM. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood. 1984;63(6):1424–33.

    CAS  PubMed  Google Scholar 

  22. Hokland P, Ritz J, Schlossman SF, Nadler LM. Orderly expression of B cell antigens during the in vitro differentiation of nonmalignant human pre-B cells. J Immunol. 1985;135(3):1746–51.

    CAS  PubMed  Google Scholar 

  23. Tedder TF, Disteche CM, Louie E, Adler DA, Croce CM, Schlossman SF, Saito H. The gene that encodes the human CD20 (B1) differentiation antigen is located on chromosome 11 near the t(11;14)(q13;q32) translocation site. J Immunol. 1989;142(7):2555–9.

    CAS  PubMed  Google Scholar 

  24. Bubien JK, Zhou LJ, Bell PD, Frizzell RA, Tedder TF. Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol. 1993;121(5):1121–32.

    Article  CAS  PubMed  Google Scholar 

  25. Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today. 1994;15(9):450–4.

    Article  CAS  PubMed  Google Scholar 

  26. Uchida J, Lee Y, Hasegawa M, Liang Y, Bradney A, Oliver JA, Bowen K, Steeber DA, Haas KM, Poe JC, Tedder TF. Mouse CD20 expression and function. Int Immunol. 2004;16(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  27. Valentine MA, Licciardi KA, Clark EA, Krebs EG, Meier KE. Insulin regulates serine/threonine phosphorylation in activated human B lymphocytes. J Immunol. 1993;150(1):96–105.

    CAS  PubMed  Google Scholar 

  28. Genot EM, Meier KE, Licciardi KA, Ahn NG, Uittenbogaart CH, Wietzerbin J, Clark EA, Valentine MA. Phosphorylation of CD20 in cells from a hairy cell leukemia cell line. Evidence for involvement of calcium/calmodulin-dependent protein kinase II. J Immunol. 1993;151(1):71–82.

    CAS  PubMed  Google Scholar 

  29. Deans JP, Schieven GL, Shu GL, Valentine MA, Gilliland LA, Aruffo A, Clark EA, Ledbetter JA. Association of tyrosine and serine kinases with the B cell surface antigen CD20. Induction via CD20 of tyrosine phosphorylation and activation of phospholipase C-γ1 and PLC phospholipase C-γ2. J Immunol. 1993;151(9):4494–504.

    CAS  PubMed  Google Scholar 

  30. Golay J, Cusmano G, Introna M. Independent regulation of c-myc, B-myb, and c-myb gene expression by inducers and inhibitors of proliferation in human B lymphocytes. J Immunol. 1992;149(1):300–8.

    CAS  PubMed  Google Scholar 

  31. Kansas GS, Tedder TF. Transmembrane signals generated through MHC class II, CD19, CD20, CD39, and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent pathway. J Immunol. 1991;147(12):4094–102.

    CAS  PubMed  Google Scholar 

  32. Clark EA, Shu G. Activation of human B cell proliferation through surface Bp35 (CD20) polypeptides or immunoglobulin receptors. J Immunol. 1987;138(3):720–5.

    CAS  PubMed  Google Scholar 

  33. White MW, McConnell F, Shu GL, Morris DR, Clark EA. Activation of dense human tonsilar B cells. Induction of c-myc gene expression via two distinct signal transduction pathways. J Immunol. 1991;146(3):846–53.

    CAS  PubMed  Google Scholar 

  34. Rossmann ED, Lundin J, Lenkei R, Mellstedt H, Osterborg A. Variability in B-cell antigen expression: implications for the treatment of B-cell lymphomas and leukemias with monoclonal antibodies. Hematol J. 2001;2(5):300–6.

    Article  CAS  PubMed  Google Scholar 

  35. Liu AY, Robinson RR, Murray ED Jr, Ledbetter JA, Hellstrom I, Hellstrom KE. Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J Immunol. 1987;139(10):3521–6.

    CAS  PubMed  Google Scholar 

  36. Press OW, Howell-Clark J, Anderson S, Bernstein I. Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood. 1994;83(5):1390–7.

    CAS  PubMed  Google Scholar 

  37. Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ. Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res. 1989;49(17):4906–12.

    CAS  PubMed  Google Scholar 

  38. Sato S, Steeber DA, Jansen PJ, Tedder TF. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol. 1997;158(10):4662–9.

    CAS  PubMed  Google Scholar 

  39. Vlasveld LT, Hekman A, Vyth-Dreese FA, Melief CJ, Sein JJ, Voordouw AC, Dellemijn TA, Rankin EM. Treatment of low-grade non-Hodgkin’s lymphoma with continuous infusion of low-dose recombinant interleukin-2 in combination with the B-cell-specific monoclonal antibody CLBCD19. Cancer Immunol Immunother. 1995;40(1):37–47.

    CAS  PubMed  Google Scholar 

  40. Cesano A, Gayko U. CD22 as a target of passive immunotherapy. Semin Oncol. 2003;30(2):253–7.

    Article  CAS  PubMed  Google Scholar 

  41. Coleman M, Goldenberg DM, Siegel AB, Ketas JC, Ashe M, Fiore JM, Leonard JP. Epratuzumab: targeting B-cell malignancies through CD22. Clin Cancer Res. 2003;9(10):3991s–4s.

    CAS  PubMed  Google Scholar 

  42. Delacruz W, Setlik R, Hassantoufighi A, Daya S, Cooper S, Selby D, Brown A. Novel brentuximab vedotin combination therapies show promising activity in highly refractory CD30+ non-Hodgkin lymphoma: a case series and review of the literature. Case Rep Oncol Med. 2016;2016:2596423.

    PubMed  PubMed Central  Google Scholar 

  43. Advani R, Forero-Torres A, Furman RR, Rosenblatt JD, Younes A, Ren H, Harrop K, Whiting N, Drachman JG. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27(26):4371–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hariharan K, Chu P, Murphy T, Clanton D, Berquist L, Molina A, Ho SN, Vega MI, Bonavida B. Galiximab (anti-CD80)-induced growth inhibition and prolongation of survival in vivo of B-NHL tumor xenografts and potentiation by the combination with fludarabine. Int J Oncol. 2013;43(2):670–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pillay V, Gan HK, Scott AM. Antibodies in oncology. New Biotechnol. 2011;28(5):518–29.

    Article  CAS  Google Scholar 

  46. Kitson SL, Cuccurullo V, Moody TS, Mansi L. Radionuclide antibody-conjugates, a targeted therapy towards cancer. Curr Radiopharm. 2013;6(2):57–71.

    Article  CAS  PubMed  Google Scholar 

  47. Ross JS, Gray K, Gray GS, Worland PJ, Rolfe M. Anticancer antibodies. Am J Clin Pathol. 2003;119(4):472–85.

    Article  CAS  PubMed  Google Scholar 

  48. Winter G, Harris WJ. Humanized antibodies. Trends Pharmacol Sci. 1993;14(5):139–43.

    Article  CAS  PubMed  Google Scholar 

  49. Merluzzi S, Figini M, Colombatti A, Canevari S, Pucillo C. Humanized antibodies as potential drugs for therapeutic use. Adv Clin Pathol. 2000;4(2):77–85.

    CAS  Google Scholar 

  50. Kuus-Reichel K, Grauer LS, Karavodin LM, Knott C, Krusemeier M, Kay NE. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin Diagn Lab Immunol. 1994;1(14):365–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pimm MV. Possible consequences of human antibody responses on the biodistribution of fragments of human, humanized or chimeric monoclonal antibodies: a note of caution. Life Sci. 1994;55(2):PL45–9.

    Article  CAS  PubMed  Google Scholar 

  52. Teo EC, Chew Y, Phipps C. A review of monoclonal antibody therapies in lymphoma. Crit Rev Oncol Hematol. 2016;97:72–84.

    Article  PubMed  Google Scholar 

  53. Davies AJ. Radioimmunotherapy for B-cell lymphoma: Y90 ibritumomab tiuxetan and I131 tositumomab. Oncogene. 2007;26(25):3614–28.

    Article  CAS  PubMed  Google Scholar 

  54. Brechbiel MW, Gansow OA. Backbone-substituted DTPA ligands for 90Y radioimmunotherapy. Bioconjug Chem. 1991;2(3):187–94.

    Article  CAS  PubMed  Google Scholar 

  55. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.

    CAS  PubMed  Google Scholar 

  56. Ibritumomab tiuxetan (Zevalin) for non-Hodgkin’s lymphoma. Med Lett Drugs Ther. 2002;44(1144):101–2.

    Google Scholar 

  57. First radiopharmaceutical for non-Hodgkin’s lymphoma. FDA Consum. 2002;36(3):3.

    Google Scholar 

  58. Hagenbeek A, Lewington V. Report of a European consensus workshop to develop recommendations for the optimal use of 90Y-ibritumomab tiuxetan (Zevalin®) in lymphoma. Ann Oncol. 2005;16(5):786–92.

    Article  CAS  PubMed  Google Scholar 

  59. Lin FI, Iagaru A. Current concepts and future directions in radioimmunotherapy. Curr Drug Discov Technol. 2010;7(4):253–62.

    Article  CAS  PubMed  Google Scholar 

  60. Barth M, Raetz E, Cairo MS. The future role of monoclonal antibody therapy in childhood acute leukaemias. Br J Haematol. 2012;159(1):3–17.

    Article  CAS  PubMed  Google Scholar 

  61. Kattah AG, Fervenza FC. Rituximab: emerging treatment strategies of immune-mediated glomerular disease. Expert Rev Clin Immunol. 2012;8(5):413–21.

    Article  CAS  PubMed  Google Scholar 

  62. Cang S, Mukhi N, Wang K, Liu D. Novel CD20 monoclonal antibodies for lymphoma therapy. J Hematol Oncol. 2012;5:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  CAS  PubMed  Google Scholar 

  64. Chinn PC, Leonard JE, Rosenberg J, Hanna N, Anderson DR. Preclinical evaluation of 90Y-labeled anti-CD20 monoclonal antibody for treatment of non-Hodgkin’s lymphoma. Int J Oncol. 1999;15(5):1017–25.

    CAS  PubMed  Google Scholar 

  65. Milenic DE, Brady ED, Brechbiel MW. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov. 2004;3(6):488–99.

    Article  CAS  PubMed  Google Scholar 

  66. Wiseman GA, White CA, Sparks RB, Erwin WD, Podoloff DA, Lamonica D, Bartlett NL, Parker JA, Dunn WL, Spies SM, Belanger R, Witzig TE, Leigh BR. Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. Crit Rev Oncol Hematol. 2001;39(1–2):181–94.

    Article  CAS  PubMed  Google Scholar 

  67. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium and zirconium for PET and SPECT imaging of disease. Chem Rev. 2010;110(5):2858–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, Horvath G, Jacobsson L, Jensen H, Lindegren S, Palm S, Hultborn R. Intraperitoneal α-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab’)2: a phase I study. J Nucl Med. 2009;50(7):1153–60.

    Article  CAS  PubMed  Google Scholar 

  69. Teiluf K, Seidl C, Blechert B, Gaertner FC, Gilbertz KP, Fernandez V, Bassermann F, Endell J, Boxhammer R, Leclair S, Vallon M, Aichler M, Feuchtinger A, Bruchertseifer F, Morgenstern A, Essler M. α-Radioimmunotherapy with 213Bi-anti-CD38 immunoconjugates is effective in a mouse model of human multiple myeloma. Oncotarget. 2015;6(7):4692–703.

    Article  PubMed  Google Scholar 

  70. Bandekar A, Zhu C, Jindal R, Bruchertseifer F, Morgenstern A, Sofou S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular α-particle therapy of cancer. J Nucl Med. 2014;55(9):1492–8.

    Article  CAS  Google Scholar 

  71. Abbas N, Heyerdahl H, Bruland OS, Borrebæk J, Nesland J, Dahle J. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. EJNMMI Res. 2011;1(1):18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Smith T, Crawley JC, Shawe DJ, Gumpel JMSPECT. Using bremsstrahlung to quantify 90Y uptake in Baker’s cysts: its application in radiation synovectomy of the knee. Eur J Nucl Med. 1988;14(9–10):498–503.

    Article  CAS  PubMed  Google Scholar 

  73. Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot. 2007;65(3):318–27.

    Article  CAS  PubMed  Google Scholar 

  74. Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative 90Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53(20):5689–703.

    Article  CAS  PubMed  Google Scholar 

  75. Dancey JE, Shepherd FA, Paul K, Sniderman KW, Houle S, Gabrys J, Hendler AL, Goin JE. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med. 2000;41(10):1673–81.

    CAS  PubMed  Google Scholar 

  76. Press OW. Radiolabeled antibody therapy of B-cell lymphomas. Semin Oncol. 1999;26(Suppl 14):58–65.

    CAS  PubMed  Google Scholar 

  77. Wiseman GA, White CA, Witzig TE, Gordon LI, Emmanouilides C, Raubitschek A, Janakiraman N, Gutheil J, Schilder RJ, Spies S, Silverman DH, Grillo-López AJ. Radioimmunotherapy of relapsed non-Hodgkin’s lymphoma with Zevalin, a 90Y-labeled anti-CD20 monoclonal antibody. Clin Cancer Res. 1999;5(Suppl 10):3281s–6s.

    CAS  PubMed  Google Scholar 

  78. Zelenetz AD. Radioimmunotherapy for lymphoma. Curr Opin Oncol. 1999;11:375–80.

    Article  CAS  PubMed  Google Scholar 

  79. Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40(2):122–35.

    Article  PubMed  Google Scholar 

  80. Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med. 1994;35(8):1381–9.

    CAS  PubMed  Google Scholar 

  81. Rong X, Frey EC. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT. Med Phys. 2013;40(8):082504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Paganelli G, Bartolomei M, Ferrari M, Cremonesi M, Broggi G, Maira G, Sturiale C, Grana C, Prisco G, Gatti M, Caliceti P, Chinol M. Pre-targeted locoregional radioimmunotherapy with 90Y biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother Radiopharm. 2001;16(3):227–35.

    Article  CAS  PubMed  Google Scholar 

  83. van Hemert FJ, Sloof GW, Schimmel KJ, Vervenne WL, van Eck-Smrr BL, Busemann-Sokole E. Radiopharmaceutical management of 90Y/111In labeled antibodies: shielding and quantification during preparation and administration. Ann Nucl Med. 2006;20(8):575–81.

    Article  PubMed  Google Scholar 

  84. Steiner M, Neri D. Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin Cancer Res. 2011;17(20):6406–16.

    Article  CAS  PubMed  Google Scholar 

  85. de Jong M, Bakker WH, Krenning EP, Breeman WA, van der Pluijm ME, Bernard BF, Visser TJ, Jermann E, Béhé M, Powell P, Mäcke HR. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,D-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med. 1997;24(4):368–71.

    PubMed  Google Scholar 

  86. Dahle J, Abbas N, Bruland ØS, Larsen RH. Toxicity and relative biological effectiveness of alpha emitting radioimmunoconjugates. Curr Radiopharm. 2011;4(4):321–8.

    Article  CAS  PubMed  Google Scholar 

  87. Carroll V, Demoin DW, Hoffman TJ, Jurisson SS. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions. Radiochim Acta. 2012;100(8–9):653–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Silvester DJ, Waters SL. Dosimetry of radiolabelled blood cells. Int J Nucl Med Biol. 1983;10(2–3):141–4.

    Article  CAS  PubMed  Google Scholar 

  89. Cornelissen B, Waller A, Able S, Vallis KA. Molecular radiotherapy using cleavable radioimmunoconjugates that target EGFR and γH2AX. Mol Cancer Ther. 2013;12(11):2472–82.

    Article  CAS  PubMed  Google Scholar 

  90. Ngo Ndjock Mbong G, Lu Y, Chan C, Cai Z, Liu P, Boyle AJ, Winnik MA, Reilly RM. Trastuzumab labeled to high specific activity with 111In by site-specific conjugation to a metal-chelating polymer exhibits amplified auger electron-mediated cytotoxicity on HER2-positive breast cancer cells. Mol Pharm. 2015;12(6):1951–60.

    Article  CAS  PubMed  Google Scholar 

  91. Gao C, Leyton JV, Schimmer AD, Minden M, Reilly RM. Auger electron-emitting 111In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123+/CD131 phenotype of leukemia stem cells. Appl Radiat Isot. 2016;110:1–7.

    Article  CAS  PubMed  Google Scholar 

  92. Coulot J, Camara-Clayette V, Ricard M, Lavielle F, Velasco V, Drusch F, Bosq J, Schlumberger M, Ribrag V. Imaging of the distribution of 90Y-ibritumomab tiuxetan in bone marrow and comparison with pathology. Cancer Biother Radiopharm. 2007;22(5):665–71.

    Article  CAS  PubMed  Google Scholar 

  93. Krasner C, Joyce RM. Zevalin: 90Yttrium labeled anti-CD20 (ibritumomab tiuxetan), a new treatment for non-Hodgkin’s lymphoma. Curr Pharm Biotechnol. 2001;2(4):341–9.

    Article  CAS  PubMed  Google Scholar 

  94. Gordon LI, Witzig TE, Wiseman GA, Flinn IW, Spies SS, Silverman DH, Emmanouilides C, Cripe L, Saleh M, Czuczman MS, Olejnik T, White CA, Grillo-López AJ. Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-Hodgkin’s lymphoma. Semin Oncol. 2002;29(1 Suppl 2):87–92.

    Article  CAS  PubMed  Google Scholar 

  95. Wagner HN Jr, Wiseman GA, Marcus CS, Nabi HA, Nagle CE, Fink-Bennett DM, Lamonica DM, Conti PS. Administration guidelines for radioimmunotherapy of non-Hodgkin’s lymphoma with 90Y-labeled anti-CD20 monoclonal antibody. J Nucl Med. 2002;43(2):267–72.

    CAS  PubMed  Google Scholar 

  96. Juweid ME. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma: from clinical trials to clinical practice. J Nucl Med. 2002;43(11):1507–29.

    CAS  PubMed  Google Scholar 

  97. Otte A. Diagnostic imaging prior to 90Y-ibritumomab tiuxetan (Zevalin) treatment in follicular non-Hodgkin’s lymphoma. Hell J Nucl Med. 2008;11(1):12–5.

    PubMed  Google Scholar 

  98. Annex I Summary of Product Characteristics: Zevalin 1.6 mg/ml kit for radiopharmaceutical preparations for infusion, disclosed by European Medical Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000547/WC500049469.pdf

  99. Chamarthy MR, Williams SC, Moadel RM. Radioimmunotherapy of non-Hodgkin’s lymphoma: from the ‘magic bullets’ to ‘radioactive magic bullets. Yale J Biol Med. 2011;84(4):391–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007;34(7):757–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.

    Article  CAS  PubMed  Google Scholar 

  102. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–36.

    Article  CAS  PubMed  Google Scholar 

  103. Schneider DW, Heitner T, Alicke B, Light DR, McLean K, Satozawa N, Parry G, Yoo J, Lewis JS, Parry R. In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J Nucl Med. 2009;50(3):435–43.

    Article  CAS  PubMed  Google Scholar 

  104. Adams GP, Shaller CC, Dadachova E, Simmons HH, Horak EM, Tesfaye A, Klein-Szanto AJ, Marks JD, Brechbiel MW, Weiner LM. A single treatment of yttrium-90-labeled CHX-A″-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. Cancer Res. 2004;64(17):6200–6.

    Article  CAS  PubMed  Google Scholar 

  105. Maleki LA, Baradaran B, Majidi J, Mohammadian M, Shahneh FZ. Future prospects of monoclonal antibodies as magic bullets in immunotherapy. Hum Antibodies. 2013;22(1–2):9–13.

    Article  CAS  PubMed  Google Scholar 

  106. Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol. 2006;24(5):823–34.

    Article  CAS  PubMed  Google Scholar 

  107. Sharkey RM, Karacay H, Litwin S, Rossi EA, McBride WJ, Chang CH, Goldenberg DM. Improved therapeutic results by pretargeted radioimmunotherapy of non-Hodgkin’s lymphoma with a new recombinant, trivalent, anti-CD20, bispecific antibody. Cancer Res. 2008;68(13):5282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sharkey RM, Karacay H, Johnson CR, Litwin S, Rossi EA, McBride WJ, Chang CH, Goldenberg DM. Pretargeted versus directly targeted radioimmunotherapy combined with anti-CD20 antibody consolidation therapy of non-Hodgkin lymphoma. J Nucl Med. 2009;50(3):444–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Kawashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawashima, H. (2018). Characteristics of Ibritumomab as Radionuclide Therapy Agent. In: Hosono, M., Chatal, JF. (eds) Resistance to Ibritumomab in Lymphoma. Resistance to Targeted Anti-Cancer Therapeutics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-78238-6_6

Download citation

Publish with us

Policies and ethics