Skip to main content

Electrospun Filters for Defense and Protective Applications

  • Chapter
  • First Online:
Filtering Media by Electrospinning

Abstract

Research has experienced a rapid growth for the development of protective textiles (PTs) for military personnel since World War II to protect from chemical and biological warfare agents (CBWAs). The aim has been to fabricate PTs having full-barrier protection by degrading or blocking CBWAs. Electrospun fibrous membranes (EFMs) have exhibited great potential for PTs by virtue of their high surface area per unit volume, high porosity, and ability to attach functional groups for intended applications. The new generation of PTs are intended not only to adsorb but also degrade CBWAs. The aim of this chapter is to study the usage of EFMs in designing a new generation of PTs that not only provide protection from CBWAs but also provide thermal comfort to the users.

This chapter starts with the motivation for usage of EFMs in PTs. The fabrication and performance of these PTs are systematically studied by analyzing research articles focused on EFM usage in PTs. The properties of these PTs are studied with respect to (a) thermal comfort, and (b) detoxification ability against CBWAs. At the end of this chapter, a section is devoted to the progress of smart PTs. These smart PTs are envisioned to have capabilities such as sensing, self-cleaning, energy harvesting/storage, and communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scott RA (2005) Textiles for protection. Woodhead Pub, Sawston

    Google Scholar 

  2. Bromberg L, Schreuder-Gibson H, Creasy WR et al (2009) Degradation of chemical warfare agents by reactive polymers. Ind Eng Chem Res 48:1650–1659. https://doi.org/10.1021/ie801150y

    Article  CAS  Google Scholar 

  3. Gugliuzza A, Drioli E (2013) A review on membrane engineering for innovation in wearable fabrics and protective textiles. J Membr Sci 446:350–375. https://doi.org/10.1016/j.memsci.2013.07.014

    Article  CAS  Google Scholar 

  4. Dolez PI (2013) Smart barrier membranes for protective clothing. In: Smart textiles for protection. Elsevier, Amsterdam, pp 148–189

    Chapter  Google Scholar 

  5. Raza A, Li Y, Sheng J et al (2014) Protective clothing based on electrospun nanofibrous membranes. In: Electrospun nanofibers for energy and environmental applications. Springer, Berlin, pp 355–369

    Chapter  Google Scholar 

  6. Yoon B, Lee S (2011) Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics. Fiber Polym 12:57–64. https://doi.org/10.1007/s12221-011-0057-9

    Article  CAS  Google Scholar 

  7. Deitzel JM, Beck Tan NC, Kleinmeyer JD, et al (1999) Generation of polymer nanofibers through electrospinning. Army Res Rep ARL-TR-198:1–41

    Google Scholar 

  8. Online Army Study Guide - Chemical, Biological, Radiological, Nuclear | ArmyStudyGuide.com. http://www.armystudyguide.com/content/army_board_study_guide_topics/cbrn/cbrn-study-guide.shtml. Accessed 19 Jul 2017

  9. Sahay R, Teo CJ, Chew YT (2013) New correlation formulae for the straight section of the electrospun jet from a polymer drop. J Fluid Mech 735:150–175. https://doi.org/10.1017/Jfm.2013.497

    Article  Google Scholar 

  10. Sahay R, Thavasi V, Ramakrishna S (2011) Design modifications in electrospinning setup for advanced applications. J Nanomater 2011:1–17. https://doi.org/10.1155/2011/317673

    Article  Google Scholar 

  11. Sahay R, Kumar PS, Sridhar R et al (2012) Electrospun composite nanofibers and their multifaceted applications. J Mater Chem 22:12953. https://doi.org/10.1039/c2jm30966a

    Article  CAS  Google Scholar 

  12. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf A Physicochem Eng Asp 187–188:469–481. https://doi.org/10.1016/S0927-7757(01)00616-1

    Article  Google Scholar 

  13. Lee S, Obendorf SK (2007) Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Text Res J 77:696–702. https://doi.org/10.1177/0040517507080284

    Article  CAS  Google Scholar 

  14. Ecobichon DJ (1999) Occupational hazards of pesticide exposure: sampling, monitoring, and measuring. Taylor & Francis, Abingdon

    Google Scholar 

  15. Davies HG, Richter RJ, Keifer M et al (1996) The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14:334–336. https://doi.org/10.1038/ng1196-334

    Article  PubMed  CAS  Google Scholar 

  16. Taylor P (2010) The degradation of organophosphorus pesticides in natural waters: a the degradation of organophosphorus pesticides in natural waters: a critical review. Crit Rev Environ Sci Technol 32:17–72. https://doi.org/10.1080/10643380290813444

    Article  Google Scholar 

  17. Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164. https://doi.org/10.1038/nrmicro2050

    Article  PubMed  CAS  Google Scholar 

  18. Voss G, Matsumura F (1964) Resistance to organophosphorus compounds in the two-spotted spider mite: two different mechanisms of resistance. Nature 202:319–320

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Baker J, Ward J (1992) Decontamination of chemical warfare agents. Chem Rev 92:1729–1743

    Article  CAS  Google Scholar 

  20. Mondloch JE, Katz MJ, Isley WC III et al (2015) Destruction of chemical warfare agents using metal–organic frameworks. Nat Mater 14:512–516. https://doi.org/10.1038/nmat4238

    Article  PubMed  CAS  Google Scholar 

  21. Borak J, Sidell FR (1992) Agents of chemical warfare: sulfur mustard. Ann Emerg Med 21:303–308. https://doi.org/10.1016/S0196-0644(05)80892-3

    Article  PubMed  CAS  Google Scholar 

  22. Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371:597–607. https://doi.org/10.1016/S0140-6736(07)61202-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Senić Ž, Bauk S, Vitorović-Todorović M et al (2011) Application of TiO2 nanoparticles for obtaining self-decontaminating smart textiles. Sci Tech Rev 61:63–72

    Google Scholar 

  24. Ultra-Web Media Technology - Dust Collector Filters - Donaldson Torit. http://www2.donaldson.com/torit/en-us/pages/products/ultra-webmediatechnology.aspx. Accessed 23 Jul 2017

  25. Brock R, Meitner G (1977) Nonwoven thermoplastic fabric. US Pat. 4,041,203

    Google Scholar 

  26. Groitzsch D, Fahrbach E (1986) Microporous multilayer nonwoven material for medical applications. US Pat. 4,618,524

    Google Scholar 

  27. Huber O, Magidson M (1983) Disposable face mask. US Pat. 4,384,577

    Google Scholar 

  28. Saint-André G, Kliachyna M, Kodepelly S et al (2011) Design, synthesis and evaluation of new α-nucleophiles for the hydrolysis of organophosphorus nerve agents: application to the reactivation of phosphorylated acetylcholinesterase. Tetrahedron 67:6352–6361. https://doi.org/10.1016/j.tet.2011.05.130

    Article  CAS  Google Scholar 

  29. Faust SD, Gomaa HM (1972) Chemical hydrolysis of some organic phosphorus and carbamate pesticides in aquatic environments. Environ Lett 3:171–201. https://doi.org/10.1080/00139307209435465

    Article  PubMed  CAS  Google Scholar 

  30. Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mutin PH, Guerrero G, Vioux A (2005) Hybrid materials from organophosphorus coupling molecules. J Mater Chem 15:3761–3768. https://doi.org/10.1039/b505422b

    Article  CAS  Google Scholar 

  32. Stark JV, Park DG, Lagadic I, Klabunde KJ (1996) Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence. Chem Mater 8:1904–1912. https://doi.org/10.1021/cm950583p

    Article  CAS  Google Scholar 

  33. Li YX, Koper O, Atteya M, Klabunde KJ (1992) Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particles. In situ GC-MS studies of pulsed microreactions over magnesium oxide. Chem Mater 4:323–330. https://doi.org/10.1021/cm00020a019

    Article  CAS  Google Scholar 

  34. Bunton C, Foroudian HJ, Gillitt ND (1999) Reduction ofo-iodosobenzoate ion by sulfides and its oxidative regeneration. J Phys Org Chem 12:758–764. https://doi.org/10.1002/(SICI)1099-1395(199910)12:10<758::AID-POC200>3.0.CO;2-A

    Article  CAS  Google Scholar 

  35. Graham K, Schreuder-Gibson H, Gogins M (2003) Incorporation of electrospun nanofibers into functional structures. Construction 15–18

    Google Scholar 

  36. Chen L, Bromberg L, Lee JA et al (2010) Multifunctional electrospun fabrics via layer-by-layer electrostatic assembly for chemical and biological protection. Chem Mater 22:1429–1436. https://doi.org/10.1021/cm902834a

    Article  CAS  Google Scholar 

  37. Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50. https://doi.org/10.1016/S1369-7021(06)71389-X

    Article  CAS  Google Scholar 

  38. Ramaseshan R, Sundarrajan S, Liu Y et al (2006) Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology 17:2947–2953. https://doi.org/10.1088/0957-4484/17/12/021

    Article  CAS  Google Scholar 

  39. Ramaseshan R (2011) Decontamination of chemical warfare simulants using electrospun media. PhD Thesis, National University Singapore, pp 1–167

    Google Scholar 

  40. Chen L, Bromberg L, Hatton TA, Rutledge GC (2007) Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer 48:4675–4682. https://doi.org/10.1016/j.polymer.2007.05.084

    Article  CAS  Google Scholar 

  41. Chen L, Bromberg L, Schreuder-Gibson H et al (2009) Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats. J Mater Chem 19:2432–2438. https://doi.org/10.1039/B818639a

    Article  CAS  Google Scholar 

  42. Becke GS, Carmody DJ, Dobosy MJ (2008) Microporous breathable film with internal barrier layer or layers. US20080131676 A1

    Google Scholar 

  43. Nooney MG, Campbell A, Murrell TS et al (1998) Nucleation and growth of phosphate on metal oxide thin films. Langmuir 14:2750–2755. https://doi.org/10.1021/la9702695

    Article  CAS  Google Scholar 

  44. Li M, Liu J, Xu Y, Qian G (2016) Phosphate adsorption on metal oxides and metal hydroxides: a comparative review. Environ Rev 24:319–332. https://doi.org/10.1139/er-2015-0080

    Article  CAS  Google Scholar 

  45. Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD, and HD with Nanosize MgO. J Phys Chem B 103:3225–3228. https://doi.org/10.1021/jp984689u

    Article  CAS  Google Scholar 

  46. Kleinhammes A, Wagner GW, Kulkarni H et al (2005) Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls. Chem Phys Lett 411:81–85. https://doi.org/10.1016/j.cplett.2005.05.100

    Article  CAS  Google Scholar 

  47. Šťastný M, Štengl V, Henych J et al (2016) Mesoporous manganese oxide for the degradation of organophosphates pesticides. J Mater Sci 51:2634–2642. https://doi.org/10.1007/s10853-015-9577-9

    Article  CAS  Google Scholar 

  48. Bootharaju MS, Pradeep T (2012) Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 28:2671–2679. https://doi.org/10.1021/la2050515

    Article  PubMed  CAS  Google Scholar 

  49. Silva VB, Rodrigues TS, Camargo PHC, Orth ES (2017) Detoxification of organophosphates using imidazole-coated Ag, Au and AgAu nanoparticles. RSC Adv 7:40711–40719. https://doi.org/10.1039/c7ra07059d

    Article  CAS  Google Scholar 

  50. Ramaseshan R, Ramakrishna S (2007) Zinc titanate nanofibers for the detoxification of chemical warfare simulants. J Am Ceram Soc 90:1836–1842. https://doi.org/10.1111/j.1551-2916.2007.01633.x

    Article  CAS  Google Scholar 

  51. Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 42:8400–8407. https://doi.org/10.1007/s10853-007-1786-4

    Article  CAS  Google Scholar 

  52. Aubert SD, Li Y, Raushel FM (2004) Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 43:5707–5715. https://doi.org/10.1021/bi0497805

    Article  PubMed  CAS  Google Scholar 

  53. Han D, Filocamo S, Kirby R, Steckl AJ (2011) Deactivating chemical agents using enzyme-coated nanofibers formed by electrospinning. ACS Appl Mater Interfaces 3:4633–4639. https://doi.org/10.1021/am201064b

    Article  PubMed  CAS  Google Scholar 

  54. Moss RA, Alwis KW, Bizzigotti GO (1983) o-Iodosobenzoate: catalyst for the micellar cleavage of activated esters and phosphates. J Am Chem Soc 105:681–682. https://doi.org/10.1021/ja00341a092

    Article  CAS  Google Scholar 

  55. Moss RA, Alwis KW, Shin JS (1984) Catalytic cleavage of active phosphate and ester substrates by iodoso- and iodoxybenzoates. J Am Chem Soc 106:2651–2655. https://doi.org/10.1021/ja00321a027

    Article  CAS  Google Scholar 

  56. Menger FM, Rourk MJ (1999) Deactivation of mustard and nerve agent models via low-temperature microemulsions. Langmuir 15:309–313. https://doi.org/10.1021/la980910i

    Article  CAS  Google Scholar 

  57. Li Y-F, Ha Y-M, Guo Q, Li Q-P (2015) Synthesis of two β-cyclodextrin derivatives containing a vinyl group. Carbohydr Res 404:55–62. https://doi.org/10.1016/j.carres.2014.11.012

    Article  PubMed  CAS  Google Scholar 

  58. Echavia GRM, Matzusawa F, Negishi N (2009) Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere 76:595–600. https://doi.org/10.1016/j.chemosphere.2009.04.055

    Article  PubMed  CAS  Google Scholar 

  59. Di Valentin C, Pacchioni G, Selloni A (2009) Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C 113:20543–20552. https://doi.org/10.1021/jp9061797

    Article  CAS  Google Scholar 

  60. Hong KH, Park JL, Hwan Sul IN et al (2006) Preparation of antimicrobial poly(vinyl alcohol) nanofibers containing silver nanoparticles. J Polym Sci B Polym Phys 44:2468–2474. https://doi.org/10.1002/polb.20913

    Article  CAS  Google Scholar 

  61. Duan YY, Jia J, Wang SH et al (2007) Preparation of antimicrobial poly(e-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106:1208–1214. https://doi.org/10.1002/app.26786

    Article  CAS  Google Scholar 

  62. Haider A, Kwak S, Gupta KC, Kang IK (2015) Antibacterial activity and cytocompatibility of PLGA/CuO hybrid nanofiber scaffolds prepared by electrospinning. J Nanomater 2015:1–10. https://doi.org/10.1155/2015/832762

    Article  CAS  Google Scholar 

  63. Yuan J, Geng J, Xing Z et al (2010) Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. J Appl Polym Sci 116:668–672. https://doi.org/10.1002/app.31632

    Article  CAS  Google Scholar 

  64. Kim SJ, Nam YS, Rhee DM et al (2007) Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane. Eur Polym J 43:3146–3152. https://doi.org/10.1016/j.eurpolymj.2007.04.046

    Article  CAS  Google Scholar 

  65. Ignatova M, Starbova K, Markova N et al (2006) Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol). Carbohydr Res 341:2098–2107. https://doi.org/10.1016/j.carres.2006.05.006

    Article  PubMed  CAS  Google Scholar 

  66. Chen L (2009) Next generation of electrospun textiles for chemical and biological protection and air filtration. PhD Thesis, Massachusetts Institute of Technology, pp 1–165

    Google Scholar 

  67. Kent JA (2012) Handbook of industrial chemistry and biotechnology. Springer, Berlin, pp 1–1562

    Book  Google Scholar 

  68. Kiekens P, Jayaraman S (2012) Intelligent textiles and clothing for ballistic and NBC protection: technology at the cutting edge. Springer, Berlin, pp 1–220

    Book  Google Scholar 

  69. Rothschild A, Komem Y (2003) Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors. Sensors Actuators B Chem 93:362–369. https://doi.org/10.1016/S0925-4005(03)00212-0

    Article  CAS  Google Scholar 

  70. Wang J, Zhong Q, Wu J, Chen T (2014) Thermo-responsive textiles. In: Handbook of smart textiles. Springer, Singapore, pp 1–27

    Google Scholar 

  71. Križman Lavrič P, Warmoeskerken MMCG, Jocic D (2012) Functionalization of cotton with poly-NiPAAm/chitosan microgel. Part I. Stimuli-responsive moisture management properties. Cellulose 19:257–271. https://doi.org/10.1007/s10570-011-9632-x

    Article  CAS  Google Scholar 

  72. Meldrum FC (2005) Biomineralisation processes. In: Surfaces interfaces biomater, pp 666–692. https://doi.org/10.1533/9781845690809.4.666

    Chapter  Google Scholar 

  73. Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84:2660–2669. https://doi.org/10.1002/app.10436

    Article  CAS  Google Scholar 

  74. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763. https://doi.org/10.1016/j.progpolymsci.2012.06.001

    Article  CAS  Google Scholar 

  75. Uchino K (2010) Advanced piezoelectric materials science and technology. Woodhead Publ, Sawston, pp 1–678

    Google Scholar 

  76. Fink JK (2012) Polymeric sensors and actuators. Wiley, Hoboken, pp 1–512

    Google Scholar 

  77. Liu YY, Wang RH, Lu HF et al (2007) Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J Mater Chem 17:1071–1078. https://doi.org/10.1039/B613914k

    Article  CAS  Google Scholar 

  78. Banerjee S, Dionysiou D, Pillai S (2015) Self-cleaning applications of TiO2 by photo- induced hydrophilicity and photocatalysis. Appl Catal B Environ 176:396–428. https://doi.org/10.1016/j.apcatb.2015.03.058

    Article  CAS  Google Scholar 

  79. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram Int 41:8735–8741. https://doi.org/10.1016/j.ceramint.2015.03.094

    Article  CAS  Google Scholar 

  80. Wu D, Long M, Zhou J et al (2009) Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surf Coat Technol 203:3728–3733. https://doi.org/10.1016/j.surfcoat.2009.06.008

    Article  CAS  Google Scholar 

  81. Kaihong Qi K, Xiaowen Wang X, Xin JH (2011) Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Text Res J 81:101–110. https://doi.org/10.1177/0040517510383618

    Article  CAS  Google Scholar 

  82. Liu C, Qin H, Mather PT et al (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543. https://doi.org/10.1039/b615954k

    Article  CAS  Google Scholar 

  83. Han HR, Chung SE, Park CH (2013) Shape memory and breathable waterproof properties of polyurethane nanowebs. Text Res J 83:76–82. https://doi.org/10.1177/0040517512450757

    Article  CAS  Google Scholar 

  84. Pretsch T (2010) Review on the functional determinants and durability of shape memory polymers. Polymers 2:120–158. https://doi.org/10.3390/polym2030120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Sahay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahay, R. (2018). Electrospun Filters for Defense and Protective Applications. In: Focarete, M., Gualandi, C., Ramakrishna, S. (eds) Filtering Media by Electrospinning. Springer, Cham. https://doi.org/10.1007/978-3-319-78163-1_4

Download citation

Publish with us

Policies and ethics