Skip to main content

Applications of X-Ray Nanochemistry in Catalysis

  • Chapter
  • First Online:
X-ray Nanochemistry

Part of the book series: Nanostructure Science and Technology ((NST))

  • 966 Accesses

Abstract

This chapter reviews fundamental concepts of catalysis for the purpose of explanation and discussion of three different kinds of catalysis that are related to X-ray nanochemistry. The three are regular heterogeneous catalysis, photocatalysis and chemical enhancement as defined in Chap. 3. Each kind of catalysis is discussed and publications in the three areas are reviewed.

Running a business or any project is like taking a downhill mogul run - it is all about managing the transition. You can have a great run even though it does not look like you are going directly home most of the time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meisel, D. (2004). Radiation effects in nanoparticle suspensions. In L. M. Liz-Marzán & P. V. Kamat (Eds.), Nanoscale materials (pp. 119–134). New York: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  2. Benson, S., & Cook, P. (2005). Underground geolofical storage. In B. Metz, O. Davisdson, H. de Coninck, M. Loos, & L. Meyer (Eds.), Carbon dioxide capture and storage (pp. 195–276). New York: Cambridge University Press.

    Google Scholar 

  3. Bond, G. C., Louis, C., & Thompson, D. T. (2006). Catalysis by gold, G. J. Hutchings (p. 366). London: Imperial College Press.

    Google Scholar 

  4. Wu, J. C. S., & Huang, C. (2010). In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Chemical Engineering in China, 4, 120–126.

    CAS  Google Scholar 

  5. Hiroki, A., & LaVerne, J. A. (2005). Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. The Journal of Physical Chemistry. B, 109, 3364–3370.

    Article  CAS  PubMed  Google Scholar 

  6. Voinov, M. A., Pagan, J. O. S., Morrison, E., Smirnova, T. I., & Smirnov, A. I. (2011). Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. Journal of the American Chemical Society, 133, 35–41.

    Article  CAS  PubMed  Google Scholar 

  7. Varghese, O. K., Paulose, M., LaTempa, T. J., & Grimes, C. A. (2009). High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters, 9, 731–737.

    Article  CAS  PubMed  Google Scholar 

  8. Misawa, M., & Takahashi, J. (2011). Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine & Nanotechnology, 7, 604–614.

    Article  CAS  Google Scholar 

  9. Kim, T., & Zaera, F. (2012). X-ray-initiated metal-promoted thin film growth. Journal of Physical Chemistry C, 116, 8594–8600.

    Article  CAS  Google Scholar 

  10. Kim, B. H., & Kwon, J. W. (2014). Plasmon-assisted radiolytic energy conversion in aqueous solutions. Scientific Reports, 4, 5249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garibov, A. A., Velibekova, G. Z., & Agayev, T. N. (1987). Heterogeneous radiolysis of CO2 in the presence of zeolites. Radiation Physics and Chemistry, 29, 71–73.

    CAS  Google Scholar 

  12. Grodkowski, J., & Neta, P. (2001). Copper-catalyzed radiolytic reduction of CO2 to CO in aqueous solutions. The Journal of Physical Chemistry. B, 105, 4967–4972.

    Article  CAS  Google Scholar 

  13. Watanabe, D., Yoshida, T., Allen, C., & Tanabe, T. (2007). Enhancement of gamma-ray radiolysis of carbon dioxide with the assistance of solid materials. Journal of Radioanalytical and Nuclear Chemistry, 272, 461–465.

    Article  CAS  Google Scholar 

  14. Schatz, T., Cook, A. R., & Meisel, D. (1999). Capture of charge carriers at the silica nanoparticle-water interface. The Journal of Physical Chemistry. B, 103, 10209–10213.

    Article  CAS  Google Scholar 

  15. Cecal, A., & Humelnicu, D. (2011). Hydrogen output from catalyzed radiolysis of water. In P. Tsvetkov (Ed.), Nuclear power – Development, operation and sustainability (pp. 489–510). Rijeka: InTech.

    Google Scholar 

  16. Cecal, A., Goanta, M., Palamaru, M., Stoicescu, T., Popa, K., Paraschivescua, A., & Anita, V. (2001). Use of some oxides in radiolytical decomposition of water. Radiation Physics and Chemistry, 62, 333–336.

    Article  CAS  Google Scholar 

  17. Gonzalez-Juarez, J. C., Jimenez-Becerril, J., & Cejudo-Alvarez, J. (2010). Degradation of 4-chlorophenol by gamma radiation of Cs-137 and X-rays. Journal of the Mexican Chemical Society, 54, 157–159.

    CAS  Google Scholar 

  18. Sahu, S. P., & Cates, E. L. (2017). X-ray Radiocatalytic activity and mechanisms of bismuth complex oxides. Journal of Physical Chemistry C, 121, 10538–10545.

    Article  CAS  Google Scholar 

  19. Davidson, R. A., & Guo, T. (2012). An example of X-ray nanochemistry: SERS investigation of polymerization enhanced by nanostructures under X-ray irradiation. Journal of Physical Chemistry Letters, 3, 3271–3275.

    Article  CAS  Google Scholar 

  20. Cheng, N. N., Starkewolf, Z., Davidson, A. R., Sharmah, A., Lee, C., Lien, J., & Guo, T. (1950). Chemical enhancement by nanomaterials under X-ray irradiation. Journal of the American Chemical Society Communication, 2012(134), 1950–1953.

    Google Scholar 

  21. Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.

    Google Scholar 

  22. Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.

    Article  CAS  PubMed  Google Scholar 

  23. Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 4, 4830–4838.

    Article  CAS  PubMed  Google Scholar 

  24. McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., et al. (2011). Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 1. https://doi.org/10.1038/srep00018.

  25. Tojo, S., Tachikawa, T., Fujitsuka, M., & Majima, T. (2004). Oxidation processes of aromatic sulfides by hydroxyl radicals in colloidal solution of TiO2 during pulse radiolysis. Chemical Physics Letters, 384, 312–316.

    Article  CAS  Google Scholar 

  26. Fujitsuka, M., & Majima, T. (2011). Recent approach in radiation chemistry toward material and biological science. Journal of Physical Chemistry Letters, 2, 2965–2971.

    Article  CAS  Google Scholar 

  27. Merga, G., Milosavljevic, B. H., & Meisel, D. (2006). Radiolytic hydrogen yields in aqueous suspensions of gold particles. The Journal of Physical Chemistry. B, 110, 5403–5408.

    Article  CAS  PubMed  Google Scholar 

  28. Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2012). Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. Journal of Colloid and Interface Science, 378, 70–76.

    Article  CAS  PubMed  Google Scholar 

  29. Busby, C. (2005). Depleted uranium weapons, metal particles, and radiation dose. European Journal of Biology and Bioelectromagnetics, 1, 82–93.

    Google Scholar 

  30. Tickell, O. (2008). How war debris could cause cancer. New Scientist (1971), 199, 8–9.

    Article  Google Scholar 

  31. Pattison, J. E., Hugtenburg, R. P., & Green, S. (2010). Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body. Journal of The Royal Society Interface, 7, 603–611.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, T. (2018). Applications of X-Ray Nanochemistry in Catalysis. In: X-ray Nanochemistry. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-78004-7_10

Download citation

Publish with us

Policies and ethics