Skip to main content

Techniques and Instruments for X-Ray Nanochemistry

  • Chapter
  • First Online:
Book cover X-ray Nanochemistry

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Techniques and Instruments used in the measurements of enhancement of X-ray effects by nanomaterials are described in this chapter. These measurements usually involve chemical and biological reactions because direct measurements of the yield of electrons in solutions using X-ray photoelectron spectroscopy are not yet available. These reactions are discussed in Chapters 2 to 5 as well as in Chapters 8 to 11, and will only be cursorily discussed here.

The boundary condition determines the solution of second order differential equations - or as we commonly say: beauty is in the eye of beholder

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson, R. A., Sugiyama, C., & Guo, T. (2014). Determination of absolute quantum efficiency of X-ray Nano phosphors by thin film photovoltaic cells. Analytical Chemistry, 86, 10492–10496.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, P. P., Qiao, Y., Wang, C. M., Ma, L. Y., & Su, M. (2014). Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. Nanoscale, 6, 10095–10099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manohar, N., Reynoso, F., & Cho, S. (2012). Feasibility of direct L-Shell fluorescence imaging of gold nanoparticles using a Benchtop X-ray source. Medical Physics, 39, 3987–3988.

    Article  Google Scholar 

  4. Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.

    Article  CAS  PubMed  Google Scholar 

  5. Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.

    Google Scholar 

  6. McMahon, S. J., Mendenhall, M. H., Jain, S., & Currell, F. (2008). Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles. Physics in Medicine and Biology, 53, 5635–5651.

    Article  PubMed  Google Scholar 

  7. Starkewolf, Z. B., Miyachi, L., Wong, J., & Guo, T. (2013). X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chemical Communications, 49, 2545–2547.

    Article  CAS  PubMed  Google Scholar 

  8. Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.

    Article  CAS  PubMed  Google Scholar 

  9. Misawa, M., & Takahashi, J. (2011). Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine Nanotechnology, 7, 604–614.

    Article  CAS  Google Scholar 

  10. Cheng, N. N., Starkewolf, Z., Davidson, A. R., Sharmah, A., Lee, C., Lien, J., & Guo, T. (1950). Chemical enhancement by Nanomaterials under X-ray irradiation. Journal of the Chemical Society, Communications, 2012(134), 1950–1953.

    Google Scholar 

  11. Sharmah, A., Yao, Z., Lu, L., & Guo, T. (2016). X-ray-induced energy transfer between Nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 120, 3054–3060.

    Article  CAS  Google Scholar 

  12. Makrigiorgos, G. M., Baranowskakortylewicz, J., Bump, E., Sahu, S. K., Berman, R. M., & Kassis, A. I. (1993). A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of Coumarin. International Journal of Radiation Biology, 63, 445–458.

    Article  CAS  PubMed  Google Scholar 

  13. Nakayama, M., Sasaki, R., Ogino, C., Tanaka, T., Morita, K., Umetsu, M., Ohara, S., Tan, Z. Q., Nishimura, Y., Akasaka, H., et al. (2016). Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiation Oncology, 11, 91.

    Article  CAS  PubMed  Google Scholar 

  14. Cohn, C. A., Pedigo, C. E., Hylton, S. N., Simon, S. R., & Schoonen, M. A. A. (2009). Evaluating the use of 3 ′-(p-Aminophenyl) fluorescein for determining the formation of highly reactive oxygen species in particle suspensions. Geochemical Transactions, 10, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeon, J. K., Han, S. M., & Kim, J. K. (2016). Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe. Journal of Synchrotron Radiation, 23, 1191–1196.

    Article  CAS  PubMed  Google Scholar 

  16. Musat, R., Moreau, S., Poidevin, F., Mathon, M. H., Pommeret, S., & Renault, J. P. (2010). Radiolysis of water in nanoporous gold. Physical Chemistry Chemical Physics, 12, 12868–12874.

    Article  CAS  PubMed  Google Scholar 

  17. Davidson, R. A., & Guo, T. (2012). An example of X-ray Nanochemistry: SERS investigation of polymerization enhanced by nanostructures under X-ray irradiation. Journal of Physical Chemistry Letters, 3, 3271–3275.

    Article  CAS  Google Scholar 

  18. Subiel, A., Ashmore, R., & Schettino, G. (2016). Standards and methodologies for characterizing radiobiological impact of high-Z nanoparticles. Theranostics, 6, 1651–1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sahbani, S. K., Cloutier, P., Bass, A. D., Hunting, D. J., & Sanche, L. (2015). Electron resonance decay into a biological function: Decrease in viability of E-coli transformed by plasmid DNA irradiated with 0.5-18 eV electrons. Journal of Physical Chemistry Letters, 6, 3911–3914.

    Article  CAS  Google Scholar 

  20. Marques, T., Schwarcke, M., Garrido, C., Zucolotto, O. B., & Nicolucci, P. (2010). Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. Journal of Physics: Conference Series, 250, 012084.

    Google Scholar 

  21. N Deyhimihaghighi, N., Mohd Noor, N., Soltani, N., Jorfi, R., Erfani Haghir, M., Adenan, M. Z., Saion, E., & Khandaker, M. U. (2014). Contrast enhancement of magnetic resonance imaging (MRI) of polymer gel dosimeter by adding platinum nano- particles. Journal of Physics: Conference Series, 546, 012013.

    Google Scholar 

  22. Sabbaghizadeh, R., Shamsudin, R., Deyhimihaghighi, N., & Sedghi, A. (2017). Enhancement of dose response and nuclear magnetic resonance image of PAGAT polymer gel dosimeter by adding silver nanoparticles. PLoS One, 12, e0168737.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chang, J., Taylor, R. D., Davidson, R. A., Sharmah, A., & Guo, T. (2016). Electron paramagnetic resonance spectroscopy investigation of radical production by gold nanoparticles in aqueous solutions under X-ray irradiation. The Journal of Physical Chemistry. A, 120, 2815–2823.

    Article  CAS  PubMed  Google Scholar 

  24. Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., Nicolucci, P., & Baffa, O. (2012). Synthesis and characterization of gold/alanine Nanocomposites with potential properties for medical application as radiation sensors. ACS Applied Materials & Interfaces, 4, 5844–5851.

    Article  CAS  Google Scholar 

  25. Zhang, Z. Y., Berg, A., Levanon, H., Fessenden, R. W., & Meisel, D. (2003). On the interactions of free radicals with gold nanoparticles. Journal of the American Chemical Society, 125, 7959–7963.

    Article  CAS  PubMed  Google Scholar 

  26. Bacic, G., Spasojevic, I., Secerov, B., & Mojovic, M. (2008). Spin-trapping of oxygen free radicals in chemical and biological systems: New traps, radicals and possibilities. Spectrochimica Acta A, 69, 1354–1366.

    Article  CAS  Google Scholar 

  27. Spasojevic, I. (2010). Electron paramagnetic resonance – a powerful tool of medical biochemistry in discovering mechanisms of disease and treatment prospects. Journal of Medical Biochemistry, 29, 175–188.

    Article  CAS  Google Scholar 

  28. He, W. W., Liu, Y. T., Wamer, W. G., & Yin, J. J. (2014). Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. Journal of Food and Drug Analysis, 22, 49–63.

    Article  CAS  PubMed  Google Scholar 

  29. Abbas, K., Hardy, M., Poulhes, F., Karoui, H., Tordo, P., Ouari, O., & Peyrot, F. (2014). Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps. Free Radical Biology & Medicine, 71, 281–290.

    Article  CAS  Google Scholar 

  30. Wen, T., He, W. W., Chong, Y., Liu, Y., Yin, J. J., & Wu, X. C. (2015). Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: Implications for biomedical applications. Physical Chemistry Chemical Physics, 17, 24937–24943.

    Article  CAS  PubMed  Google Scholar 

  31. Lien, J., Peck, K. A., Su, M. Q., & Guo, T. (2016). Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. Journal of Colloid and Interface Science, 479, 173–181.

    Article  CAS  PubMed  Google Scholar 

  32. Casta, R., Champeaux, J. P., Sence, M., Moretto-Capelle, P., Cafarelli, P., Amsellem, A., & Sicard-Roselli, C. (2014). Electronic emission of radio-sensitizing gold nanoparticles under X-ray irradiation: Experiment and simulations. Journal of Nanoparticle Research, 16, 2348.

    Article  CAS  Google Scholar 

  33. Klyachko, D. V., Huels, M. A., & Sanche, L. (1999). Halogen anion formation in 5-halouracil films: X rays compared to subionization electrons. Radiation Research, 151, 177–187.

    Article  CAS  PubMed  Google Scholar 

  34. Cai, Z. L., Cloutier, P., Hunting, D., & Sanche, U. (2005). Comparison between x-ray photon and secondary electron damage to DNA in vacuum. The Journal of Physical Chemistry. B, 109, 4796–4800.

    Article  CAS  PubMed  Google Scholar 

  35. Poludniowski, G., Landry, G., DeBlois, F., Evans, P. M., & Verhaegen, F. (2009). SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes. Physics in Medicine and Biology, 54, N433–N438.

    Article  CAS  PubMed  Google Scholar 

  36. Poludniowski, G. G., & Evans, P. M. (2007). Calculation of x-ray spectra emerging from an x-ray tube. Part I. Electron penetration characteristics in x-ray targets. Medical Physics, 34, 2164–2174.

    Article  CAS  PubMed  Google Scholar 

  37. Poludniowski, G. G. (2007). Calculation of x-ray spectra emerging from an x-ray tube. Part II. X-ray production and filtration in x-ray targets. Medical Physics, 34, 2175–2186.

    Article  CAS  PubMed  Google Scholar 

  38. Davidson, R. A., & Guo, T. (2015). Multiplication algorithm for combined physical and chemical enhancement of X-ray effect by nanomaterials. Journal of Physical Chemistry C, 119, 19513–19519.

    Article  CAS  Google Scholar 

  39. Uesaka, M., Mizumo, K., Sakumi, A., Meiling, J., Yusa, N., Nishiyama, N., & Nakagawa, K. (2007). Pinpoint KEV/MEV X-ray sources for X-ray drug delivery system. In PAC (Vol. THPMN035, p. 2793). Albuquerque: IEEE.

    Google Scholar 

  40. Gokeri, G., Kocar, C., & Tombakoglu, M. (2010). Monte Carlo simulation of microbeam radiation therapy with an interlaced irradiation geometry and an au contrast agent in a realistic head phantom. Physics in Medicine and Biology, 55, 7469–7487.

    Article  PubMed  Google Scholar 

  41. Tsai, H. E., Wang, X. M., Shaw, J. M., Li, Z. Y., Arefiev, A. V., Zhang, X., Zgadzaj, R., Henderson, W., Khudik, V., Shvets, G., et al. (2015). Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror. Physics of Plasmas, 22, 023106.

    Article  CAS  Google Scholar 

  42. Davidson, R. A., & Guo, T. (2016). Nanoparticle-assisted scanning focusing X-ray therapy with needle beam X rays. Radiation Research, 185, 87–95.

    Article  CAS  PubMed  Google Scholar 

  43. Ma, N., Xu, H. P., An, L. P., Li, J., Sun, Z. W., & Zhang, X. (2011). Radiation-sensitive Diselenide block co-polymer Micellar aggregates: Toward the combination of radiotherapy and chemotherapy. Langmuir, 27, 5874–5878.

    Article  CAS  PubMed  Google Scholar 

  44. Reynoso, F. J., Manohar, N., Krishnan, S., & Cho, S. H. (2014). Design of an Yb-169 source optimized for gold nanoparticleaided radiation therapy. Medical Physics, 41(10), 101709.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, T. (2018). Techniques and Instruments for X-Ray Nanochemistry. In: X-ray Nanochemistry. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78004-7_7

Download citation

Publish with us

Policies and ethics