Skip to main content

Physical Enhancement of the Effectiveness of X-Ray Irradiation

  • Chapter
  • First Online:
X-ray Nanochemistry

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Physical enhancement is introduced in this chapter, including the motivation and history behind this new concept. Basic physical principles are presented before the discussion of three types of physical enhancement. The main focus of the chapter is how to design to measure, to recognize and to calculate physical enhancement, when it is possible. Theoretical packages used to simulate physical enhancement are accounted, and to date, physical enhancement is the only one that can be fully predicted using these packages. Publications are reviewed to explain important aspects of physical enhancement. Types 1, 2 and 3 physical enhancement are discussed in separate sections, and literature on these processes is accounted.

Fast growing trees provide shade early on, but these trees develop fewer deep roots

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castillo, M. H., Button, T. M., Doerr, R., Homs, M. I., Pruett, C. W., & Pearce, J. I. (1988). Effects of radiotherapy on mandibular reconstruction plates. American Journal of Surgery, 156, 261–263.

    Article  PubMed  CAS  Google Scholar 

  2. Regulla, D. F., Hieber, L. B., & Seidenbusch, M. (1998). Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces. Radiation Research, 150, 92–100.

    Article  PubMed  CAS  Google Scholar 

  3. Regulla, D., Schmid, E., Friedland, W., Panzer, W., Heinzmann, U., & Harder, D. (2002). Enhanced values of the RBE and H ratio for cytogenetic effects induced by secondary electrons from an X-irradiated gold surface. Radiation Research, 158, 505–515.

    Article  PubMed  CAS  Google Scholar 

  4. Herold, D. M., Das, I. J., Stobbe, C. C., Iyer, R. V., & Chapman, J. D. (2000). Gold microspheres: A selective technique for producing biologically effective dose enhancement. International Journal of Radiation Biology, 76, 1357–1364.

    Article  PubMed  CAS  Google Scholar 

  5. Karnas, S. J., Moiseenko, V. V., Yu, E., Truong, P., & Battista, J. J. (2001). Monte Carlo simulations and measurement of DNA damage from x-ray-triggered Auger cascades in iododeoxyuridine (IUdR). Radiation and Environmental Biophysics, 40, 199–206.

    Article  PubMed  CAS  Google Scholar 

  6. Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.

    Article  PubMed  CAS  Google Scholar 

  7. Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.

    Google Scholar 

  8. Guo, T. (2002). Gold metal nanoparticles as high affinity anti-cancer agent for photon activation therapy, Submitted to Cancer Research Coordinating Committee, Jan 2002: UC Davis.

    Google Scholar 

  9. Guo, T. (2004). Nanoparticle enhanced X-ray therapy. In ACS annual meeting. Philadelphia.

    Google Scholar 

  10. Kunzel, R., Okuno, E., Levenhagen, R. S., & Umisedo, N. K. (2013). Evaluation of the X-ray absorption by gold nanoparticles solutions. Nanotechnology, 203(5), 865283.

    Google Scholar 

  11. Nahar, S. N., Pradhan, A. K., & Lim, S. (2011). K-alpha transition probabilities for platinum and uranium ions for possible X-ray biomedical applications. Canadian Journal of Physics, 89, 483–494.

    Article  CAS  Google Scholar 

  12. Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, C., Cheng, N. N., Davidson, R. A., & Guo, T. (2012). Geometry enhancement of nanoscale energy deposition by x-rays. Journal of Physical Chemistry C, 116, 11292–11297.

    Article  CAS  Google Scholar 

  14. Sharmah, A., Yao, Z., Lu, L., & Guo, T. (2016). X-ray-induced energy transfer between nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 120, 3054–3060.

    Article  CAS  Google Scholar 

  15. Casta, R., Champeaux, J. P., Moretto-Capelle, P., Sence, M., & Cafarelli, P. (2015). Electron and photon emissions from gold nanoparticles irradiated by X-ray photons. Journal of Nanoparticle Research, 17, 3.

    Google Scholar 

  16. Incerti, S., Suerfu, B., Xu, J., Ivantchenko, V., Mantero, A., Brown, J. M. C., Bernal, M. A., Francis, Z., Karamitros, M., & Tran, H. N. (2016). Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 372, 91–101.

    Article  CAS  Google Scholar 

  17. Gadoue, S. M., Toomeh, D., Zygmanski, P., & Sajo, E. (2017). Angular dose anisotropy around gold nanoparticles exposed to X-rays. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 1653–1661.

    Article  CAS  Google Scholar 

  18. Kabachnik, N. M., & Sazhina, I. P. (1996). Non-dipolar effects in angular distributions of photoinduced Auger electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 29, L515–L519.

    Article  CAS  Google Scholar 

  19. Misawa, M., & Takahashi, J. (2011). Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 604–614.

    Article  CAS  Google Scholar 

  20. Byrne, H. L., Gholami, Y., & Kuncic, Z. (2017). Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement. Physics in Medicine and Biology, 62, 3097–3110.

    Article  PubMed  CAS  Google Scholar 

  21. Joy, D., & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning, 11, 176–180.

    Article  Google Scholar 

  22. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al. (2003). GEANT4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A, 506, 250–303.

    Article  CAS  Google Scholar 

  23. Pattison, J. E., Hugtenburg, R. P., & Green, S. (2010). Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body. Journal of the Royal Society Interface, 7, 603–611.

    Article  PubMed  Google Scholar 

  24. Champeaux, R. C. J. P., Sence, M., Moretto-Capelle, P., & Cafarelli, P. (2015). Comparison between gold nanoparticle and gold plane electron emissions: A way to identify secondary electron emission. Physics in Medicine and Biology, 60, 9095–9105.

    Article  PubMed  CAS  Google Scholar 

  25. Seo, S. J., Han, S. M., Cho, J. H., Hyodo, K., Zaboronok, A., You, H., Peach, K., Hill, M. A., & Kim, J. K. (2015). Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: Implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiation and Environmental Biophysics, 54, 423–431.

    Article  PubMed  CAS  Google Scholar 

  26. You, D., Fukuzawa, H., Sakakibara, Y., Takanashi, T., Ito, Y., Maliyar, G. G., Motomura, K., Nagaya, K., Nishiyama, T., Asa, K., et al. (2017). Charge transfer to ground-state ions produces free electrons. Nature Communications, 8, 14277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Alizadeh, E., & Sanche, L. (2012). Absolute measurements of radiation damage in nanometer-thick films. Radiation Protection Dosimetry, 151, 591–599.

    Article  PubMed  CAS  Google Scholar 

  28. Viefhaus, J., Cvejanovic, S., Langer, B., Lischke, T., Prumper, G., Rolles, D., Golovin, A. V., Grum-Grzhimailo, A. N., Kabachnik, N. M., & Becker, U. (2004). Energy and angular distributions of electrons emitted by direct double Auger decay. Physical Review Letters, 92, 083001.

    Article  PubMed  CAS  Google Scholar 

  29. Clement, S., Deng, W., Camilleri, E., Wilson, B. C., & Goldys, E. M. (2016). X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: Determination of singlet oxygen quantum yield. Scientific Report-UK, 6, 19954

    Google Scholar 

  30. Kamkaew, A., Chen, F., Zhan, Y. H., Majewski, R. L., & Cai, W. B. (2016). Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano, 10, 3918–3935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hainfeld, J. F., Slatkin, D. N., Focella, T. M., & Smilowitz, H. M. (2006). Gold nanoparticles: A new X-ray contrast agent. The British Journal of Radiology, 79, 248–253.

    Article  CAS  PubMed  Google Scholar 

  32. Tu, S. J., Yang, P. Y., Hong, J. H., & Lo, C. J. (2013). Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning. Radiation Physics and Chemistry, 88, 14–20.

    Article  CAS  Google Scholar 

  33. Cho, S. H. (2005). Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Physics in Medicine and Biology, 50, N163–N173.

    Article  PubMed  Google Scholar 

  34. Yoshida, T., Tanabe, T., Chen, A., Miyashita, Y., Yoshida, H., Hattori, T., & Sawasaki, T. (2003). Method for the degradation of dibutyl phthalate in water by gamma-ray irradiation. Journal of Radioanalytical and Nuclear Chemistry, 255, 265–269.

    Article  CAS  Google Scholar 

  35. Yoshida, T., Tanabe, T., Okabe, Y., Sawasaki, T., & Chen, A. (2005). Decomposition of carbon dioxide by metals during gamma irradiation. Radiation Research, 164, 332–335.

    Article  PubMed  CAS  Google Scholar 

  36. Cho, S. H., Jones, B. L., & Krishnan, S. (2009). The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma−/x-ray sources. Physics in Medicine and Biology, 54, 4889–4905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jones, B. L., Krishnan, S., & Cho, S. H. (2010). Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Medical Physics, 37, 3809–3816.

    Article  PubMed  CAS  Google Scholar 

  38. Roeske, J. C., Nunez, L., Hoggarth, M., Labay, E., & Weichselbaum, R. R. (2007). Characterization of the theorectical radiation dose enhancement from nanoparticles. Technology in Cancer Research & Treatment, 6, 395–401.

    Article  Google Scholar 

  39. McMahon, S. J., Mendenhall, M. H., Jain, S., & Currell, F. (2008). Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles. Physics in Medicine and Biology, 53, 5635–5651.

    Article  PubMed  Google Scholar 

  40. Montenegro, M., Nahar, S. N., Pradhan, A. K., Huang, K., & Yu, Y. (2009). Monte Carlo simulations and atomic calculations for Auger processes in biomedical nanotheranostics. The Journal of Physical Chemistry. A, 113, 12364–12369.

    Article  PubMed  Google Scholar 

  41. Yusa, N., Jiang, M., Mizuno, K., & Uesaka, M. (2009). Numerical evaluation of the effectiveness of colloidal gold as a contrast agent. Radiological Physics and Technology, 2, 33–39.

    Article  PubMed  Google Scholar 

  42. Zhang, S. X., Gao, J. F., Buchholz, T. A., Wang, Z. L., Salehpour, M. R., Drezek, R. A., & Yu, T. K. (2009). Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: A Monte Carlo simulation study. Biomedical Microdevices, 11, 925–933.

    Article  PubMed  CAS  Google Scholar 

  43. Ouerdane, H., Gervais, B., Zhou, H., Beuve, M., & Renault, J. P. (2010). Radiolysis of water confined in porous silica: A simulation study of the physicochemical yields. Journal of Physical Chemistry C, 114, 12667–12674.

    Article  CAS  Google Scholar 

  44. Gokeri, G., Kocar, C., & Tombakoglu, M. (2010). Monte Carlo simulation of microbeam radiation therapy with an interlaced irradiation geometry and an au contrast agent in a realistic head phantom. Physics in Medicine and Biology, 55, 7469–7487.

    Article  PubMed  Google Scholar 

  45. Van den Heuvel, F., Locquet, J. P., & Nuyts, S. (2010). Beam energy considerations for gold nano-particle enhanced radiation treatment. Physics in Medicine and Biology, 55, 4509–4520.

    Article  PubMed  Google Scholar 

  46. McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O'Sullivan, J. M., et al. (2011). Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiotherapy and Oncology, 100, 412–416.

    Article  PubMed  CAS  Google Scholar 

  47. McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., et al. (2011). Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports-UK, 1. https://doi.org/10.1038/srep00018.

  48. Lechtman, E., Chattopadhyay, N., Cai, Z., Mashouf, S., Reilly, R., & Pignol, J. P. (2011). Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Physics in Medicine and Biology, 56, 4631–4647.

    Article  PubMed  CAS  Google Scholar 

  49. Amato, E., Italiano, A., Leotta, S., Pergolizzi, S., & Torrisi, L. (2013). Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels. Journal of X-ray Science and Technology, 21, 237–247.

    PubMed  CAS  Google Scholar 

  50. Mesbahi, A., Jamali, F., & Gharehaghaji, N. (2013). Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. BioImpacts: BI, 29-35(29), 3.

    Google Scholar 

  51. Manohar, N., Jones, B. L., & Cho, S. H. (2014). Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study. Medical Physics, 41, 101906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jeynes, J. C. G., Merchant, M. J., Spindler, A., Wera, A. C., & Kirkby, K. J. (2014). Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Physics in Medicine and Biology, 59, 6431–6443.

    Article  PubMed  CAS  Google Scholar 

  53. Kim, B. H., & Kwon, J. W. (2014). Plasmon-assisted radiolytic energy conversion in aqueous solutions. Scientific Reports-UK, 4, 5249.

    Article  CAS  Google Scholar 

  54. Li, W. B., Müllner, M., Greiter, M. B., Bissardon, C., Xie, W. Z., Schlattl, H., Oeh, U., Li, J. L., & Hoeschen, C. (2014). Monte Carlo simulations of dose enhancement around gold nanoparticles used as X-ray imaging contrast agents and radiosensitizers. In Medical imaging 2014: Physics of medical imaging; Proc. of SPIE (Vol. 9033, p. 90331K). California, United States: San Diego.

    Google Scholar 

  55. Zhang, D. G., Feygelman, V., Moros, E. G., Latifi, K., & Zhang, G. G. (2014). Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy. PLoS One, 9, e109389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lim, S. N., Pradhan, A. K., Barth, R. F., Nahar, S. N., Nakkula, R. J., Yang, W. L., Palmer, A. M., Turro, C., Weldon, M., Bell, E. H., et al. (2015). Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells. Journal of Radiation Research (Tokyo), 56, 77–89.

    Article  CAS  Google Scholar 

  57. Verkhovtsev, A. V., Korol, A. V., & Solov'yov, A. V. (2015). Revealing the mechanism of the low-energy electron yield enhancement from sensitizing nanoparticles. Physical Review Letters, 114, 063401.

    Article  PubMed  CAS  Google Scholar 

  58. Dou, Y., Guo, Y. Y., Li, X. D., Li, X., Wang, S., Wang, L., Lv, G. X., Zhang, X. N., Wang, H. J., Gong, X. Q., et al. (2016). Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced ct imaging and radiotherapy. ACS Nano, 10, 2536–2548.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang, Y., Feng, Y. M., Ming, X., & Deng, J. (2016). Energy modulated photon radiotherapy: A Monte Carlo feasibility study. BioMed Research International, 2016, 1–16.

    Google Scholar 

  60. Koger, B., & Kirkby, C. (2016). Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods. Physics in Medicine and Biology, 61, 8839–8853.

    Article  PubMed  CAS  Google Scholar 

  61. Koger, B., & Kirkby, C. (2016). A method for converting dose-to-medium to dose-to-tissue in Monte Carlo studies of gold nanoparticle-enhanced radiotherapy. Physics in Medicine and Biology, 61, 2014–2024.

    Article  PubMed  CAS  Google Scholar 

  62. Retif, P., Bastogne, T., & Barberi-Heyob, M. (2016). Robustness analysis of a Geant4-GATE simulator for nanoradiosensitizers characterization. IEEE Transactions on Nanobioscience, 15, 209–217.

    Article  PubMed  Google Scholar 

  63. Retif, P., Reinhard, A., Paquot, H., Jouan-Hureaux, V., Chateau, A., Sancey, L., Barberi-Heyob, M., Pinel, S., & Bastogne, T. (2016). Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles. International Journal of Nanomedicine, 11, 6169–6179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ferrero, V., Visona, G., Dalmasso, F., Gobbato, A., Cerello, P., Strigari, L., Visentin, S., & Attili, A. (2017). Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: A radiobiological model study. Medical Physics, 44, 1983–1992.

    Article  PubMed  CAS  Google Scholar 

  65. Martinov, M. P., & Thomson, R. M. (2017). Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization. Medical Physics, 44, 644–653.

    Article  PubMed  CAS  Google Scholar 

  66. Sung, W. M., Ye, S. J., McNamara, A. L., McMahon, S. J., Hainfeld, J., Shin, J., Smilowitz, H. M., Paganetti, H., & Schuemann, J. (2017). Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale, 9, 5843–5853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Oliver, P. A. K., & Thomson, R. M. (2017). A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry. Physics in Medicine and Biology, 62, 1417–1437.

    Article  PubMed  CAS  Google Scholar 

  68. Rogers, D. W. O., Faddegon, B. A., Ding, G. X., Ma, C. M., We, J., & Mackie, T. R. (1995). Beam – A Monte-Carlo code to simulate radiotherapy treatment units. Medical Physics, 22, 503–524.

    Article  PubMed  CAS  Google Scholar 

  69. Kawrakow, I. (2000). Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Medical Physics, 27, 485–498.

    Article  PubMed  CAS  Google Scholar 

  70. Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P. A., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., et al. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53, 270–278.

    Article  Google Scholar 

  71. Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee, S., Barrand, G., et al. (2016). Recent developments in GEANT4. Nuclear Instruments and Methods in Physics Research Section A, 835, 186–225.

    Article  CAS  Google Scholar 

  72. Scholz, M., & Kraft, G. (1996). Track structure and the calculation of biological effects of heavy charged-particles. Advances in Space Research-Series, 18, 5–14.

    Article  CAS  Google Scholar 

  73. Elsässer, T., & Scholz, M. (2007). Cluster effects within the local effect model. Radiation Research, 167, 319–329.

    Article  PubMed  Google Scholar 

  74. Armstrong, J., Brown, F. B., Bull, J. S., Casswell, L., Cox, L. J., Dixon, D., Forster, R. A., Goorley, J. T., Hughes, H. G., & Favorite, J. (2017). In C. J. Werner (Ed.), MNCP user's manual. Code version 6.2; LA-UR-17-29981. Los Alamos: Los Alamos National Security, LLC.

    Google Scholar 

  75. Semenenko, V. A., Turner, J. E., & Borak, T. B. (2003). NOREC, a Monte Carlo code for simulating electron tracks in liquid water. Radiation and Environmental Biophysics, 42, 213–217.

    Article  PubMed  CAS  Google Scholar 

  76. Paretzke, H. G., Turner, J. E., Hamm, R. N., Ritchie, R. H., & Wright, H. A. (1991). Spatial distributions of inelastic events produced by electrons in gaseous and liquid water. Radiation Research, 127, 121–129.

    Article  PubMed  CAS  Google Scholar 

  77. Friedland, W., Dingfelder, M., Kundrat, P., & Jacob, P. (2011). Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 711, 28–40.

    Article  PubMed  CAS  Google Scholar 

  78. Baro, J., Sempau, J., Fernandezvarea, J. M., & Salvat, F. (1995). Penelope – An algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter. Nuclear Instruments and Methods in Physics Research Section B, 100, 31–46.

    Article  CAS  Google Scholar 

  79. Salvat, F., Fernandez-Varea, J. M., & Sempau, J. (2011). PENELOPE-2011: A code system for Monte Carlo simulation of electron and photon transport. Nuclear Energy Agency: Barcelona.

    Google Scholar 

  80. McNamara, A., Geng, C., Turner, R., Mendez, J. R., Perl, J., Held, K., Faddegon, B., Paganetti, H., & Schuemann, J. (2017). Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Physica Medica, 33, 207–215.

    Article  PubMed  Google Scholar 

  81. Bethe, H., & Ashkin, J. (1953). In E. Segre (Ed.), Experimental nuclear physics. New York: Wiley.

    Google Scholar 

  82. Ysua, N., Jiang, M., Mizuno, K., & Usesaka, M. (2009). Numerical evaluation of the effectiveness of colloidal gold as a contrast agent. Radiological Physics and Technology, 2(1), 33–39.

    Article  PubMed  Google Scholar 

  83. Sharmah, A., Mukherjee, S., Yao, Z., Lu, L., & Guo, T. (2016). Concentration-dependent association between weakly attractive nanoparticles in aqueous solutions. Journal of Physical Chemistry C, 120, 19830–19836.

    Article  CAS  Google Scholar 

  84. McMahon, S. J., Paganetti, H., & Prise, K. M. (2016). Optimising element choice for nanoparticle radiosensitisers. Nanoscale, 8, 581–589.

    Article  PubMed  CAS  Google Scholar 

  85. Pradhan, A. K., Nahar, S. N., Montenegro, M., Yu, Y., Zhang, H. L., Sur, C., Mrozik, M., & Pitzer, R. M. (2009). Resonant X-ray enhancement of the Auger effect in high-Z atoms, molecules, and nanoparticles: Potential biomedical applications. The Journal of Physical Chemistry. A, 113, 12356–12363.

    Article  PubMed  CAS  Google Scholar 

  86. Lim, S., Montenegro, M., Pradhan, A. K., Nahar, S. N., Chowdhury, E., & Yu, Y. (2013). Broadband and monochromatic X-ray irradiation of platinum: Monte Carlo simulations for dose enhancement factors and resonant theranostics. In M. Long (Ed.), World congress on medical physics and biomedical engineering (Vol. 39, pp. 2248–2251). Berlin Heidelberg: Springerlink. Springer-Verlag.

    Google Scholar 

  87. Alkhatib, A., Watanabe, Y., & Broadhurst, J. H. (2009). The local enhancement of radiation dose from photons of MeV energies obtained by introducing materials of high atomic number into the treatment region. Medical Physics, 36, 3543–3548.

    Article  PubMed  CAS  Google Scholar 

  88. Busby, C. (2005). Depleted uranium weapons, metal particles, and radiation dose. European Journal of Biology Bioelectromagnet, 1, 82–93.

    Google Scholar 

  89. Berbeco, R. I., Ngwa, W., & Makrigiorgos, G. M. (2011). Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: New potential for external beam radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 81, 270–276.

    Article  PubMed  Google Scholar 

  90. Leung, M. K. K., Chow, J. C. L., Chithrani, B. D., Lee, M. J. G., Oms, B., & Jaffray, D. A. (2011). Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Medical Physics, 38, 624–631.

    Article  PubMed  CAS  Google Scholar 

  91. Ngwa, W., Makrigiorgos, G. M., & Berbeco, R. I. (2012). Gold nanoparticle enhancement of stereotactic radiosurgery for neovascular age-related macular degeneration. Physics in Medicine and Biology, 57, 6371–6380.

    Article  PubMed  CAS  Google Scholar 

  92. Zygmanski, P., Liu, B., Tsiamas, P., Cifter, F., Petersheim, M., Hesser, J., & Sajo, E. (2013). Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Physics in Medicine and Biology, 58, 7961–7977.

    Article  PubMed  CAS  Google Scholar 

  93. Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2012). Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. Journal of Colloid and Interface Science, 378, 70–76.

    Article  PubMed  CAS  Google Scholar 

  94. Zhang, X. J., Xing, J. Z., Chen, J., Ko, L., Amanie, J., Gulavita, S., Pervez, N., Yee, D., Moore, R., & Roa, W. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine, 31, E160–E167.

    Article  CAS  PubMed  Google Scholar 

  95. Zheng, Y., Hunting, D. J., Ayotte, P., & Sanche, L. (2008). Role of secondary low-energy electrons in the concomitant chemoradiation therapy of cancer. Physical Review Letters, 100, 198101.

    Google Scholar 

  96. Zheng, Y., Cloutier, P., Hunting, D. J., & Sanche, L. (2008). Radiosensitization by gold nanoparticles: Comparison of DNA damage induced by low and high-energy electrons. Journal of Biomedical Nanotechnology, 4, 469–473.

    Article  Google Scholar 

  97. Alizadeh, E., & Sanche, L. (2012). Precursors of solvated electrons in radiobiological physics and chemistry. Chemical Reviews, 112, 5578–5602.

    Article  PubMed  CAS  Google Scholar 

  98. Brun, E., Sanche, L., & Sicard-Roselli, C. (2009). Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids and Surfaces B: Biointerfaces, 72, 128–134.

    Article  PubMed  CAS  Google Scholar 

  99. Hebert, E. M., Debouttiere, P. J., Lepage, M., Sanche, L., & Hunting, D. J. (2010). Preferential tumour accumulation of gold nanoparticles, visualised by magnetic resonance imaging: Radiosensitisation studies in vivo and in vitro. International Journal of Radiation Biology, 86, 692–700.

    Article  PubMed  CAS  Google Scholar 

  100. Latimer, C. L. (2013). Octaarginine labelled 30 nm gold nanoparticles as agents for enhanced radiotherapy (Vol. Master of Science). Department of Medical Biophysics; University of Toronto, Toronto, p 81.

    Google Scholar 

  101. Zhang, P. P., Qiao, Y., Wang, C. M., Ma, L. Y., & Su, M. (2014). Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. Nanoscale, 6, 10095–10099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Detappe, A., Tsiamas, P., Ngwa, W., Zygmanski, P., Makrigiorgos, M., & Berbeco, R. (2013). The effect of flattening filter free delivery on endothelial dose enhancement with gold nanoparticles. Medical Physics, 40, 031706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Davidson, R. A., & Guo, T. (2014). Average physical enhancement by nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 118, 30221–30228.

    Article  CAS  Google Scholar 

  104. Cho, S. H. (2005). Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Medical Physics, 32, 2162–2162.

    Article  Google Scholar 

  105. Cho, S., Jeong, J. H., Kim, C. H., & Yoon, M. (2010). Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy. Journal of the Korean Physical Society, 56, 1754–1758.

    Article  CAS  Google Scholar 

  106. McMahon, S. J., Hyland, W. B., Brun, E., Butterworth, K. T., Coulter, J. A., Douki, T., Hirst, D. G., Jain, S., Kavanagh, A. P., Krpetic, Z., et al. (2011). Energy dependence of gold nanoparticle radiosensitization in plasmid DNA. Journal of Physical Chemistry C, 115, 20160–20167.

    Article  CAS  Google Scholar 

  107. Chang, J., Taylor, R. D., Davidson, R. A., Sharmah, A., & Guo, T. (2016). Electron paramagnetic resonance spectroscopy investigation of radical production by gold nanoparticles in aqueous solutions under X-ray irradiation. The Journal of Physical Chemistry. A, 120, 2815–2823.

    Article  PubMed  CAS  Google Scholar 

  108. Abolfazi, M. K., Mahdavi, S. R., Mahdavi, M., & Gh, A. (2015). Studying effects of gold nanoparticle on dose enhancement in megavoltage radiation. Journal of Biomedical Physics and Engineering, 5(4), 185–190.

    Google Scholar 

  109. Paudel, N., Shvydka, D., & Parsai, E. I. (2015). Comparative study of experimental enhancement in free radical generation against Monte Carlo modeled enhancement in radiation dose position due to the presence of high Z materials during irradiation of aqueous media. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4, 300–307. 300.

    Article  Google Scholar 

  110. Kakade, N. R., & Sharma, S. D. (2015). Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. Journal of Cancer Research and Therapeutics, 11, 94–97.

    Article  PubMed  Google Scholar 

  111. Ma, N., Xu, H. P., An, L. P., Li, J., Sun, Z. W., & Zhang, X. (2011). Radiation-sensitive diselenide block co-polymer micellar aggregates: Toward the combination of radiotherapy and chemotherapy. Langmuir, 27, 5874–5878.

    Article  PubMed  CAS  Google Scholar 

  112. Cao, W., Zhang, X. L., Miao, X. M., Yang, Z. M., & Xu, H. P. (2013). Gamma-ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide. Angewandte Chemie International Edition, 52, 6233–6237.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang, P. P., Qiao, Y., Xia, J. F., Guan, J. J., Ma, L. Y., & Su, M. (2015). Enhanced radiation therapy with multilayer microdisks containing radiosensitizing gold nanoparticles. ACS Applied Materials & Interfaces, 7, 4518–4524.

    Article  CAS  Google Scholar 

  114. Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., Nicolucci, P., & Baffa, O. (2012). Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Applied Materials & Interfaces, 4, 5844–5851.

    Article  CAS  Google Scholar 

  115. Guidelli, E. J., & Baffa, O. (2014). Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Medical Physics, 41(032101), 1–8.

    Google Scholar 

  116. Wolfe, T., Guidelli, E. J., Gomez, J. A., Baffa, O., & Nicolucci, P. (2015). Experimental assessment of gold nanoparticle-mediated dose enhancement in radiation therapy beams using electron spin resonance dosimetry. Physics in Medicine and Biology, 60, 4465–4480.

    Article  PubMed  CAS  Google Scholar 

  117. Smith, C. L., Ackerly, T., Best, S. P., Gagliardi, F., Kie, K., Little, P. J., McCorkell, G., Sale, C. A., Tsunei, Y., Tominaga, T., et al. (2015). Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters. Radiation Measurements, 82, 122–128.

    Article  CAS  Google Scholar 

  118. Smith, C. L., Best, S. P., Gagliardi, F., Tominaga, T., & Geso, M. (2017). The effects of gold nanoparticles concentrations and beam quality/LET on dose enhancement when irradiated with X-rays and protons using alanine/EPR dosimetry. Radiation Measurements, 106, 352–356.

    Article  CAS  Google Scholar 

  119. Wang, J. G., Hou, Y. J., Lei, W. H., Zhou, Q. X., Li, C., Zhang, B. W., & Wang, X. S. (2012). DNA photocleavage by a cationic BODIPY dye through both singlet oxygen and hydroxyl radical: New insight into the photodynamic mechanism of BODIPYs. Chemphyschem, 13, 2739–2747.

    Article  PubMed  CAS  Google Scholar 

  120. Youkhana, E., Gagliardi, F., & Geso, M. (2016). Two-dimensional scanning of PRESAGE® dosimetry using UV/VIS spectrophotometry and its potential application in radiotherapy. Biomedical Physics and Engineering Express, 2, 045009.

    Article  Google Scholar 

  121. Marques, T., Schwarcke, M., Garrido, C., Zucolotto, V., Baffa, O., & Nicolucci, P. (2010). Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. Journal of Physics: Conference Series, 250, 012084.

    Google Scholar 

  122. McMahon, S. J., McNamara, A. L., Schuemann, J., Prise, K. M., & Paganetti, H. (2016). Mitochondria as target for radiosensitization by gold nanoparticles. Journal of Physics Conference Series, 777, 012008.

    Article  CAS  Google Scholar 

  123. Ngwa, W., Makrigiorgos, G. M., & Berbeco, R. I. (2012). Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus. Medical Physics, 39, 392–398.

    Article  PubMed  CAS  Google Scholar 

  124. Hossain, M., & Su, M. (2012). Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. Journal of Physical Chemistry C, 116, 23047–23052.

    Article  CAS  Google Scholar 

  125. Douglass, M., Bezak, E., & Penfold, S. (2013). Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Medical Physics, 40(071710), 1–9.

    Google Scholar 

  126. Wardlow, N., Polin, C., Villagomez-Bernabe, B., & Currell, F. (2015). A simple model to quantify radiolytic production following electron emission from heavy-atom nanoparticles irradiated in liquid suspensions. Radiation Research, 184, 518–532.

    Article  PubMed  CAS  Google Scholar 

  127. Zabihzadeh, M., Moshirian, T., Ghorbani, M., Knaup, C., & Behrooz, M. A. (2018). A Monte Carlo study on dose enhancement by homogenous and inhomogeneous distributions of gold nanoparticles in radiotherapy with low energy X-rays. Journal of Biomedical Physics and Engineering, 8(1), I–XVI.

    Google Scholar 

  128. McQuaid, H. N., Muir, M. F., Taggart, L. E., McMahon, S. J., Coulter, J. A., Hyland, W. B., Jain, S., Butterworth, K. T., Schettino, G., Prise, K. M., et al. (2016). Imaging and radiation effects of gold nanoparticles in tumour cells. Scientific Reports-UK, 6, 19442.

    Article  CAS  Google Scholar 

  129. Oo, M. K. K., Yang, Y. M., Hu, Y., Gomez, M., Du, H., & Wang, H. J. (2012). Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano, 6, 1939–1947.

    Article  CAS  Google Scholar 

  130. Davidson, R. A., Sugiyama, C., & Guo, T. (2014). Determination of absolute quantum efficiency of X-ray nano phosphors by thin film photovoltaic cells. Analytical Chemistry, 86, 10492–10496.

    Article  PubMed  CAS  Google Scholar 

  131. Chen, W., & Zhang, J. (2006). Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 6, 1159–1166.

    Article  PubMed  CAS  Google Scholar 

  132. Gahl, C., Azima, A., Beye, M., Deppe, M., Dobrich, K., Hasslinger, U., Hennies, F., Melnikov, A., Nagasono, M., Pietzsch, A., et al. (2008). A femtosecond X-ray/optical cross-correlator. Nature Photonics, 2, 165–169.

    Article  CAS  Google Scholar 

  133. Liu, Y. F., Chen, W., Wang, S. P., & Joly, A. G. (2008). Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Applied Physics Letters, 92, 043901.

    Article  CAS  Google Scholar 

  134. Morgan, N. Y., Kramer-Marek, G., Smith, P. D., Camphausen, K., & Capala, J. (2009). Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: Calculation of required physical parameters. Radiation Research, 171, 236–244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Withers, N. J., Rivera, A. C., Plumley, J. B., Smolyakov, G. A., Triño, N. D., Sankar, K., Timmins, G. S., Akins, B. A., & Osiński, M. (2009). Scintillating-nanoparticle-induced enhancement of absorbed radiation dose. In T. M. J. M. Osinski & K. Yamanoto (Eds.), Proceedings of SPIE(Vol. 7189, p. 718917). San Jose: SPIE.

    Google Scholar 

  136. Gao, X., Kang, Q. S., Yeow, J. T. W., & Barnett, R. (2010). Design and evaluation of quantum dot sensors for making superficial x-ray energy radiation measurements. Nanotechnology, 21, 285502.

    Article  CAS  PubMed  Google Scholar 

  137. Scaffidi, J. P., Gregas, M. K., Lauly, B., Zhang, Y., & Vo-Dinh, T. (2011). Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 5, 4679–4687.

    Article  PubMed  CAS  Google Scholar 

  138. Maggiorella, L., Barouch, G., Devaux, C., Pottier, A., Deutsch, E., Bourhis, J., Borghi, E., & Levy, L. (2012). Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncology, 8, 1167–1181.

    Article  PubMed  CAS  Google Scholar 

  139. Marill, J., Anesary, N. M., Zhang, P., Vivet, S., Borghi, E., Levy, L., & Pottier, A. (2014). Hafnium oxide nanoparticles: Toward an in vitro predictive biological effect? Radiation Oncology, 9, 150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Elmenoufy, A. H., Tang, Y. A., Hu, J., Xu, H. B., & Yang, X. L. (2015). A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chemical Communications, 51, 12247–12250.

    Article  PubMed  CAS  Google Scholar 

  141. Kraščākovā, S., Giuliani, A., Lacerda, S., Pallier, A., Mercere, P., Toth, E., & Refregiers, M. (2015). X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Research, 8, 2373–2379.

    Article  CAS  Google Scholar 

  142. Kirakci, K., Kubat, P., Fejfarova, K., Martincik, J., Nikl, M., & Lang, K. (2016). X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: A new class of nanoscintillators. Inorganic Chemistry, 55, 803–809.

    Article  PubMed  CAS  Google Scholar 

  143. Ma, L., Zou, X. J., Bui, B., Chen, W., Song, K. H., & Solberg, T. (2014). X-ray excited ZnS:Cu,co afterglow nanoparticles for photodynamic activation. Applied Physics Letters, 105, 013702.

    Article  CAS  Google Scholar 

  144. Tseng, S.-J., Chien, C.-C., Liao, Z.-X., Chen, H.-H., Kang, Y.-D., Wang, C.-L., Hwu, Y., & Margaritondo, G. (2012). Controlled hydrogel photopolymerization inside live systems by X-ray irradiation. Soft Matter, 8(5), 1420–1427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, T. (2018). Physical Enhancement of the Effectiveness of X-Ray Irradiation. In: X-ray Nanochemistry. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78004-7_2

Download citation

Publish with us

Policies and ethics