Skip to main content

Epigenetics/Epigenomics of Olive Oil and the Mediterranean Diet

  • Chapter
  • First Online:

Part of the book series: Practical Issues in Geriatrics ((PIG))

Abstract

“Mediterranean diet and olive oil modify gene transcription towards a protective mode.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Miggiano GA, De Sanctis R. Nutritional genomics: toward a personalized diet. Clin Ter. 2006;157:355–61.

    PubMed  CAS  Google Scholar 

  2. Muller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet. 2003;4:315–22.

    Article  CAS  PubMed  Google Scholar 

  3. Corella D, Ordovás JM. How does the Mediterranean diet promote cardiovascular health? Current progress toward molecular mechanisms: gene-diet interactions at the genomic, transcriptomic, and epigenomic levels provide novel insights into new mechanisms. BioEssays. 2014;36:526–37.

    Article  CAS  PubMed  Google Scholar 

  4. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA. PREDIMED study investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. New Engl J Med. 2013;368:1279–90.

    Article  CAS  PubMed  Google Scholar 

  5. Corella D, Carrasco P, Sorlí JV, Estruch R, Rico-Sanz J, Martínez-González MÁ, Salas-Salvadó J, Covas MI, Coltell O, Arós F, Lapetra J, Serra-Majem L, Ruiz-Gutiérrez V, Warnberg J, Fiol M, Pintó X, Ortega-Azorín C, Muñoz MÁ, Martínez JA, Gómez-Gracia E, González JI, Ros E, Ordovás JM. Mediterranean diet reduces the adverse effect of the TCF7L2-rs7903146 polymorphism on cardiovascular risk factors and stroke incidence: a randomized controlled trial in a high-cardiovascular-risk population. Diabetes Care. 2013;36(11):3803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gonzalo S. Epigenetic alterations in aging. J Appl Physiol. 2010;109:586–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A. Specific gene hypomethylation and cancer: new insights into coding region feature trends. Bioinformation. 2009;3:340–3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, Tavares de Almeida T. Increased homocysteine concentrations and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem. 2003;49:1292–6.

    Article  CAS  PubMed  Google Scholar 

  9. Huang YS, Zhi Y, Wang SR. Hypermethylation of estrogen receptor-α gene in atheromatosis patients and its correlation with homocysteine. Pathophysiology. 2009;16:259–65.

    Article  CAS  PubMed  Google Scholar 

  10. Dong CD, Yoon W, Goldschmidt-Clermont PJ. DNA methylation and atherosclerosis. J Nutr. 2002;132:2406S–9S.

    Article  CAS  PubMed  Google Scholar 

  11. Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, Michler RE, Caligiuri M, Plass C, Goldschmidt-Clermont PJ. Methylation of the estrogen receptor- α gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res. 2000;46:172–9.

    Article  CAS  PubMed  Google Scholar 

  12. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012;109:10522–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.

    Article  CAS  PubMed  Google Scholar 

  14. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

    Article  CAS  PubMed  Google Scholar 

  15. Berndsen CE, Denu JM. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol. 2008;18:682–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13.

    Article  CAS  PubMed  Google Scholar 

  17. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8:23–36.

    Article  CAS  PubMed  Google Scholar 

  18. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Ann Review Biochem. 2010;79:351–79.

    Article  CAS  Google Scholar 

  20. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–70.

    Article  CAS  PubMed  Google Scholar 

  21. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  22. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bernal JE, Duran C, Papiha SS. Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett. 2012;331:1–10.

    Google Scholar 

  24. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.

    Article  CAS  PubMed  Google Scholar 

  25. Kai ZS, Pasquinelli AE. MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol. 2010;17:5–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mencía A, Modamio-Høybjør S, Redshaw N, Morín M, Mayo-Merino F, Olavarrieta L, Aguirre LA, del Castillo I, Steel KP, Dalmay T, Moreno F, Moreno-Pelayo MA. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet. 2009;41:609–13.

    Article  CAS  PubMed  Google Scholar 

  27. Hughes AE, Bradley DT, Campbell M, Lechner J, Dash DP, Simpson DA, Willoughby CE. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Human Genet. 2011;89:628–33.

    Article  CAS  Google Scholar 

  28. de Pontual L, Yao E, Callier P, Faivre L, Drouin V, Cariou S, Van Haeringen A, Geneviève D, Goldenberg A, Oufadem M, Manouvrier S, Munnich A, Vidigal JA, Vekemans M, Lyonnet S, Henrion-Caude A, Ventura A, Amiel J. Germline deletion of the miR-17∼92 cluster causes skeletal and growth defects in humans. Nat Genet. 2011;43:1026–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Musilova K, Mraz M. MicroRNAs in B cell lymphomas: how a complex biology gets more complex. Leukemia. 2014;29:1004–17.

    Article  CAS  PubMed  Google Scholar 

  30. Võsa U, Vooder T, Kolde R, Fischer K, Välk K, Tõnisson N, Roosipuu R, Vilo J, Metspalu A, Annilo T. Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung cancer. Genes Chromosomes Cancer. 2011;50:812–22.

    Article  CAS  PubMed  Google Scholar 

  31. Akçakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, Lindforss U, Olivecrona H, Lui WO. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol. 2011;39:311–8.

    PubMed  Google Scholar 

  32. Eyking A, Reis H, Frank M, Gerken G, Schmid KW, Cario E. MiR-205 and MiR-373 are associated with aggressive human mucinous colorectal cancer. PLoS One. 2016;11:e0156871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones K, Nourse JP, Keane C, Bhatnagar A, Gandhi MK. Plasma MicroRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res. 2014;20:253–64.

    Article  CAS  PubMed  Google Scholar 

  34. Wu H, Mo YY. Targeting miR-205 in breast cancer. Expert Opin Ther Targets. 2009;13:1439–48.

    Article  CAS  PubMed  Google Scholar 

  35. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  CAS  PubMed  Google Scholar 

  36. Liu G, Sun Y, Ji P, Li X, Cogdell D, Yang D, Zhang W. MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6-FOXM1 Axis in ovarian cancer. J Pathol. 2014;233:308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wen SY, Lin Y, Yu YQ, Cao SJ, Zhang R, Yang XM, Zhang ZG. miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene. 2015;34:717–25.

    Article  CAS  PubMed  Google Scholar 

  38. Bernstein C, Prasad AR, Nfonsam V, Bernstein H. DNA damage, DNA repair and cancer. New Res Dir DNA Repair. 2013:413–65.

    Google Scholar 

  39. O'Hagan HM, Mohammad HP, Baylin SB. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 2008;4:e1000155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Di Pardo A, Messina S, Iuliano R, Fusco A, Santillo MR, Muller MT, Chiariotti L, Gottesman ME, Avvedimento EV. DNA damage, homology-directed repair, and DNA methylation. PLoS Genet. 2007;3:e110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, Li S, Kang C, You Y, Jiang C, Song SW, Jiang T, Chen CC. miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-Oncology. 2012;14:712–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spiegl-Kreinecker S, Pirker C, Filipits M, Lötsch D, Buchroithner J, Pichler J, Silye R, Weis S, Micksche M, Fischer J, Berger W. O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients. Neuro-Oncology. 2010;12:28–36.

    Article  CAS  PubMed  Google Scholar 

  43. Sgarra R, Rustighi A, Tessari MA, Di Bernardo J, Altamura S, Fusco A, Manfioletti G, Giancotti V. Nuclear phosphoproteins HMGA and their relationship with chromatin structure and cancer. FEBS Lett. 2004;574:1–8.

    Article  CAS  PubMed  Google Scholar 

  44. Baldassarre G, Battista S, Belletti B, Thakur S, Pentimalli F, Trapasso F, Fedele M, Pierantoni G, Croce CM, Fusco A. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol. 2003;23:2225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Borman L, Schwanbeck R, Heyduk T, Seebeck B, Rogalla P, Bullerdiek J, Wisniewski JR. High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Res. 2003;3:6841–51.

    Article  CAS  Google Scholar 

  46. Facista A, Nguyen H, Lewis C, Prasad AR, Ramsey L, Zaitlin B, Nfonsam V, Krouse RS, Bernstein H, Payne CM, Stern S, Oatman N, Banerjee B, Bernstein C. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer. Genome Integr. 2012;3:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Palmieri D, D'Angelo D, Valentino T, De Martino I, Ferraro A, Wierinckx A, Fedele M, Trouillas J, Fusco A. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene. 2012;31:3857–65.

    Article  CAS  PubMed  Google Scholar 

  48. Malumbres M. miRNAs and cancer: an epigenetics view. Mol Asp Med. 2013;34:863–74.

    Article  CAS  Google Scholar 

  49. Schnekenburger M, Diederich M. Epigenetics offer new horizons for colorectal cancer prevention. Curr Colorectal Cancer Rep. 2012;8:66–81.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG, Keating MJ. Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood. 2012;119:1162–1172.r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Son DJ, Kumar S, Takabe W, Kim CW, Ni CW, Alberts-Grill N, Jang IH, Kim S, Kim W, Won Kang S, Baker AH, Woong Seo J, Ferrara KW, Jo H. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000.

    Article  CAS  PubMed  Google Scholar 

  52. Wan G, Mathur R, Hu X, Zhang X, Lu X. miRNA response to DNA damage. Trends Biochem Sci. 2011;36:478–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tessitore A, Cicciarelli G, Del Vecchio F, Gaggiano A, Verzella D, Fischietti M, Vecchiotti D, Capece D, Zazzeroni F, Alesse E. MicroRNAs in the DNA damage/repair network and cancer. Int J Genomics. 2014;2014:820248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Humphreys KJ, Conlon MA, Young GP, Topping DL, Hu Y, Winter JM, Bird AR, Cobiac L, Kennedy NA, Michael MZ, Le Leu RK. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila). 2014;7:786–95.

    Article  CAS  Google Scholar 

  55. Skårn M, Namløs HM, Noordhuis P, Wang MY, Meza-Zepeda LA, Myklebost O. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev. 2012;21:873–83.

    Article  CAS  PubMed  Google Scholar 

  56. Zuo Y, Qiang L, Farmer SR. Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. J Biol Chem. 2006;281:7960–7.

    Article  CAS  PubMed  Google Scholar 

  57. Basu R, Fan D, Kandalam V, Lee J, Das SK, Wang X, Baldwin TA, Oudit GY, Kassiri Z. Loss of Timp3 gene leads to abdominal aortic aneurysm formation in response to angiotensin II. J Biol Chem. 2012;287:44083–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  CAS  PubMed  Google Scholar 

  59. Menendez JA, Lupu R. Mediterranean dietary traditions for the molecular treatment of human cancer: anti-oncogenic actions of the main olive oil’s monounsaturated fatty acid oleic acid (18,1 n-9). Curr Pharm Biotechnol. 2006;7:495–502.

    Article  CAS  PubMed  Google Scholar 

  60. Colomer R, Menéndez JA. Mediterranean diet, olive oil and cancer. Clin Transl Oncol. 2006;8:15–21.

    Article  CAS  PubMed  Google Scholar 

  61. D'Amore S, Vacca M, Cariello M, Graziano G, D'Orazio A, Salvia R, Sasso RC, Sabbà C, Palasciano G, Moschetta A. Genes and miRNA expression signatures in peripheral blood mononuclear cells in healthy subjects and patients with metabolic syndrome after acute intake of extra virgin olive oil. Biochim Biophys Acta. 1861;2016:1671–80.

    Google Scholar 

  62. Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Konstantinidou V, Khymenets O, Fito M, De La Torre R, Anglada R, Dopazo A, Covas MI. Characterization of human gene expression changes after olive oil ingestion: an exploratory approach. Folia Biol (Praha). 2009;55:85–91.

    CAS  Google Scholar 

  64. Konstantinidou V, Khymenets O, Covas MI, de la Torre R, Muñoz-Aguayo D, Anglada R, Farré M, Fito M. Time course of changes in the expression of insulin sensitivity-related genes after an acute load of virgin olive oil. OMICS. 2009;13:431–8.

    Article  CAS  PubMed  Google Scholar 

  65. Camargo A, Ruano J, Fernandez JM, Parnell LD, Jimenez A, Santos-Gonzalez M, Marin C, Perez-Martinez P, Uceda M, Lopez-Miranda J, Perez-Jimenez F. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genomics. 2010;11:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Khymenets O, Fitó M, Covas MI, Farré M, Pujadas MA, Muñoz D, Konstantinidou V, de la Torre R. Mononuclear cell transcriptome response after sustained virgin olive oil consumption in humans: an exploratory nutrigenomics study. OMICS. 2009;13:7–19.

    Article  CAS  PubMed  Google Scholar 

  67. Raff M, Tholstrup T, Toubro S, Bruun JM, Lund P, Straarup EM, Christensen R, Sandberg MB, Mandrup S. Conjugated linoleic acids reduce body fat in healthy postmenopausal women. J Nutr. 2009;139:1347–52.

    Article  CAS  PubMed  Google Scholar 

  68. van Dijk SJ, Feskens EJ, Bos MB, Hoelen DW, Heijligenberg R, Bromhaar MG, de Groot LC, de Vries JH, Müller M, Afman LA. A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr. 2009;90:1656–64.

    Article  CAS  PubMed  Google Scholar 

  69. Castañer O, Covas MI, Khymenets O, Nyyssonen K, Konstantinidou V, Zunft HF, de la Torre R, Muñoz-Aguayo D, Vila J, Fitó M. Protection of LDL from oxidation by olive oil polyphenols is associated with a downregulation of CD40-ligand expression and its downstream products in vivo in humans. Am J Clin Nutr. 2012;95:1238–44.

    Article  CAS  PubMed  Google Scholar 

  70. Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol. 2009;54:669–77.

    Article  CAS  PubMed  Google Scholar 

  71. Prontera C, Martelli N, Evangelista V, D'Urbano E, Manarini S, Recchiuti A, Dragani A, Passeri C, Davì G, Romano M. Homocysteine modulates the CD40/CD40L system. J Am Coll Cardiol. 2007;49:2182–90.

    Article  CAS  PubMed  Google Scholar 

  72. Konstantinidou V, Covas MI, Muñoz-Aguayo D, Khymenets O, de la Torre R, Saez G, Tormos Mdel C, Toledo E, Marti A, Ruiz-Gutiérrez V, Ruiz Mendez MV, Fito M. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J. 2010;24:2546–57.

    Article  CAS  PubMed  Google Scholar 

  73. Konstantinidou V, Covas MI, Sola R, Fitò M. Up-to date knowledge on the in vivo transcriptomic effect of the Mediterranean diet in humans. Mol Nutr Food Res. 2013;57:772–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capurso, A., Crepaldi, G., Capurso, C. (2018). Epigenetics/Epigenomics of Olive Oil and the Mediterranean Diet. In: Benefits of the Mediterranean Diet in the Elderly Patient. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-78084-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78084-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78083-2

  • Online ISBN: 978-3-319-78084-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics