Skip to main content

Legumes and Pulses

  • Chapter
  • First Online:

Part of the book series: Practical Issues in Geriatrics ((PIG))

Abstract

Grain legumes, also called pulses, are plants belonging to the family Leguminosae (alternatively Fabaceae) which are grown primarily for their edible seeds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Khokhar S, Owusu Apenten RK. The role of food, agriculture, forestry and fisheries in human nutrition. In: Squires VR, editor. Antinutritional factors in food legumes and effects of processing, vol. IV. Paris: Encyclopedia of Life Support Systems (EOLSS); 2002–2017.

    Google Scholar 

  2. Wahlqvist ML, Hsu-Hage BH-H, Kouris-Blazos A, Lukito W. Food habits in later life. A cross cultural study. Bethesda, MD: Asia Pacific Journal of Clinical Nutrition; 1995.

    Google Scholar 

  3. Tovar J, Björck M, Asp NG. Incomplete digestion of legume starches in rats: a study of precookeed flours containing retrograded and physically inaccessible starch fractions. J Nutr. 1992;122:1500–7.

    Article  PubMed  CAS  Google Scholar 

  4. Englyst HN, HN CH. Digestion of polysaccharides of potato in the small intestine of man. Am J Clin Nutr. 1987;45:423–31.

    Article  PubMed  CAS  Google Scholar 

  5. Faisant N, Gallant DJ, Bouchet B, Champ M. Banana starch breakdown in the human small intestine studied by electron microscopy. Eur J Clin Nutr. 1995;49:98–104.

    PubMed  CAS  Google Scholar 

  6. Noah L, Guillon F, Bouchet B, Buleon A, Molis C, Gratas M, Champ M. Digestion of carbohydrate from white beans (Phaseolus vulgaris L.) in healthy humans. J Nutr. 1998;128:977–85.

    Article  PubMed  CAS  Google Scholar 

  7. Asp NG, Van Amelsvoort JMM, Hautvast JGA. Nutritional implications of resistant starch. Nutr Res Rev. 1996;9:1–31.

    Article  PubMed  CAS  Google Scholar 

  8. Cassidy A, Bingham S, Cummings JH. Starch intake and colorectal cancer risk: and international comparison. Br J Cancer. 1994;69:937–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. De Deckere EAM, Kloots WJ, Van Amelsvoort JMM. Both raw and retrograded starch decrease serum triacylglycerol concentration and fat accretion in the rat. Br J Nutr. 1995;73:287–9.

    Article  PubMed  CAS  Google Scholar 

  10. Jenkins DJA, Wolever TMS, Collier GR, Ocana A, Rao AV, Buckley G, Lam Y, Mayer A, Tompson LU. Metabolic effects of a low-glycemic-index diet. Am J Clin Nutr. 1987;46:968–75.

    Article  PubMed  CAS  Google Scholar 

  11. Velasco ZI, Rascon A, Tovar J. Enzymic availability of starch in cooked black beans (Phaseolus vulgaris L.) and cowpeas (Vigna spp.). J Agric Food Chem. 1997;45:1548–51.

    Article  CAS  Google Scholar 

  12. Bravo L, Siddhuraju P, Saura-Calixto F. Composition of underexploited Indian pulses. Comparison with common legumes. Food Chem. 1999;64:185–92.

    Article  CAS  Google Scholar 

  13. Melito C, Tovar J. Cell walls limit in vitro protein digestibility in processed legumes. Food Chem. 1995;53:305–7.

    Article  CAS  Google Scholar 

  14. Würsch P, Del Vedovo S, Koellreuter B. Cell structure and starch nature as key determinants of the digestion rate of starch in legumes. Am J Clin Nutr. 1986;43:25–9.

    Article  PubMed  Google Scholar 

  15. Tundis R, Loizzo MR, Menichini F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Rev Med Chem. 2010;10:315–31.

    Article  PubMed  CAS  Google Scholar 

  16. McDougall GJ, Stewart D. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors. 2005;23:189–95.

    Article  PubMed  CAS  Google Scholar 

  17. Koh LW, Wong LL, Loo YY, Kasapis S, Huang D. Evaluation of different teas against starch digestibility by mammalian glycosidases. J Agric Food Chem. 2010;58:148–54.

    Article  PubMed  CAS  Google Scholar 

  18. Barret ML, Udani JK. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutr J. 2011;10:24.

    Article  Google Scholar 

  19. Markiewicz LH, Honke J, Haros M, Świątecka D, Wróblewska B. Diet shapes the ability of human intestinal microbiota to degrade phytate—in vitro studies. J Appl Microbiol. 2013;115:247–59.

    Article  PubMed  CAS  Google Scholar 

  20. Haros M, Carlsson NG, Almgren A, Larsson-Alminger M, Sandberg AS, Andlid T. Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. Int J Food Microbiol. 2009;135:7–14.

    Article  PubMed  CAS  Google Scholar 

  21. Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell. 2000;102:721–9.

    Article  PubMed  CAS  Google Scholar 

  22. Graf E, Empson KL, Eaton JW. Phytic acid. A natural antioxidant. J Biol Chem. 1987;262:11647–50.

    PubMed  CAS  Google Scholar 

  23. Grases F, Costa-Bauzá A. Phytate (IP6) is a powerful agent for preventing calcifications in biological fluids: usefulness in renal lithiasis treatment. Anticancer Res. 1999;19:3717–22.

    PubMed  CAS  Google Scholar 

  24. Vucenik I, Shamsuddin AM. Protection against cancer by dietary IP6 and inositol. Nutr Cancer. 2006;55:109–25.

    Article  PubMed  CAS  Google Scholar 

  25. Jenab M, Thompson LU. The influence of phytic acid in wheat bran on early biomarkers of colon carcinogenesis. Carcinogenesis. 1998;19:1087–92.

    Article  PubMed  CAS  Google Scholar 

  26. Shamsuddin AM, Wah A. Inositol hexaphosphate inhibits large intestinal cancer in F344 rats 5 months after induction by azoxymethane. Carcinogenesis. 1989;10:625–6.

    Article  PubMed  CAS  Google Scholar 

  27. Vucenik I, Yang GY, Shamsuddin AM. Inositol hexaphosphate and inositol inhibits DMBA-induced rat mammary cancer. Carcinogenesis. 1995;16:1055–8.

    Article  PubMed  CAS  Google Scholar 

  28. Fox CH, Eberl M. Phytic acid (IP6), novel broad-spectrum anti-neoplastic agent: a systematic review. Complement Ther Med. 2002;10:229–34.

    Article  PubMed  CAS  Google Scholar 

  29. Singh RP, Agarwal R. Prostate cancer and inositol hexaphosphate: efficacy and mechanisms. Anticancer Res. 2005;25:2891–904.

    PubMed  CAS  Google Scholar 

  30. Bizzarri M, Dinicola S, Bevilacqua A, Cucina A. Broad Spectrum anticancer activity of Myo-inositol and inositol Hexakisphosphate. Int J Endocrinol. 2016;2016:5616807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Vicia faba (Broad bean). Biological Records Centre and Botanical Society of Britain and Ireland.

  32. Swenson AA. Foods Jesus ate and how to grow them. New York, NY: Skyhorse Publishing; 2013.

    Google Scholar 

  33. Hornykiewicz O. A brief history of levodopa. J Neurol. 2010;257(Suppl 2):S249–52.

    Article  PubMed  CAS  Google Scholar 

  34. Okumura K, Hosoya T, Kawarazaki K, Izawa N, Kumazawa S. Antioxidant activity of phenolic compounds from fava bean sprouts. J Food Sci. 2016;8:C1394–8.

    Article  CAS  Google Scholar 

  35. Siah SD, Konczak I, Agboola S, Wood JA, Blanchard CL. In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase and lipase. Br J Nutr. 2012;108(Suppl1):S123–34.

    Article  PubMed  CAS  Google Scholar 

  36. Culpeper, Nicholas. Chick-Pease, or Cicers. The Complete Herbal (1652, originally titled The English Physitian).

    Google Scholar 

  37. Internet Archive Way Back Machine. Introduction: Chickpea. International Center for Agricultural Research in the Dry Areas.

    Google Scholar 

  38. Milán-Carrillo J, Valdéz-Alarcón C, Gutiérrez-Dorado R, Cárdenas-Valenzuela OG, Mora-Escobedo R, Garzón-Tiznado JA, Reyes-Moreno C. Nutritional properties of quality protein maize and chickpea extruded based weaning food. Plant Foods Hum Nutr. 2007;62:31–7.

    Article  PubMed  CAS  Google Scholar 

  39. Nutrition facts for Chickpeas (garbanzo beans, bengal gram), mature seeds, cooked, boiled, without salt, 100 g, USDA Nutrient Database, version SR-21. Conde Nast. 2014.

    Google Scholar 

  40. Yang WX, Liang ZS, Wang SW, Zhang L, Xie YH, He ZM. Effect of genistein to FPG and blood lipids on type 2 diabetes rats. J Northwest A & F Univ (Nat Sci Ed). 2009;37:1–6.

    Google Scholar 

  41. Li Y. The research about extracting, separating, purifying isoflavone and saponin from Cicer arietium L. and their decreasing blood glucose, regulating blood lipid effect. Master’s Thesis. Wulumuqi, China: Xin Jiang Agricultural University; 2007.

    Google Scholar 

  42. Ayumi H, Katsuhiro T, Kosuke A, Soichiro N, Norio K, Kazuya Y. Genistein stimulates the insulin-dependent signaling pathway. Front Biosci. 2011;3:1534–40.

    Google Scholar 

  43. Evans BAJ, Griffiths K, Morton MS. Inhibition of 5α-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. J Endocrinol. 1995;147:295–302.

    Article  PubMed  CAS  Google Scholar 

  44. Khan SI, Zhao J, Khan IA, et al. Potential utility of natural products as regulators of breast cancer-associated aromatase promoters. Reprod Biol Endocrinol. 2011;9:1–10.

    Article  CAS  Google Scholar 

  45. Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol. 2010;3:400–19.

    Article  CAS  Google Scholar 

  46. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014;92:73–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther. 2008;325:536–43.

    Article  PubMed  CAS  Google Scholar 

  48. Peterson G, Barnes S. Genistein and biochanin a inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate. 1993;22:335–45.

    Article  PubMed  CAS  Google Scholar 

  49. Kole L, Giri B, Manna SK, Pal B, Ghosh S. Biochanin-a, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur J Pharmcol. 2011;653(1–3):8–15.

    Article  CAS  Google Scholar 

  50. Wang Y, Man Gho W, Chan FL, Chen S, Leung LK. The red clover (Trifolium pratense) isoflavone biochanin a inhibits aromatase activity and expression. Br J Nutr. 2008;99:303–10.

    Article  PubMed  CAS  Google Scholar 

  51. Kaczmarczyk-Sedlak I, Wojnar W, Zych M, Ozimina-Kamińska E, Taranowicz J, Siwek A. Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. vEvid Based Complement Alternat Med. 2013;2013:457052.

    Google Scholar 

  52. Banu J, Varela E, Fernandes G. Alternative therapies for the prevention and treatment of osteoporosis. Nutr Rev. 2012;70:22–40.

    Article  PubMed  Google Scholar 

  53. Bedell S, Nachtigall M, Naftolin F. The pros and cons of plant estrogens for menopause. J Steroid Biochem Mol Biol. 2014;139:225–36.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang DW, Cheng Y, Wang NL, Zhang JC, Yang MS, Yao XS. Effects of total flavonoids and flavonol glycosides from Epimedium Koreanum Nakai on the proliferation and differentiation of primary osteoblasts. Phytomedicine. 2008;15:55–61.

    Article  PubMed  CAS  Google Scholar 

  55. Al-Anazi AF, Qureshi VF, Javaid K, Qureshi S. Preventive effects of phytoestrogens against postmenopausal osteoporosis as compared to the available therapeutic choices: an overview. J Nat Sci Bio Med. 2011;2:154–63.

    Article  CAS  Google Scholar 

  56. Sunita P, Pattanayak SP. Phytoestrogens in postmenopausal indications: a theoretical perspective. Pharmacogn Rev. 2011;5:41–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Atkinson C, Compston JE, Day NE, Dowsett M, Bingham SA. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2004;79:326.

    Article  PubMed  CAS  Google Scholar 

  58. Zohary D, Hopf M. Domestication of plants in the old World. 3rd ed. Oxford: Oxford University Press; 2000.

    Google Scholar 

  59. Hood-Niefer SD, Warkentin TD, Chibbar RN, Vandenberg A, Tyler RT. Effect of genotype and environment on the concentrations of starch and protein in, and the hysicochemical properties of starch from, field pea and fababean. J Sci Food Agric. 2012;92:141–50.

    Article  PubMed  CAS  Google Scholar 

  60. Tosh SM, Yada S. Dietary fibres in pulse seeds and fractions: characterization, functional attributes, and applications. Food Res Int. 2010;43:450–60.

    Article  CAS  Google Scholar 

  61. Grosjean F. Combining peas for animal nutrition. In: Hebblethwaite PD, Heath MC, Dawkins TCK, editors. The pea crop: a basis for improvement. London: Butterworths; 1985. p. 453–62.

    Chapter  Google Scholar 

  62. Norton G, Bliss FA, Bressani R. Biochemical and nutritional attributes of grain legumes. In: Summerfield RJ, Roberts EH, editors. Grain legume crops. London: Collins; 1985. p. 73–114.

    Google Scholar 

  63. Salunke DK, Kadam SS, Chavan JK. Chemical composition. In: Postharvest biotechnology of food legumes. Boca Raton, FL: CRC Press; 1985. p. 29–52.

    Google Scholar 

  64. Savage GP, Deo S. The nutritional value of peas (Pisum sativum). A literature review. Nutr Abstr Rev Ser A: Human Exp Nutr. 1989;59:65–87.

    Google Scholar 

  65. Wang N, Daun JK. The chemical composition and nutritive value of Canadian pulses. Winnipeg: Canadian Grain Commission; 2004.

    Google Scholar 

  66. Dostalovà R, Horàcek J, Hasalovà I, et al. Study of resistant starch (RS) content in pea during maturation. Czech J Food Sci. 2009;27:S120–4.

    Article  Google Scholar 

  67. Tömösközi S, Lásztity R, Haraszi R, Baticz O. Isolation and study of the functional properties of pea proteins. Nahrung/Food. 2001;45:399–401.

    Article  PubMed  Google Scholar 

  68. Abete I, Parra D, Martinez JA. Legume-, fish-, orhigh-protein-based hypocaloric diets: effects on weight loss and mitochondrial oxidation in obese men. J Med Food. 2009;12:100–8.

    Article  PubMed  CAS  Google Scholar 

  69. Roy F, Boye JI, Simpson BK. Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res Int. 2010;43:432–42.

    Article  CAS  Google Scholar 

  70. Tahir R, Ellis PR, Bogracheva TY, Meares-Taylor C, Butterworth PJ. Study of the structure and properties of native and dydrothermally processed wild-type, lam and r variant pea starches that affect amylolysis of these starches. Biomacromolecules. 2011;12:123–33.

    Article  PubMed  CAS  Google Scholar 

  71. Chung H-J, Liu Q, Hoover R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. Food Res Int. 2010;43:501–8.

    Article  CAS  Google Scholar 

  72. Trinidad TP, Mallillin AC, Loyola AS, Sagum RS, Encabo RR. The potential health benefits of legumes as a good source of dietary fibre. Br J Nutr. 2010;103:569–74.

    Article  PubMed  CAS  Google Scholar 

  73. Chen WJL, Anderson JW, Jenkins DJA. Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Proc Soc Exp Biol Med. 1984;175:215–8.

    Article  PubMed  CAS  Google Scholar 

  74. Fernando WMU, Hill JE, Zello GA, et al. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify fecal microbial composition in healthy adults. Benefic Microbes. 2010;1:197–207.

    Article  CAS  Google Scholar 

  75. Campos-Vega R, Loarca-Pina G, Oomah BD. Minor components of pulses and their potential impact on human health. Food Res Int. 2010;43:461–82.

    Article  CAS  Google Scholar 

  76. Duenãs M, Estrella I, Hernandez T. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur Food Res Technol. 2004;219:116–23.

    Article  CAS  Google Scholar 

  77. Pownall TL, Udenigwe CC, Aluko RE. Amino acid composition and antioxidant properties of pea seed ( Pisum sativum L.) enzymatic protein hydrolysate fractions. J Agric Food Chem. 2010;58:4712–8.

    Article  PubMed  CAS  Google Scholar 

  78. Marinangeli CP, Kassis AN, Jones PJ. Glycemic responses and sensory characteristics of whole yellow pea flour added to novel functional foods. J Food Sci. 2009;74:S385–9.

    Article  PubMed  CAS  Google Scholar 

  79. Marinangeli CP, Jones PJ. Whole and fractionated yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. Br J Nutr. 2011;105:110–7.

    Article  PubMed  CAS  Google Scholar 

  80. Lunde MS, Hjellset VT, Holmboe-Ottesen G, et al. Variations in postprandial blood glucose responses andsatiety after intake of three types of bread. J Nutr Metab. 2011;2011:437587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Slavin JL. Position of the American dietetic association: health implications of dietary fiber. J Am Diet Assoc. 2008;108:1716–31.

    Article  PubMed  Google Scholar 

  82. Sandström B, Hansen LT, Sørensen A. Pea fiber lowers fasting and postprandial blood triglyceride concentrations in humans. J Nutr. 1994;124:2386–96.

    Article  PubMed  Google Scholar 

  83. Hermsdorff HM, Zulet MA, Abete I, Martinez JR. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight obese subjects. Eur J Nutr. 2011;50:61–9.

    Article  PubMed  CAS  Google Scholar 

  84. Dahl WJ, Whiting SJ, Healey AD, Zello GA, Hildebrandt SL. Increased stool frequency and fecal output occurs when finely processed pea hull fiber is added to usual foods consumed by elderly long term care residents. J Am Diet Assoc. 2003;103:1199–202.

    Article  PubMed  Google Scholar 

  85. Flogan C, Dahl WJ. Fiber fortification improves gastrointestinal function and decreases energy intake in children with a history of constipation. Infant Child Adolescent Nutr. 2010;2:312–7.

    Article  Google Scholar 

  86. Swiatecka D, Kostyra H, Swiatecki A. Impact of glycosylated pea proteins on the activity of free-swimming and immobilized bacteria. J Sci Food Agric. 2010;90:1837–45.

    PubMed  CAS  Google Scholar 

  87. Swiatecka D, Narbad A, Ridgway KP, Kostyra H. The study on the impact of glycosylated pea proteins on human intestinal bacteria. Int J Food Microbiol. 2011;145:267–72.

    Article  PubMed  CAS  Google Scholar 

  88. Troszynska A, Ciska E. Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum Sativum L.) and their total antioxidant activity. Czech J Food Sci. 2002;20:15–22.

    Article  CAS  Google Scholar 

  89. Hagerman AE, Ried KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as antioxidants. J Agric Food Chem. 1998;46:1887–92.

    Article  PubMed  CAS  Google Scholar 

  90. United States Department of Agriculture (USDA). USDA National Nutrient Database for Standard Reference, Release 23; 2011.

    Google Scholar 

  91. Vidal-Valverde C, Frias J, Sierra I, Blazquez IF, Lambein F, Kuo YH. New functional legume foods by germination: effect on the nutritive value of beans, lentils and peas. Eur Food Res Technol. 2002;215:472–7.

    Article  CAS  Google Scholar 

  92. Padovani RM, Lima DM, Colugnati FAB, Rodriguez-Amaya DLB. Comparison of proximate, mineral and vitamin composition of common Brazilian and US food. J Food Compos Anal. 2007;20:733–8.

    Article  CAS  Google Scholar 

  93. Issa AY, Volate SR, Wargovich MJ. The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Compos Anal. 2006;19:405–19.

    Article  CAS  Google Scholar 

  94. Zia-ur-Rehman Salariya AM. The effects of hydrothermal processing on antinutrients, protein and starch digestibility of food legumes. Int J Food Sci Technol. 2005;40:695–700.

    Article  CAS  Google Scholar 

  95. Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Andrikopoulos NK. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010;121:682–90.

    Article  CAS  Google Scholar 

  96. Xu B, Chang SKC. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J Agric Food Chem. 2011;58:1509–17.

    Article  CAS  Google Scholar 

  97. Güclü-Üstündag Ö, Mazza G. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 2007;47:231–58.

    Article  PubMed  CAS  Google Scholar 

  98. Quiroga AV, Barrio DA, Anon MC. Amaranth lectin presents potential antitumor properties. IWT–Food Sci Technol. 2015;60:478–85.

    CAS  Google Scholar 

  99. Finkina KI, Shramova EI, Tagaev AA, Ovchinnikova TV. A novel defensin from the lentil (lens Culinaris) seeds. Biochem Biophys Res Commun. 2008;371:860–5.

    Article  PubMed  CAS  Google Scholar 

  100. Barrera GJ, Sanchez G, Gonzalez JE. Trefoil factor 3 isolated from human breast milk downregulates cytokines (IL8 and IL6) and promotes human beta defensin (hBD2 and hBD4) expression in intestinal epithelial cells HT-29. Bosn J Basic Med Sci. 2012;12:256–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Philpott MP. Defensins and acne. Mol Immunol. 2003;40:457–62.

    Article  PubMed  CAS  Google Scholar 

  102. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, Feathers RW, Chu H, Lima H, Fellermann K, Ganz T, Stange E, Bevins CL. Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proc Natl Acad Sci. 2005;102(50):18129–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Lajolo FM, Genovese M. Nutritional significance of lectins and enzyme inhibitors from legumes. J Agric Food Chem. 2002;50:6592–8.

    Article  PubMed  CAS  Google Scholar 

  104. Ramdath D, Renwick S, Duncan AM. The role of pulses in the dietary management of diabetes. Can J Diabetes (Review). 2016;40:355–63.

    Article  Google Scholar 

  105. Queiroz-Monici KS, Costa GEA, Silva N, Reis SM, Oliveira AC. Bifidogenic effect of dietary fibre and resistant starch from leguminous on the intestinal microbiota of rats. Nutrition. 2005;21:602–8.

    Article  CAS  Google Scholar 

  106. Hernandez-Salazar M, Osorio-Diaz P, Loarca-Pina G, ReynosoCamacho R, Tovar J, Bello-Perez LA. In vitro fermentability and antioxidant capacity of the indigestible fraction of cooked black beans (Phaseolus vulgaris L.), lentils (Lens culinaris L.) and chickpeas (Cicer arietinum L.). J Sci Food Agric. 2010;90:1417–22.

    Article  PubMed  CAS  Google Scholar 

  107. Bednar GE, Patil AR, Murray SM, Grieshop CM, Merchen NR, GCJ F. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J Nutr. 2001;131:276–86.

    Article  PubMed  CAS  Google Scholar 

  108. Stephen AM, Dahl WJ, Sieber GM, Blaricom JA, Morgan DR. Effect of green lentils on colonic function, nitrogen balance, and serum lipids in healthy human subjects. Am J Clin Nutr. 1995;62:1–7.

    Article  Google Scholar 

  109. Pellegrini N, Serafini M, Salvatore S, Rio DD, Bianchi M, Brighenti F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res. 2006;50:1030–8.

    Article  PubMed  CAS  Google Scholar 

  110. Xu BJ, Chang SKC. Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem. 2008;110:1–13.

    Article  PubMed  CAS  Google Scholar 

  111. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2.

    Google Scholar 

  112. Anderson JW, Major AW. Pulses and lipemia, short- and long-term effect: potential in the prevention of cardiovascular disease. Br J Nutr. 2002;88:S263–71.

    Article  PubMed  CAS  Google Scholar 

  113. Shams H, Tahbaz F, Entezari M, Abadi A. Effects of cooked lentils on glycaemic control and blood lipids of patients with type 2 diabetes. ARYA Athero J. 2008;3:215–8.

    Google Scholar 

  114. Kingman SM. The influence of legume seeds on human plasma lipid concentrations. Nutr Res Rev. 1991;4:97–123.

    Article  PubMed  CAS  Google Scholar 

  115. Duane WC. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J Lipid Res. 1997;38:1120–8.

    PubMed  CAS  Google Scholar 

  116. Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2009;21:94–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Rizkalla SW, Bellisle F, Slama G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br J Nutr. 2002;88:S255–62.

    Article  PubMed  CAS  Google Scholar 

  118. Venn BJ, Mann JI. Cereal grains, legumes and diabetes. Eur J Clin Nutr. 2004;58:1443–146.

    Article  PubMed  CAS  Google Scholar 

  119. Al-Tibi AMH, Takruri HR, Ahmad MN. Effect of dehulling and cooking of lentils (Lens culinaris L.) on serum glucose and lipoprotein levels in streptozotocin-induced diabetic rats. Malays J Nutr. 2010;16:83–92.

    Google Scholar 

  120. Wolever TMS, Katzman-Relle L, Jenkins AL, Vuksna V, Josse RG, Jenkins DJA. Glycaemic index of 102 complex carbohydrate foods in patients with diabetes. Nutr Res. 1994;14:651–69.

    Article  Google Scholar 

  121. Jenkins DJA, Thorne MJ, Camelon K, Jenkins A, Rao AV, Taylor RH, Thompson LU, Kalmusky J, Reichert R, Francis T. Effect of processing on digestibility and the blood glucose response: a study of lentils. Am J Clin Nutr. 1982;36:1093–101.

    Article  PubMed  CAS  Google Scholar 

  122. Jenkins DJA, Wolever TMS, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. Glycaemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34:362–6.

    Article  PubMed  CAS  Google Scholar 

  123. Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycaemic index and glycaemic load values. Am J Clin Nutr. 2002;76:5–56.

    Article  PubMed  CAS  Google Scholar 

  124. Chung HJ, Liu Q, Hoover R, Tom D, Warkentin C, Vandenberg A. In vitro starch digestibility, expected glycaemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chem. 2008;111:316–21.

    Article  PubMed  CAS  Google Scholar 

  125. Correa P. Epidemiological correlations between diet and cancer frequency. Cancer Res. 1981;41:3685–90.

    PubMed  CAS  Google Scholar 

  126. Adebamowo CA, Cho E, Sampson L, Katan MB, Spiegelman D, Willett WC, Holmes MD. Dietary flavonols and flavonolrich foods intake and the risk of breast cancer. Int J Cancer. 2005;114:628–33.

    Article  PubMed  CAS  Google Scholar 

  127. Agurs-Collins T, Smoot D, Afful J, Makambi K, Adams-Campbell LL. Legume intake and reduced colorectal adenoma risk in African–Americans. J Natl Black Nurses Assoc. 2006;17:6–12. (Abstract).

    PubMed  Google Scholar 

  128. Nichenametla SN, Taruscio TG, Barney DL, Exon JH. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr. 2006;46:161–83.

    Article  PubMed  CAS  Google Scholar 

  129. Mejia EGL, Prisecaru VI. Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr. 2005;45:425–45.

    Article  PubMed  CAS  Google Scholar 

  130. Scarafoni A, Magni C, Duranti M. Molecular nutraceutics as a mean to investigate the positive effects of legume seed proteins on human health. Trends Food Sci Technol. 2007;18:454–63.

    Article  CAS  Google Scholar 

  131. Cheung AHK, Ng TB. Isolation and characterization of a trypsin–chymotrypsin inhibitor from the seeds of green lentil (lens Culinaris). Protein Pept Lett. 2007;14:859–64.

    Article  PubMed  CAS  Google Scholar 

  132. Losso JN. The biochemical and functional food properties of the Bowman–Birk inhibitor. Crit Rev Food Sci Nutr. 2008;4:94–118.

    Article  CAS  Google Scholar 

  133. Kennedy AR. The Bowman–Birk inhibitor from soybeans as an anticarcinogenic agent. Am J Clin Nutr. 1998;68:1406S–12S.

    Article  PubMed  CAS  Google Scholar 

  134. Caccialupi P, Ceci LR, Siciliano RA, Pignone D, Clemene A, Sonnante G. Bowman-Birk inhibitors in lentil: heterologous expression, functional characterization and anti-proliferative properties in human colon cancer cells. Food Chem. 2010;120:1058–66.

    Article  CAS  Google Scholar 

  135. Marks G, Aydos RDA, Fagundes DJ, Pontes ERJC, Takita LC, Amaral EGAS, Rossini A, Ynouye AM. Modulation of transforming growth factor beta2 (TGF-beta2) by inositol hexaphosphate in colon carcinogenesis in rats. Acta Cir Bras. 2006;21:51–6.

    Article  PubMed  Google Scholar 

  136. Verghese M, Rao DR, Chawana CB, Walker LT, Shackelford L. Anticarcinogenic effect of phytic acid (IP6): apoptosis as a possible mechanism of action. LWT-Food Sci Technol. 2006;39:1093–8.

    Article  CAS  Google Scholar 

  137. Gurfinkel DM, Rao AV. Soya saponins: the relationship between chemical structure and colon anticarcinogenic activity. Nutr Cancer. 2003;47:24–33.

    Article  PubMed  CAS  Google Scholar 

  138. Faris MAIE, Tacruri HR, Issa AY. Role of lentils (Lens culinaris L.) I human health and nutrition: a review. Mediterr J Nutr Metab. 2013;6:3–16.

    Article  Google Scholar 

  139. Chen C, Kong ANT. Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci. 2005;26:318–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capurso, A., Crepaldi, G., Capurso, C. (2018). Legumes and Pulses. In: Benefits of the Mediterranean Diet in the Elderly Patient. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-78084-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78084-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78083-2

  • Online ISBN: 978-3-319-78084-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics